Скачать презентацию периодический закон и периодическая система. Презентация Значение Периодического закона и Периодической системы химических элементов Д.И

Обязательный минимум знаний

при подготовке к ОГЭ по химии

Периодическая система Д.И. Менделеева и строение атома

учитель химии

Филиала МОУ СОШ с.Поима

Белинского района Пензенской области в с.Чернышево


  • Повторить основные теоретические вопросы программы 8 класса;
  • Закрепить знания о причинах изменения свойств химических элементов на основании положения в ПСХЭ Д.И. Менделеева;
  • Научить обоснованно объяснять и сравнивать свойства элементов, а также образованных ими простых и сложных веществ по положению в ПСХЭ;
  • Подготовить к успешной сдаче ОГЭ по химии


Порядковый номер химического элемента

показывает число протонов в ядре атома

(заряд ядра Z) атома этого элемента.

12 р +

Mg 12

МАГНИЙ

В этом заключается

его физический смысл

12 е -

Число электронов в атоме

равно числу протонов,

так как атом

электронейтрален


Закрепим!

Са 20

КАЛЬЦИЙ

20 р +

20 е -

32 р +

32е -

СЕРА


Закрепим!

Zn 30

ЦИНК

30 р +

30 е -

35 р +

35е -

БРОМ


Горизонтальные строки химических элементов - периоды

малые

большие

незавершенный


Вертикальные столбцы химических элементов - группы

главные

побочные


Пример записи схемы строения атома химического элемента

Число электронных слоев

в электронной оболочке атома равно номеру периода, в котором расположен элемент

Относительная атомная масса

(округленное до целого числа значение)

записывается в верхнем левом углу над

порядковым номером

11 Na

Заряд ядра атома (Z) натрия

Натрий: порядковый номер 11

(записывается в нижнем левом углу

рядом с символом химического элемента)

2∙ 1 2

2∙ 2 2

11е -

11р +

Количество нейтронов вычисляется

по формуле: N(n 0 ) = A r – N(p + )

12 n 0

Число электронов на внешнем уровне для элементов главных подгрупп равно номеру группы , в которой расположен элемент

Максимальное число электронов

на уровне вычисляется по формуле:

2n 2


Закрепим!

13 Al

Заряд ядра атома (Z) алюминия

2∙ 1 2

2∙ 2 2

13е -

13р +

14 n 0


Закрепим!

9 F

Заряд ядра атома (Z) фтора

2∙ 1 2

+

-

10 n 0



В пределах одного периода

1. Возрастают:

I II III IV V VI VII VIII

Li Be B C N O F Ne

+3 +4 +5 +6 +7 +8 +9 +10

2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8

  • Заряд атомного ядра
  • Число электронов во внешнем слое атомов
  • Высшая степень окисления элементов в соединениях

Li +1 Be +2 B +3 C +4 N +5

  • Электроотрицательность
  • Окислительные свойства
  • Неметаллические свойства простых веществ
  • Кислотные свойства высших оксидов и гидроксидов

В пределах одного периода

2. Уменьшаются:

I II III IV V VI VII VIII

Li Be B C N O F Ne

+3 +4 +5 +6 +7 +8 +9 +10

2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8

  • Радиус атома
  • Металлические свойства простых веществ
  • Восстановительные свойства:

Li - только восстановитель , С – и окислитель , и восстановитель ,

F – только окислитель

  • Основные свойства высших оксидов и гидроксидов:

LiOH – основание ,Be(OH) 2 амфотерный гидроксид,

HNO 3 - кислота


В пределах одного периода

3. Не изменяется:

I II III IV V VI VII VIII

Li Be B C N O F Ne

+3 +4 +5 +6 +7 +8 +9 +10

2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8

Число электронных слоёв

(энергетических уровней)

в атоме –

равно номеру периода


Закрепим!

В периодах

слева направо

заряд ядра атома

  • Увеличивается
  • Уменьшается
  • Не изменяется

Закрепим!

В периодах

справа налево

число энергетических уровней

  • Увеличивается
  • Уменьшается
  • Не изменяется
  • Сначала увеличивается, а затем уменьшается

Закрепим!

В периодах

слева направо

восстановительные свойства элемента

  • Усиливаются
  • Ослабевают
  • Не изменяются
  • Сначала ослабевают, а затем усиливаются

Закрепим!

