Введение в многомерный статистический анализ - калинина. Анализ многомерный статистический Многомерный статистический анализ метод главных компонент

Пример

Имеются данные о выпуске продукции группой предприятий по месяцам (млн. руб.):

Для выявления общей тенденции роста выпуска продукции произведем укрупнение интервалов. Для этой цели исходные (месячные) данные о выработке продукции объединяем в квартальные и получаем показатели выпуска продукции группой предприятий по кварталам:

В результате укрупнения интервалов общая тенденция роста выпуска продукции данной группой предприятий выступает отчетливо:

64,5 < 76,9 < 78,8 < 85,9.

Выявление общей тенденции ряда динамики можно произвести также путем сглаживания ряда динамики с помощью метода скользящей средней . Сущность этого приема состоит в том, что по исходным уровням ряда (эмпирическим данным) определяют расчетные (теоретические) уровни. При этом посредством осреднения эмпирических данных индивидуальные колебания погашаются, и общая тенденция развития явления выражается в виде некоторой плавной линии (теоретические уровни).

Основное условие применения этого метода состоит в вычислении звеньев подвижной (скользящей) средней из такого числа уровней ряда, которое соответствует длительности наблюдаемых в ряду динамики циклов.

Недостатком способа сглаживания рядов динамики является то, что полученные средние не дают теоретических закономерностей (моделей) рядов, в основе которых лежала бы математически выраженная закономерность и это позволяло бы не только выполнить анализ, но и прогнозировать динамику ряда на будущее.

Значительно более совершенным приемом изучения общей тенденции в рядах динамики является аналитическое выравнивание . При изучении общей тенденции методом аналитического выравнивания исходят из того, что изменения уровней ряда динамики могут быть с той или иной степенью точности приближения выражены усреднённо с помощью определенных математических функций. Путем теоретического анализа выявляется характер развития явления, и на этой основе выбирается то или иное математическое выражение типа изменения явления: по прямой, по параболе второго порядка, показательной (логарифмической) кривой и т.п.

Очевидно, что уровни временных рядов формируются под совокупным влиянием множества длительно и кратковременно действующих факторов, в т.ч. различного рода случайностей. Изменение условий развития явления приводит к более или менее интенсивной смене самих факторов, к изменению силы и результативности их воздействия и, в конечном счете, к вариации уровня изучаемого явления во времени.



Многомерный статистический анализ - раздел статистики математической, посвященный математическим методам, направленным на выявление характера и структуры взаимосвязей между компонентами исследуемого многомерного признака и предназначенным для получения научных и практических выводов. Исходным массивом многомерных данных для проведения такого анализа обычно служат результаты измерения компонент многомерного признака для каждого из объектов исследуемой совокупности, т.е. последовательность многомерных наблюдений. Многомерный признак чаще всего интерпретируется как многомерная величина случайная, а последовательность многомерных наблюдений - как выборка из генеральной совокупности. В этом случае выбор метода обработки исходных статистических данных производится на основе тех или иных допущений относительно природы закона распределения изучаемого многомерного признака.

1. Анализ многомерных распределений и их основных характеристик охватывает ситуации, когда обрабатываемые наблюдения имеют вероятностную природу, т.е. интерпретируются как выборка из соответствующей генеральной совокупности. К основным задачам этого подраздела относятся: оценивание статистическое исследуемых многомерных распределений и их основных параметров; исследование свойств используемых статистических оценок; исследование распределений вероятностей для ряда статистик, с помощью которых строятся статистические критерии проверки различных гипотез о вероятностной природе анализируемых многомерных данных.
2. Анализ характера и структуры взаимосвязей компонент исследуемого многомерного признака объединяет понятия и результаты, присущие таким методам и моделям, как анализ регрессионный, анализ дисперсионный, анализ ковариационнй, анализ факторный, анализ латентно-структурный, анализ логлинейный, поиск взаимодействий . Методы, принадлежащие к этой группе, включают как алгоритмы, основанные на предположении о вероятностной природе данных, так и методы, не укладывающиеся в рамки какой-либо вероятностной модели (последние чаще относят к методам анализа данных).