Атомы химических элементов

алюминия и кремния

имеют одинаковое:

  • Число электронных слоёв;
  • Число электронов

Закрепим!

Атомы химических элементов

серы и хлора

имеют различное:

  • Значение зарядов ядер атомов;
  • Число электронов на внешнем слое;
  • Число электронных слоёв;
  • Общее число электронов

В пределах одной А группы

1. Возрастают:

  • Заряд атомного ядра
  • Число электронных слоёв в атоме
  • Радиус атома
  • Восстановительные свойства
  • Металлические свойства

простых веществ

  • Основные свойства высших оксидов и гидроксидов
  • Кислотные свойства (степень диссоциации) бескислородных кислот неметаллов

2 8 18 8 1


В пределах одной А группы

2. Уменьшаются:

  • Электроотрицательность;
  • Окислительные свойства;
  • Неметаллические свойства

простых веществ;

  • Прочность (устойчивость) летучих водородных соединений.

2 8 18 7

2 8 18 18 7


В пределах одной А группы

3. Не изменяются:

  • Число электронов во внешнем электронном слое
  • Степень окисления элементов в высших оксидах и гидроксидах (как правило, равная номеру группы)
  • Be +2 Mg +2 Ca +2 Sr +2

2 2

2 8 2

2 8 8 2

2 8 18 8 2


Закрепим!

  • В главных подгруппах

снизу вверх

заряд ядра атома

  • Увеличивается
  • Уменьшается
  • Не изменяется
  • Сначала увеличивается, а затем уменьшается

Закрепим!

В главных подгруппах

снизу вверх

число электронов на внешнем уровне

  • Увеличивается
  • Уменьшается
  • Не изменяется
  • Сначала увеличивается, а затем уменьшается

Закрепим!

В главных подгруппах

снизу вверх

окислительные свойства элемента

  • Усиливаются
  • Ослабевают
  • Не изменяется
  • Сначала увеличивается, а затем уменьшается

Закрепим!

Атомы химических элементов

углерода и кремния

имеют одинаковое:

  • Значение зарядов ядер атомов;
  • Число электронов на внешнем слое;
  • Число электронных слоёв;
  • Общее число электронов в атоме

Закрепим!

Атомы химических элементов

азота и фосфора

имеют различное:

  • Значение зарядов ядер атомов;
  • Число электронов на внешнем слое;
  • Число электронных слоёв;
  • Общее число электронов

  • § 36, тест стр. 268-272


  • Таблица Д.И. Менделеева http://s00.yaplakal.com/pics/pics_original/7/7/0/2275077.gif
  • Габриелян О.С. «Химия. 9 класс», - ДРОФА, М., - 2013, с. 267-268
  • Савельев А.Е. Основные понятия и законы химии. Химические реакции. 8 – 9 классы. – М.: ДРОФА, 2008, - с. 6-48.
  • Рябов М.А., Невская Е.Ю. «Тесты по химии» к учебнику О.С. Габриеляна «Химия. 9 класс». – М.: ЭКЗАМЕН, 2010, с. 5-7

«Главный интерес химии – в изучении основных качеств элементов.

Найти их коренные свойства, определить причину их различие и сходства,

на основании этого предугадать свойства образуемых ими тел – таков

путь науки»

Д. И.Менделеев.



ПЕРИОДИЧЕСКАЯ СИСТЕМА

ХИМИЧЕСКИХ ЭЛЕМЕНТОВ

Д.И. МЕНДЕЛЕЕВА

ОТКРЫТИЕ

ПЕРИОДИЧЕСКОГО ЗАКОНА



13 х.э.

С С u Au

Ag Fe S

Pb As Hg

Sn Bi Sb Zn

XIX в 63 х.э.

XX в 116 х.э.

XVII в 20 х.э.

Сходные признаки

Металлы

Неметаллы

Берцелиус

Переходные элементы

амфотерные свойства

Лавуазье


Дёберейнер

Иоганн Вольфганг

в 1817 – 1829

открыл «закон триад»

(1780 – 1849)


Джон Ньюлендс

в 1865 году

заявил об открытии

«Закона октав»

(1837 – 1898)


Эмиль Бегуйе

де Шанкуртуа

1862 год

«Земная спираль)

(1820 – 1886)


Юлиус Лотар Мейер

Его таблица оказалась

наиболее близка к

таблице Д.И.Менделеева

4 val

3 val

2 val

1 val

1 val

Sn=117.6

2 val

Sb=120.6

Te=128.3

(Tl=204)

Ba=137.4

(1830 – 1895)









Трудности

возникшие при составлении таблицы

1.Было известно лишь63 элемента

2.Для многих химических элементов

были неправильно определены

атомные массы



Команда 1. Кем и когда был открыт Периодичес- кий закон?

Команда 3. Как читается Периодический закон по Менделееву?

Команда 2

Что положил в основу классифика- ции хим. элементов Менделеев? .


Команда 3.

Выберите названия хим. элементов, этимология которых связана с названием планет.

Команда 1. Найдите в ПС хим. элементы, названия которых происходит от названий частей света.

Команда 2.

Выберите названия хим. элементов, этимология которых связана с именами великих ученых.

№ 104 Резерфордий

№ 99 Эйнштейний

№ 101 Менделевий и другие

№ 34 Селен (луна)

№ 93 Нептуний

№ 52 Теллур (Земля)

№ 63 европий

№ 95 америций


Каждый период начинается с активного щелочного металла и заканчивается благородным газом.

Команда 3.

Объясните, почему закон называ-

ется периоди-ческим.

Команда 1.

Команда 2.

В ПСХЭ 8 групп.

Сколько периодов в ПСХЭ Д.И.Менделе-ева?

Сколько групп в ПСХЭ Д.И.Менделе-ева?

В ПСХЭ 7 периодов. Номера


«Будущее не грозит периодическому закону разрушением,

а только надстройки и

развитие обещает»

Д.И.Менделеев


  • Д.И.Менделеев в своем открытии опирался на четко сформулированные исходные положения:
  • Общее неизменное свойство атомов всех химических элементов – их атомная масса.
  • Свойства элементов зависят от их атомных масс.
  • Форма этой зависимости – периодическая.
  • День рождения периодического закона – 1 марта1869 года.
  • Периодическая система химических элементов – графическая форма отображения периодического закона.



3. http://www.alhimik.ru/stroenie/gl_5.html

4. http://images.yandex.ru/yandsearch?

5. http://dic.academic.ru/dic.nsf/bse/102765/Лекок

6. http://www.alhimikov.net/otkritie_elementov/Ge.html

7. http://www.alhimikov.net/otkritie_elementov/Sc.html

1

Открытие
Периодического закона
В основу своей классификации
химических элементов Д.И. Менделеев
положил два их основных и постоянных
признака:
величину атомной массы
свойства образованных химическими
элементами веществ.
2

Открытие Периодического
закона
При этом он обнаружил, что свойства
элементов в некоторых пределах
изменяются линейно (монотонно
усиливаются или ослабевают), затем после
резкого скачка повторяются
периодически, т.е. через определённое
число элементов встречаются сходные.
3

Первый вариант
Периодической таблицы
На основании своих
наблюдений 1 марта 1869 г. Д.И.
Менделеев сформулировал
периодический закон, который в
начальной своей
формулировке звучал так:
свойства простых тел, а
также формы и свойства
соединений элементов
находятся в периодической
зависимости от величин
атомных весов элементов
4

Периодический закон
Д.И. Менделеева
Если написать ряды один под другим так,
чтобы под литием находился натрий, а под
неоном – аргон, то получим следующее
расположение элементов:
Li Be B C N O
Na Mg Al Si P S
F Ne
Cl Ar
При таком расположении в вертикальные
столбики
попадают элементы, сходные по своим
свойствам.
5

Периодический закон Д.И. Менделеева

Современная трактовка Периодического
закона:
Свойства химических элементов
и образуемых ими соединений
находятся в периодической
зависимости от величины заряда
их атомных ядер.
6

Р
19
30,974
ФОСФОР
7

8

Периоды

Периоды - горизонтальные ряды
химических элементов, всего 7 периодов.
Периоды делятся на малые (I,II,III) и
большие (IV,V,VI), VII-незаконченный.
9

Периоды

Каждый период (за исключением первого)
начинается типичным металлом (Li, Nа, К,
Rb, Cs, Fr) и заканчивается благородным
газом (Не, Ne, Ar, Kr, Хе, Rn), которому
предшествует типичный неметалл.
10

Группы

вертикальные столбцы
элементов с одинаковым
числом электронов на
внешнем электронном
уровне, равным номеру
группы.
11