3. Анализ геометрической структуры исследуемой совокупности многомерных наблюдений объединяет понятия и результаты, свойственные таким моделям и методам, как анализ дискриминантный, анализ кластерный, шкалирование многомерное. Узловым для этих моделей является понятие расстояния, либо меры близости между анализируемыми элементами как точками некоторого пространства. При этом анализироваться могут как объекты (как точки, задаваемые в признаковом пространстве), так и признаки (как точки, задаваемые в объектном пространстве).

Прикладное значение многомерного статистического анализа состоит в основном в обслуживании следующих трех проблем:

Проблемы статистического исследования зависимостей между рассматриваемыми показателями;

Проблемы классификации элементов (объектов или признаков);

Проблемы снижения размерности рассматриваемого признакового пространства и отбора наиболее информативных признаков.

Дисперсионный анализ.

Целью дисперсионного анализа является проверка статистической значимости различия между средними (для групп или переменных). Эта проверка проводится с помощью разбиения суммы квадратов на компоненты, т.е. с помощью разбиения общей дисперсии (вариации) на части, одна из которых обусловлена случайной ошибкой (то есть внутригрупповой изменчивостью), а вторая связана с различием средних значений. Последняя компонента дисперсии затем используется для анализа статистической значимости различия между средними значениями. Если это различие значимо , нулевая гипотеза отвергается и принимается альтернативная гипотеза о существовании различия между средними.

Разбиение суммы квадратов. Для выборки объема n выборочная дисперсия вычисляется как сумма квадратов отклонений от выборочного среднего, деленная на n-1 (объем выборки минус единица). Таким образом, при фиксированном объеме выборки n дисперсия есть функция суммы квадратов (отклонений). В основе дисперсионного анализа лежит разделение дисперсии на части или компоненты, т.е. выборка разбивается на две части в которых вычисляются среднии и сумма квадратов отклонений. Расчет тех же показателей по выборки в целом дает большее значение дисперсии, что объясняется расхождение между групповыми средними. Таким образом, дисперсионный анализ позволяет объяснить внутригрупповую изменчивость, которая при исследовании всей группы в целом не может быть изменена.

Проверка значимости в дисперсионном анализе основана на сравнении компоненты дисперсии, обусловленной межгрупповым и компоненты дисперсии, обусловленной внутригрупповым разбросом (называемой средним квадратом ошибки). Если верна нулевая гипотеза (равенство средних в двух популяциях), то можно ожидать сравнительно небольшое различие выборочных средних из-за чисто случайной изменчивости. Поэтому, при нулевой гипотезе, внутригрупповая дисперсия будет практически совпадать с общей дисперсией, подсчитанной без учета групповой принадлежности. Полученные внутригрупповые дисперсии можно сравнить с помощью F-критерия, проверяющего, действительно ли отношение дисперсий значимо больше 1.

Преимущества: 1) дисперсионный анализ существенно более эффективен и, для малых выборок, т.к. более информативен; 2)дисперсионный анализ позволяет обнаружить эффекты взаимодействия между факторами и, поэтому, позволяет проверять более сложные гипотезы

Метод главных компонент состоит в линейном понижении размерности, в котором определяются попарно ортогональные направления максимальной вариации исходных данных, после чего данные проектируются на пространство меньшей размерности, порожденное компонентами с наибольшей вариацией.

Метод главных компонент является частью факторного анализа, который состоит в том, что две коррелированные переменные объединены в один фактор. Если пример с двумя переменными распространить на большее число переменных, то вычисления становятся сложнее, однако основной принцип представления двух или более зависимых переменных одним фактором остается в силе.

При сокращении числа переменных решение о том, когда следует остановить процедуру выделения факторов, главным образом зависит от точки зрения на то, что считать малой "случайной" изменчивостью. При повторных итерациях выделяются факторы с все меньшей и меньшей дисперсией.

Центроидный метод определения факторов.

Центроидный метод используется при кластерном анализе. В этом методе расстояние между двумя кластерами определяется как расстояние между их центрами тяжести при не взвешенном центроидном методе..

Взвешенный центроидный метод (медиана) идентичен не взвешенному, за исключением того, что при вычислениях используются веса для учёта разницы между размерами кластеров (т.е. числами объектов в них). Поэтому, если имеются (или подозреваются) значительные отличия в размерах кластеров, этот метод оказывается предпочтительнее предыдущего.