Группы

Различают главные (А) и
побочные подгруппы (Б).
Главные подгруппы состоят
из элементов малых и больших
периодов.
Побочные подгруппы состоят
из элементов только больших
периодов.
Такие элементы назваются
переходными.
12

13

Запомнить!!!
Номер периода = число энергетических
уровней атома.
Номер группы = число внешних электронов
атома.
(Для элементов главных подгрупп)
14

Валентность

Номер группы показывает высшую
валентность элемента по кислороду.
15

Валентность

Элементы IV, V, VI и VII групп образуют
летучие водородные соединения.
Номер группы показывает
валентность элемента в соединениях с
водородом.
8-№группы
16

17

Задание:

Назовите в каком периоде и в
какой группе, подгруппе
находятся следующие
химические элементы:
Натрий, Медь, Углерод, Сера,
Хлор, Хром, Железо, Бром
18

Изменение радиуса атома
в периоде
Радиус атома уменьшается с
увеличением зарядов ядер атомов в периоде.
19

Изменение радиуса атома
в периоде
В одной группе с увеличением
номера периода атомные радиусы
возрастают.
20

Изменение радиусов атомов в таблице Д.И. Менделеева

21

Задание:

Сравните радиусы следующих
химических элементов:
Литий, натрий, калий
Бор, углерод, азот
Кислород, Сера, селен
Йод, Хлор, фтор
Хлор, сера, фосфор
22

Электроотрицательность
Электроотрицательность - это
способность атома притягивать
электронную плотность.
Электроотрицательность в периоде
увеличивается с возрастанием
заряда ядра химического элемента, то
есть слева направо.
23

Электроотрицательность в
группе увеличивается с
уменьшением числа
электронных слоев атома
(снизу вверх).
Самым
электроотрицательным
элементом является фтор (F),
а наименее
электроотрицательным –
франций (Fr).
24

ОТНОСИТЕЛЬНАЯ ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ
АТОМОВ
Н
2,1
Li
Be
С
N
О
0,98
1,5
В
3,5
F
4,0
Na
Mg
Al
Si
P
S
Сl
0,93
1,2
К
Ca
0,91
1,04
Rb
Sr
0,89
0,99
2,0
1,6
Ga
1,8
In
1,5
2,5
1,9
Ge
2,0
Sn
1,7
3,07
2,2
As
2,1
Sb
1,8
2,6
Se
2,5
Те
2,1
3,0
Br
2,8
I
2,6
25

Задание:

Сравните ЭО следующих
химических элементов:
Натрий и кислород
Углерод и водород
Кислород и фтор
Бор и азот
Йод, фтор
Хлор, фосфор
26


свойства
Восстановительные свойства атомов способность терять электроны при

Окислительные свойства атомов способность принимать электроны при
образовании химической связи.
27

Окислительно-восстановительные
свойства
В главных подгруппах снизу вверх, в
периодах – слева направо
окислительные свойства простых
веществ элементов возрастают, а
восстановительные свойства,
соответственно, убывают.
28

Изменение свойств
химических элементов
Окислительные и неметаллические
свойства
Окислительные и неметаллические свойства
29

МЕТАЛЛОИДЫ

B
Ge
Sb
Po
30

МЕТАЛЛОИДЫ

По своим химическим свойствам
полуметаллы являются неметаллами,
но по типу проводимости относятся к
проводникам.
31

32

Cпасибо за внимание!!

33

СТРОЕНИЕ АТОМА

34

СТРОЕНИЕ АТОМА

1911 г Английский ученый Эрнест Резерфорд
предложил планетарную модель атома
35

Строение
атома
1. В центре атома находится
положительно заряженное
ядро.
2. Весь положительный заряд
и почти вся масса атома
сосредоточены в его ядре.
Частица
3. Ядра атомов состоят из
протонов и нейтронов
(нуклонов).
4. Вокруг ядра по замкнутым
орбитам вращаются
электроны.
Заряд Массовое
число
Электрон
е–
-1
0
Протон
р+
+1
1
Нейтрон
n0
0
1
36

37

Строение атома

электрон
протон
нейтрон
38

Химический элемент – это вид
атомов с одинаковым зарядом
ядра.
Порядковый
номер
элемента
в ПС
=
Заряд
ядра
Число
Число
= протонов = электронов
в ядре
ē
Заряд ядра
порядковый
номер →
12
Mg
Число протонов
Число электронов
Z = +12
р+ = 12
ē = 12
39

Число нейтронов

Во атомах одного химического
элемента число
протонов р+ всегда одинаково
(равно заряду ядра Z), а число
нейтронов N бывает разным.
40

Число нейтронов
Число
протонов Z
+
Число
нейтронов N
=
Массовое
число А
Число нейтронов N = A -Z
Массовое число -
24
порядковый номер -
12
Mg
N = 24 – 12 = 12
41

Примерные задания

Определите для предложенных ХЭ:
порядковый номер
массовое число
заряд ядра
кол-во протонов
кол-во электронов
кол-во нейтронов
42

Изотопы - атомы элемента, имеющие один
и тот же заряд ядра, но разные массы.
е–
-
е

е–
-
-
р+
n
+ n
р
+
р
Изотопы
водорода
n
Водород
Дейтерий
Тритий
1H
2D
3T
Число
протонов (Z)
одинаковое
1
1
1
Число
нейтронов N
разное
0
1
2
Массовое
число А
разное
1
2
3
43

Изотопы хлора
35
17
Сl
75%
37
17
Сl
25%
Ar = 0.75 * 35 + 0.25 * 37 = 35.5

Электронная оболочка совокупность всех
электронов в атоме,
окружающих ядро.
45

Электронная оболочка

Электрон в атоме находится в связанном
состоянии с ядром и обладает энергией,
которая определяет энергетическиий уровень
на котором находится электрон.
46

Электронная оболочка

Электрон не может обладать такой
энергией, чтобы находиться между
энергетическими уровнями.
Атом алюминия
Атом углерода
Атом
водорода
47

Стационарное и возбужденное состояние атома

48

1
Е1 < E2 < E3
2
ядро
3
Энергетические уровни n
(Электронные слои) – совокупность
электронов с близкими значениями
энергии
Число энергетических уровней в атоме
равно номеру периода, в котором
располагается ХЭ в ПСХЭ.
49

Определите

Число
энергетических
уровней для
Н, Li, Na, K, Сu
50

Распределение электронов по уровням

N=2n2
формула
для
вычисления
максимального количества электронов на
энергетических уровнях, где n-номер уровня.
1Й уровень - 2 электрона.
2Й уровень - 8 электронов.
3Й уровень - 18 электронов.
51

Максимальное количество электронов на 1 уровне

1 уровень: 2ē
52

Максимальное количество
электронов на 1и 2 уровнях
1 уровень: 2ē
2 уровень:8ē
53

Максимальное количество электронов на 1,2,3 уровнях

1 уровень-2
2 уровень-8
3 уровень-18
54

Схема электронного строения

Порядковый номер
заряд ядра +6, общее число ē – 6,
Углерод 6С находится во втором периоде
два энергетических уровня (в схеме
изображают скобками, под ними пишут число
электронов на данном энергетическом уровне):
С +6))
6
2
4
55

Составьте схему электронного строения для:

Li, Na
Bе, O, Р,
F, Br
56

Энергетические уровни,
содержащие максимальное число
электронов, называются
завершенными.
Они обладают повышенной
устойчивостью и стабильностью
Энергетические уровни,
содержащие меньшее число
электронов, называются
незавершенными
57

4
БЕРИЛЛИЙ
2
2
9,0122
Внешний энергетическицй уровень

Периодическая таблица химических элементов

Число энергетических
уровней атома.
= № периода
Число внешних электронов = № группы
59

11
Na
22,99
натрий
60

Внешние электроны

Число внешних электронов = № группы
Электрон
внешнего
уровня
61

Строение энергетических уровней

Каждый энергетический уровень
состоит из подуровней: s, p, d, f.
Подуровень состоит из орбиталей.
Электронная орбиталь - область
наиболее вероятного
местонахождения электрона в
пространстве

Электронная орбиталь

Электроны S – подуровня при движении вокруг ядра
образуют сферическое электронное облако
Граница
подуровней
S – облако
63

Электроны p – подуровня образуют три
электронных облака в форме объёмной
восьмёрки
р – облака
64

Форма орбиталей p – подуровня

65

Форма орбиталей d – подуровня

d - облака
66

Форма орбиталей f – подуровня

67

p
-электронная орбиталь,
-электроны,
-этажное расположение
обозначает уровни и подуровни
электронов.
На схеме показано
строение 1-го и 2-го
электронных уровней
атома кислорода
68