Кластерный анализ.

Термин кластерный анализ в действительности включает в себя набор различных алгоритмов классификации. Общий вопрос, задаваемый исследователями во многих областях, состоит в том, как организовать наблюдаемые данные в наглядные структуры, т.е. определить кластеры схожих объектов. Фактически, кластерный анализ является не столько обычным статистическим методом, сколько "набором" различных алгоритмов "распределения объектов по кластерам". Существует точка зрения, что в отличие от многих других статистических процедур, методы кластерного анализа используются в большинстве случаев тогда, когда вы не имеете каких-либо априорных гипотез относительно классов, но все еще находитесь в описательной стадии исследования. Следует понимать, что кластерный анализ определяет "наиболее возможно значимое решение".

Алгоритм древовидной кластеризации. Назначение этого алгоритма состоит в объединении объектов в достаточно большие кластеры, используя некоторую меру сходства или расстояние между объектами. Типичным результатом такой кластеризации является иерархическое дерево, которое представляет собой диаграмму. Диаграмма начинается с каждого объекта в классе (в левой части диаграммы). Теперь представим себе, что постепенно (очень малыми шагами) вы "ослабляете" ваш критерий о том, какие объекты являются уникальными, а какие нет. Другими словами, вы понижаете порог, относящийся к решению об объединении двух или более объектов в один кластер. В результате, вы связываете вместе всё большее и большее число объектов и агрегируете (объединяете) все больше и больше кластеров, состоящих из все сильнее различающихся элементов. Окончательно, на последнем шаге все объекты объединяются вместе. На этих диаграммах горизонтальные оси представляют расстояние объединения (в вертикальных древовидных диаграммах вертикальные оси представляют расстояние объединения). Так, для каждого узла в графе (там, где формируется новый кластер) вы можете видеть величину расстояния, для которого соответствующие элементы связываются в новый единственный кластер. Когда данные имеют ясную "структуру" в терминах кластеров объектов, сходных между собой, тогда эта структура, скорее всего, должна быть отражена в иерархическом дереве различными ветвями. В результате успешного анализа методом объединения появляется возможность обнаружить кластеры (ветви) и интерпретировать их.

Дискриминантный анализ используется для принятия решения о том, какие переменные различают (дискриминируют) две или более возникающие совокупности (группы). Наиболее общим применением дискриминантного анализа является включение в исследование многих переменных с целью определения тех из них, которые наилучшим образом разделяют совокупности между собой. Другими словами, вы хотите построить "модель", позволяющую лучше всего предсказать, к какой совокупности будет принадлежать тот или иной образец. В следующем рассуждении термин "в модели" будет использоваться для того, чтобы обозначать переменные, используемые в предсказании принадлежности к совокупности; о неиспользуемых для этого переменных будем говорить, что они "вне модели".

В пошаговом анализе дискриминантных функций модель дискриминации строится по шагам. Точнее, на каждом шаге просматриваются все переменные и находится та из них, которая вносит наибольший вклад в различие между совокупностями. Эта переменная должна быть включена в модель на данном шаге, и происходит переход к следующему шагу.

Можно также двигаться в обратном направлении, в этом случае все переменные будут сначала включены в модель, а затем на каждом шаге будут устраняться переменные, вносящие малый вклад в предсказания. Тогда в качестве результата успешного анализа можно сохранить только "важные" переменные в модели, то есть те переменные, чей вклад в дискриминацию больше остальных.

Эта пошаговая процедура "руководствуется" соответствующим значением F для включения и соответствующим значением F для исключения. Значение F статистики для переменной указывает на ее статистическую значимость при дискриминации между совокупностями, то есть, она является мерой вклада переменной в предсказание членства в совокупности.

Для двух групп дискриминантный анализ может рассматриваться также как процедура множественной регрессии. Если вы кодируете две группы как 1 и 2, и затем используете эти переменные в качестве зависимых переменных в множественной регрессии, то получите результаты, аналогичные тем, которые получили бы с помощью дискриминантного анализа. В общем, в случае двух совокупностей вы подгоняете линейное уравнение следующего типа:

Группа = a + b1*x1 + b2*x2 + ... + bm*xm

где a является константой, и b1...bm являются коэффициентами регрессии. Интерпретация результатов задачи с двумя совокупностями тесно следует логике применения множественной регрессии: переменные с наибольшими регрессионными коэффициентами вносят наибольший вклад в дискриминацию.