Электронно-графические формулы
Электронно-графические
формулы
Подуровень состоит из орбиталей Е
n=4 – 4 подуровня (S,р,d,f)
n=4
S
n=3
S
n=2
S
n=1 S
d
p
p
d
f
n=3 – 3 подуровня (S, р, d)
n=2 – 2 подуровня (S, р)
p
n=1 – 1 подуровень (S)
где n-номер уровня
69

Квантовые числа

Состояние каждого электрона в атоме
обычно описывают с помощью четырех
квантовых чисел:
главного (n),
орбитального (l),
магнитного (m) и
спинового (s).
Первые три характеризуют движение
электрона в пространстве, а четвертое вокруг собственной оси.
70

Квантовые числа

- энергетические параметры,
определяющие состояние электрона
и тип атомной орбитали, на которой
он находится.
1. Главное квaнтовое число n
определяет общую энергию электрона
и степень его удаления от ядра
(номер энергетического уровня);
n = 1, 2, 3, . . .
71

Квантовые числа

2. Орбитальное (побочное)
квантовое число l определяет форму
атомной орбитали.
Значения от 0 до n-1 (l = 0, 1, 2, 3,..., n-1).
Каждому значению l соответствует
орбиталь особой формы.
l = 0 - s-орбиталь,
l = 1 - р-орбиталь,
l = 2 - d-орбиталь,
l = 3 - f-орбиталь
72

3. Магнитное квантовое число m

- определяет ориентацию орбитали в
пространстве относительно внешнего
магнитного или электрического поля.
m = 2 l +1
Значения изменяются от +l до -l, включая 0.
Например, при l = 1 число m принимает
3 значения: +1, 0, -1, поэтому существуют
3 типа р-АО: рx, рy, рz.
73

Квантовые числа

4.Спиновое квантовое число s может
принимать лишь два возможных значения
+1/2 и -1/2.
Они соответствуют двум возможным и
противоположным друг другу направлениям
собственного магнитного момента
электрона, называемого спином.


74

Свойства электрона
Спин характеризует собственный
магнитный момент электрона.
Для обозначения электронов с различными
спинами используются символы: и ↓ .

Принцип Паули.
Правило Хунда.
Принцип устойчивости
Клечковского.
76

1) Запрет Паули
На одной АО могут находится не более, чем два
электрона, которые должны иметь различные
спины.
Разрешено
Запрещено!
В атоме не может быть двух электронов с
одинаковым набором всех четырех
квантовых чисел.
77

Планетарная модель атома берилия

4
БЕРИЛЛИЙ
2
2
1s
9,0122
2s

Планетарная модель атома берилия

4
БЕРИЛЛИЙ
2
2
1s
9,0122
2s
2p

Заполнение атомных орбиталей электронами

2) Принцип Хунда:
Устойчивому состоянию атома
соответствует такое распределение
электронов в пределах
энергетического подуровня, при
котором абсолютное значение
суммарного спина атома
максимально
Разрешено
Запрещено!
80

Правила заполнения энергетических уровней

Правило Хунда
Если, например, в трех
p-ячейках атома азота необходимо
распределить три электрона, то они
будут располагаться каждый в
отдельной ячейке, т.е. размещаться
на трех разных
p-орбиталях:
в этом случае суммарный спин
равен +3/2 , поскольку его проекция
равна
Эти же три электрона не могут
быть расположены
таким образом,
потому что тогда проекция
суммарного спина
ms = +1/2-1/2+1/2=+1/2 .
ms = +1/2+1/2+1/2=+3/2 .
Запрещено!
Разрешено
81

Заполнение атомных орбиталей электронами

3) Принцип устойчивости
Клечковского.
АО заполняются электронами в
порядке повышения энергии их
энергетических уровней.
1s<2s<2p<3s<3p<4s<3d<4p<5s<4d
82

Принцип устойчивости Клечковского.

В первую очередь заполняются те
орбитали, у которых min сумма (n+l).
При равных суммах (n+l) заполняются те, у
которых n меньше
1s < 2s < 2p < 3s < 3p < 4s < 3d ...
4s (4+0=4)
1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d
83

ЭЛЕКТРОНАЯ ФОРМУЛА
АТОМА
С помощью электронных формул
(конфигураций) можно показать
распределение электронов по
энергетическим уровням и подуровням:
1s<2s<2p<3s<3p<4s<3d<4p<5s<4d
1s2 2s22p6 3s23p6 3d0 4s2
84

ЭЛЕКТРОННАЯ ФОРМУЛА
Пример: Углерод, №6, период II,
группа IVA.
Схема электронного
строение атома
С+6))
2 4
Электронная формула: 1s2 2s22p2
85

Алгоритм составления электронных формул.