Если имеется более двух групп, то можно оценить более, чем одну дискриминантную функцию подобно тому, как это было сделано ранее. Например, когда имеются три совокупности, вы можете оценить: (1) - функцию для дискриминации между совокупностью 1 и совокупностями 2 и 3, взятыми вместе, и (2) - другую функцию для дискриминации между совокупностью 2 и совокупности 3. Например, вы можете иметь одну функцию, дискриминирующую между теми выпускниками средней школы, которые идут в колледж, против тех, кто этого не делает (но хочет получить работу или пойти в училище), и вторую функцию для дискриминации между теми выпускниками, которые хотят получить работу против тех, кто хочет пойти в училище. Коэффициенты b в этих дискриминирующих функциях могут быть проинтерпретированы тем же способом, что и ранее.

Каноническая корреляция.

Канонический анализ предназначен для анализа зависимостей между списками переменными. Если говорить точнее, он позволяет исследовать зависимость между двумя множествами переменных. При вычислении канонических корней подсчитывают собственные значения матрицы корреляций. Эти значения равны доле дисперсии, объясняемой корреляцией между соответствующими каноническими переменными. При этом полученная доля вычисляется относительно дисперсии канонических переменных, т.е. взвешенных сумм по двум множествам переменных; таким образом, собственные значения не показывают абсолютного значения, объясняемого в соответствующих канонических переменных.

Если извлечь квадратный корень из полученных собственных значений, получим набор чисел, который можно проинтерпретировать как коэффициенты корреляции. Поскольку они относятся к каноническим переменным, их также называют каноническими корреляциями. Как и собственные значения, корреляции между последовательно выделяемыми на каждом шаге каноническими переменными, убывают. Однако другие канонические переменные также могут быть значимо коррелированы, и эти корреляции часто допускают достаточно осмысленную интерпретацию.

Критерий значимости канонических корреляций сравнительно несложен. Во-первых, канонические корреляции оцениваются одна за другой в порядке убывания. Только те корни, которые оказались статистически значимыми, оставляются для последующего анализа. Хотя на самом деле вычисления происходят немного иначе. Программа сначала оценивает значимость всего набора корней, затем значимость набора, остающегося после удаления первого корня, второго корня, и т.д.

Исследования показали, что используемый критерий обнаруживает большие канонические корреляции даже при небольшом размере выборки (например, n = 50). Слабые канонические корреляции (например, R = .3) требуют больших размеров выборки (n > 200) для обнаружения в 50% случаев. Отметим, что канонические корреляции небольшого размера обычно не представляют практической ценности, поскольку им соответствует небольшая реальная изменчивость исходных данных.

Канонические веса. После определения числа значимых канонических корней возникает вопрос об интерпретации каждого (значимого) корня. Напомним, что каждый корень в действительности представляет две взвешенные суммы, по одной на каждое множество переменных. Одним из способов толкования "смысла" каждого канонического корня является рассмотрение весов, сопоставленных каждому множеству переменных. Эти веса также называются каноническими весами.

При анализе, обычно, пользуются тем, что чем больше приписанный вес (т.е., абсолютное значение веса), тем больше вклад соответствующей переменной в значение канонической переменной.

Если вы знакомы с множественной регрессией, вы можете применить для канонических весов интерпретацию, использованную для бета - весов в уравнении множественной регрессии. Канонические веса, в некотором смысле, аналогичны частным корреляциям переменных, соответствующих каноническому корню. Таким образом, рассмотрение канонических весов позволяют понять "значение" каждого канонического корня, т.е. увидеть, как конкретные переменные в каждом множестве влияют на взвешенную сумму (т.е. каноническую переменную).

Параметрические и непараметрические методы оценки результатов.

Параметрические методы, основанные на выборочном распределении определенной статистики. Говоря кратко, если вы знаете распределение наблюдаемой переменной, то можете предсказать, как в повторных выборках равного объема будет "вести себя" используемая статистика - т.е. каким образом она будет распределена.

В практике использование параметрических методов ограничено из-за объема или размера выборки доступной для анализа; проблем с точным измерением признаков наблюдаемого объекта

Таким образом, возникает необходимость в наличие процедур, позволяющих обрабатывать данные "низкого качества" из выборок малого объема с переменными, про распределение которых мало что или вообще ничего не известно. Непараметрические методы как раз и разработаны для тех ситуаций, достаточно часто возникающих на практике, когда исследователь ничего не знает о параметрах исследуемой популяции (отсюда и название методов - непараметрические). Говоря более специальным языком, непараметрические методы не основываются на оценке параметров (таких как среднее или стандартное отклонение) при описании выборочного распределения интересующей величины. Поэтому эти методы иногда также называются свободными от параметров или свободно распределенными.

По существу, для каждого параметрического критерия имеется, по крайней мере, один непараметрический аналог. Эти критерии можно отнести к одной из следующих групп:

критерии различия между группами (независимые выборки);

критерии различия между группами (зависимые выборки);

критерии зависимости между переменными.

Различия между независимыми группами. Обычно, когда имеются две выборки (например, мужчины и женщины), которые вы хотите сравнить относительно среднего значения некоторой изучаемой переменной, вы используете t-критерий для независимых. Непараметрическими альтернативами этому критерию являются: критерий серий Вальда-Вольфовица, U критерий Манна-Уитни и двухвыборочный критерий Колмогорова-Смирнова. Если вы имеете несколько групп, то можете использовать дисперсионный анализ. Его непараметрическими аналогами являются: ранговый дисперсионный анализ Краскела-Уоллиса и медианный тест.

Различия между зависимыми группами. Если вы хотите сравнить две переменные, относящиеся к одной и той же выборке (например, математические успехи студентов в начале и в конце семестра), то обычно используется t-критерий для зависимых выборок. Альтернативными непараметрическими тестами являются: критерий знаков и критерий Вилкоксона парных сравнений. Если рассматриваемые переменные по природе своей категориальны или являются категоризованными (т.е. представлены в виде частот попавших в определенные категории), то подходящим будет критерий хи-квадрат Макнемара. Если рассматривается более двух переменных, относящихся к одной и той же выборке, то обычно используется дисперсионный анализ (ANOVA) с повторными измерениями. Альтернативным непараметрическим методом является ранговый дисперсионный анализ Фридмана или Q критерий Кохрена (последний применяется, например, если переменная измерена в номинальной шкале). Q критерий Кохрена используется также для оценки изменений частот (долей).

Зависимости между переменными. Для того, чтобы оценить зависимость (связь) между двумя переменными, обычно вычисляют коэффициент корреляции. Непараметрическими аналогами стандартного коэффициента корреляции Пирсона являются статистики Спирмена R, тау Кендалла и коэффициент Гамма Если две рассматриваемые переменные по природе своей категориальны, подходящими непараметрическими критериями для тестирования зависимости будут: Хи-квадрат, Фи коэффициент, точный критерий Фишера. Дополнительно доступен критерий зависимости между несколькими переменными так называемый коэффициент конкордации Кендалла. Этот тест часто используется для оценки согласованности мнений независимых экспертов (судей), в частности, баллов, выставленных одному и тому же субъекту.

Если данные не являются нормально распределенными, а измерения, в лучшем случае, содержат ранжированную информацию, то вычисление обычных описательных статистик (например, среднего, стандартного отклонения) не слишком информативно. Например, в психометрии хорошо известно, что воспринимаемая интенсивность стимулов (например, воспринимаемая яркость света) представляет собой логарифмическую функцию реальной интенсивности (яркости, измеренной в объективных единицах - люксах). В данном примере, обычная оценка среднего (сумма значений, деленная на число стимулов) не дает верного представления о среднем значении действительной интенсивности стимула. (В обсуждаемом примере скорее следует вычислить геометрическое среднее.) Непараметрическая статистика вычисляет разнообразный набор мер положения (среднее, медиану, моду и т.д.) и рассеяния (дисперсию, гармоническое среднее, квартильный размах и т.д.), позволяющий представить более "полную картину" данных.