Записываем знак химического элемента и
заряд ядра его атома (№ элемента).
Определяем количество энергетических
уровней (№ периода) и количество
электронов на каждом уровне.
Составляем электронную формулу,
учитывая номер уровня, вид орбитали и
количество электронов на ней (принцип
Клечковского).
86 строение атомов
Li
Na
К
Rb
O
S


90

91

Выводы

Строение внешних
энергетических уровней
периодически повторяется,
поэтому периодически
повторяются и свойства
химических элементов.
92

Состояния атомов
Атомы устойчивы лишь в некоторых
стационарных состояниях, которым
отвечают определенные значения энергии.
Наинизшее из разрешённых энергетических
состояний атома называется основным, а все
остальные - возбуждёнными.
Возбужденные состояния атомов образуются
из основного состояния при переходе одного
или нескольких электронов с занятых
орбиталей на свободные (или занятые лишь
93
1 электроном)

Строение атома марганца:

Mn
+25
2
8
13
2
d - элемент
1s22s22p63s23p64s23d54p0
основное состояние атома
возбужденное состояние атома
94

Значение переходных металлов для организма и жизнедеятельности.

Без переходных металлов наш организм
существовать не может.
Железо – это действующее начало
гемоглобина.
Цинк участвует в выработке инсулина.
Кобальт – центр витамина В-12.
Медь, марганец и молибден, а также
некоторые другие металлы входят в
состав ферментов.
95

Ионы

Ион – положительно или отрицательно
заряженная частица, образованная при
отдаче или присоединении атомом или
группой атомов одного или нескольких
электронов
Катион – (+) заряженная частица, Kat
Анион – (-) заряженная частица, An
96

4. Сравнение металлических
(неметаллических) свойств с соседними по
периоду и подгруппе элементами.
5. Электроотрицательность, то есть сила
притяжения электронов к ядру.
101

Спасибо за внимание!

102

Использованные интернет – ресурсы:

smoligra.ru
newpictures.club/s-p-d-f-orbitals
infourok.ru
Интересные видео
https://www.youtube.com/watch?v=3GbGjc-kSRw
103

Найдите соответствия элементов и их признаков:

ЭЛЕМЕНТ
ПРИЗНАК
А. Литий
Б. Фтор
В. Азот
Д. Берилий.
1) s-элемент
2) Неметалл
3) число протонов 9
4) f-элемент
5) число электронов 4
6) d-элемент
7) Металл
8) Наивысшая ЭО по
сравнению с остальными
вариантами атомов
104


  • До периодического закона элементы представляли лишь отрывочные случайные явления природы
  • Не было периодической закономерности.
  • Химия была описательной наукой.

Химия после открытия периодического закона

Химия получила инструмент научного приведения. Главным источником закона стала таблица химических элементов Д.И. Менделеева.


  • Обобщающая
  • Объясняющая
  • Прогностическая

  • Произошла систематизация и обобщение всех сведений о хим.элементах
  • Появилось обоснование различных видов периодической зависимости, существующих в мире химических элементов, объяснив их на основе строения атомов элементов
  • Появились первые предсказания о новых химических элементах. Которые потом реально будут найдены

Систематизация

До Менделеева было предпринято несколько попыток систематизировать элементы по разным признакам. В основном объединялись сходные по своим химическим свойствам элементы. Например: Li, Na, K. Или: Cl, Br, I. Эти и некоторые другие элементы объединялись в так называемые "триады". Таблица из пяти таких "триад" была опубликована Доберейнером еще в 1829 году, но она включала лишь небольшую часть из известных к тому времени элементов.


Дальнейшие открытия в химии и физике многократно подтвердили фундаментальный смысл Периодического закона. Были открыты инертные газы, которые великолепно вписались в Периодическую систему. Порядковый номер элемента оказался равным заряду ядра атома этого элемента. Многие неизвестные ранее элементы были открыты благодаря целенаправленному поиску именно тех свойств, которые предсказывались по Периодической таблице.