Многомерный статистический анализ применяют при решении следующих задач:

  • * исследование зависимости между признаками;
  • * классификация объектов или признаков, заданных векторами;
  • * снижение размерности пространства признаков.

При этом результат наблюдений - вектор значений фиксированного числа количественных и иногда качественных признаков, измеренных у объекта. Количественный признак - признак наблюдаемой единицы, который можно непосредственно выразить числом и единицей измерения. Количественный признак противопоставляется качественному - признаку наблюдаемой единицы, определяемому отнесением к одной из двух или более условных категорий (если имеется ровно две категории, то признак называется альтернативным). Статистический анализ качественных признаков - часть статистики объектов нечисловой природы. Количественные признаки делятся на признаки, измеренные в шкалах интервалов, отношений, разностей, абсолютной.

А качественные - на признаки, измеренные в шкале наименований и порядковой шкале. Методы обработки данных должны быть согласованы со шкалами, в которых измерены рассматриваемые признаки.

Целями исследования зависимости между признаками являются доказательство наличия связи между признаками и изучение этой связи. Для доказательства наличия связи между двумя случайными величинами Х и У применяют корреляционный анализ. Если совместное распределение Х и У является нормальным, то статистические выводы основывают на выборочном коэффициенте линейной корреляции, в остальных случаях используют коэффициенты ранговой корреляции Кендалла и Спирмена, а для качественных признаков - критерий хи-квадрат.

Регрессионный анализ применяют для изучения функциональной зависимости количественного признака У от количественных признаков x(1), x(2), … , x(k). Эту зависимость называют регрессионной или, кратко, регрессией. Простейшая вероятностная модель регрессионного анализа (в случае k = 1) использует в качестве исходной информации набор пар результатов наблюдений (xi, yi), i = 1, 2, … , n, и имеет вид

yi = axi + b + еi, i = 1, 2, … , n,

где еi - ошибки наблюдений. Иногда предполагают, что еi - независимые случайные величины с одним и тем же нормальным распределением N(0, у2). Поскольку распределение ошибок наблюдения обычно отлично от нормального, то целесообразно рассматривать регрессионную модель в непараметрической постановке, т.е. при произвольном распределении еi.

Основная задача регрессионного анализа состоит в оценке неизвестных параметров а и b, задающих линейную зависимость y от x. Для решения этой задачи применяют разработанный еще К.Гауссом в 1794 г. метод наименьших квадратов, т.е. находят оценки неизвестных параметров моделиa и b из условия минимизации суммы квадратов

по переменным а и b.

Дисперсионный анализ применяют для изучения влияния качественных признаков на количественную переменную. Например, пусть имеются k выборок результатов измерений количественного показателя качества единиц продукции, выпущенных на k станках, т.е. набор чисел (x1(j), x2(j), … , xn(j)), где j - номер станка, j = 1, 2, …, k, а n - объем выборки. В распространенной постановке дисперсионного анализа предполагают, что результаты измерений независимы и в каждой выборке имеют нормальное распределение N(m(j), у2) с одной и той же дисперсией.

Проверка однородности качества продукции, т.е. отсутствия влияния номера станка на качество продукции, сводится к проверке гипотезы

H0: m(1) = m(2) = … = m(k).

В дисперсионном анализе разработаны методы проверки подобных гипотез.

Гипотезу Н0 проверяют против альтернативной гипотезы Н1, согласно которой хотя бы одно из указанных равенств не выполнено. Проверка этой гипотезы основана на следующем «разложении дисперсий», указанном Р.А.Фишером:

где s2 - выборочная дисперсия в объединенной выборке, т.е.

Таким образом, первое слагаемое в правой части формулы (7) отражает внутригрупповую дисперсию. Наконец, - межгрупповая дисперсия,

Область прикладной статистики, связанную с разложениями дисперсии типа формулы (7), называют дисперсионным анализом. В качестве примера задачи дисперсионного анализа рассмотрим проверку приведенной выше гипотезы Н0 в предположении, что результаты измерений независимы и в каждой выборке имеют нормальное распределение N(m(j), у2) с одной и той же дисперсией. При справедливости Н0 первое слагаемое в правой части формулы (7), деленное на у2, имеет распределение хи-квадрат с k(n-1) степенями свободы, а второе слагаемое, деленное на у2, также имеет распределение хи-квадрат, но с (k-1) степенями свободы, причем первое и второе слагаемые независимы как случайные величины. Поэтому случайная величина

имеет распределение Фишера с (k-1) степенями свободы числителя и k(n-1) степенями свободы знаменателя. Гипотеза Н0 принимается, если F < F1-б, и отвергается в противном случае, где F1-б - квантиль порядка 1-б распределения Фишера с указанными числами степеней свободы. Такой выбор критической области определяется тем, что при Н1 величина F безгранично увеличивается при росте объема выборок n. Значения F1-б берут из соответствующих таблиц.

Разработаны непараметрические методы решения классических задач дисперсионного анализа, в частности, проверки гипотезы Н0.

Следующий тип задач многомерного статистического анализа - задачи классификации. Они делятся на три принципиально различных вида - дискриминантный анализ, кластер-анализ, задачи группировки.

Задача дискриминантного анализа состоит в нахождении правила отнесения наблюдаемого объекта к одному из ранее описанных классов. При этом объекты описывают в математической модели с помощью векторов, координаты которых - результаты наблюдения ряда признаков у каждого объекта. Классы описывают либо непосредственно в математических терминах, либо с помощью обучающих выборок. Обучающая выборка - это выборка, для каждого элемента которой указано, к какому классу он относится.

Рассмотрим пример применения дискриминантного анализа для принятия решений в технической диагностике. Пусть по результатам измерения ряда параметров продукции необходимо установить наличие или отсутствие дефектов. В этом случае для элементов обучающей выборки указаны дефекты, обнаруженные в ходе дополнительного исследования, например, проведенного после определенного периода эксплуатации. Дискриминантный анализ позволяет сократить объем контроля, а также предсказать будущее поведение продукции. Дискриминантный анализ сходен с регрессионным - первый позволяет предсказывать значение качественного признака, а второй - количественного. В статистике объектов нечисловой природы разработана математическая схема, частными случаями которой являются регрессионный и дискриминантный анализы.

Кластерный анализ применяют, когда по статистическим данным необходимо разделить элементы выборки на группы. Причем два элемента группы из одной и той же группы должны быть «близкими» по совокупности значений измеренных у них признаков, а два элемента из разных групп должны быть «далекими» в том же смысле. В отличие от дискриминантного анализа в кластер-анализе классы не заданы, а формируются в процессе обработки статистических данных. Например, кластер-анализ может быть применен для разбиения совокупности марок стали (или марок холодильников) на группы сходных между собой.

Другой вид кластер-анализа - разбиение признаков на группы близких между собой. Показателем близости признаков может служить выборочный коэффициент корреляции. Цель кластер-анализа признаков может состоять в уменьшении числа контролируемых параметров, что позволяет существенно сократить затраты на контроль. Для этого из группы тесно связанных между собой признаков (у которых коэффициент корреляции близок к 1 - своему максимальному значению) измеряют значение одного, а значения остальных рассчитывают с помощью регрессионного анализа.

Задачи группировки решают тогда, когда классы заранее не заданы и не обязаны быть «далекими» друг от друга. Примером является группировка студентов по учебным группам. В технике решением задачи группировки часто является параметрический ряд - возможные типоразмеры группируются согласно элементам параметрического ряда. В литературе, нормативно-технических и инструктивно-методических документах по прикладной статистике также иногда используется группировка результатов наблюдений (например, при построении гистограмм).

Задачи классификации решают не только в многомерном статистическом анализе, но и тогда, когда результатами наблюдений являются числа, функции или объекты нечисловой природы. Так, многие алгоритмы кластер-анализа используют только расстояния между объектами. Поэтому их можно применять и для классификации объектов нечисловой природы, лишь бы были заданы расстояния между ними. Простейшая задача классификации такова: даны две независимые выборки, требуется определить, представляют они два класса или один. В одномерной статистике эта задача сводится к проверке гипотезы однородности.

Третий раздел многомерного статистического анализа - задачи снижения размерности (сжатия информации). Цель их решения состоит в определении набора производных показателей, полученных преобразованием исходных признаков, такого, что число производных показателей значительно меньше числа исходных признаков, но они содержат возможно большую часть информации, имеющейся в исходных статистических данных. Задачи снижения размерности решают с помощью методов многомерного шкалирования, главных компонент, факторного анализа и др. Например, в простейшей модели многомерного шкалирования исходные данные - попарные расстояния между k объектами, а цель расчетов состоит в представлении объектов точками на плоскости. Это дает возможность в буквальном смысле слова увидеть, как объекты соотносятся между собой. Для достижения этой цели необходимо каждому объекту поставить в соответствие точку на плоскости так, чтобы попарные расстояния sij между точками, соответствующими объектам с номерами i и j, возможно точнее воспроизводили расстояния сijмежду этими объектами. Согласно основной идее метода наименьших квадратов находят точки на плоскости так, чтобы величина

достигала своего наименьшего значения. Есть и многие другие постановки задач снижения размерности и визуализации данных.

вероятность математический статистика качество

Учебное пособие создано на основе опыта преподавания автором курсов многомерного статистического анализа и эконометрики. Содержит материалы по дискриминантному, факторному, регрессионному анализу, анализу соответствий и теории временных рядов. Изложены подходы к задачам многомерного шкалирования и некоторым другим задачам многомерной статистики.

Группировка и цензурирование.
Задача формирования групп выборочных данных таким образом, чтобы сгруппированные данные могли предоставить практически тот же объем информации для принятия решения, что и выборка до группировки, решается исследователем в первую очередь. Целями группировки, как правило, служат снижение объемов информации, упрощение вычислений и придание наглядности данным. Некоторые статистические критерии изначально ориентированы на работу со сгруппированной выборкой. В определенных аспектах задача группировки очень близка задаче классификации, о которой подробнее речь пойдет ниже. Одновременно с задачей группировки исследователь решает и задачу цензурирования выборки, т.е. исключения из нее резко выпадающих данных, как правило, являющихся следствием грубых ошибок наблюдений. Естественно, желательно обеспечить отсутствие таких ошибок еще в процессе самих наблюдений, по сделать это удается не всегда. Простейшие методы решения упомянутых двух задач рассмотрены в этой главе.

Оглавление
1 Предварительные сведения
1.1 Анализ и алгебра
1.2 Теория вероятностей
1.3 Математическая статистика
2 Многомерные распределения
2.1 Случайные векторы
2.2 Независимость
2.3 Числовые характеристики
2.4 Нормальное распределение в многомерном случае
2.5 Корреляционная теория
3 Группировка и цензурирование
3.1 Одномерная группировка
3.2 Одномерное цензурирование
3.3 Таблицы сопряженности
3.3.1 Гипотеза независимости
3.3.2 Гипотеза однородности
3.3.3 Поле корреляции
3.4 Многомерная группировка
3.5 Многомерное цензурирование
4 Нечисловые данные
4.1 Вводные замечания
4.2 Шкалы сравнений
4.3 Экспертные оценки
4.4 Группы экспертов
5 Доверительные множества
5.1 Доверительные интервалы
5.2 Доверительные множества
5.2.1 Многомерный параметр
5.2.2 Многомерная выборка
5.3 Толерантные множества
5.4 Малая выборка
6 Регрессионный анализ
6.1 Постановка задачи
6.2 Поиск ОМНК
6.3 Ограничения
6.4 Матрица плана
6.5 Статистический прогноз
7 Дисперсионный анализ
7.1 Вводные замечания
7.1.1 Нормальность
7.1.2 Однородность дисперсий
7.2 Один фактор
7.3 Два фактора
7.4 Общий случай
8 Снижение размерности
8.1 Зачем нужна классификация
8.2 Модель и примеры
8.2.1 Метод главных компонент
8.2.2 Экстремальная группировка признаков
8.2.3 Многомерное шкалирование
8.2.4 Отбор показателей для дискриминантного анализа
8.2.5 Отбор показателей в модели регрессии
9 Дискриминантный анализ
9.1 Применимость модели
9.2 Линейное прогностическое правило
9.3 Практические рекомендации
9.4 Один пример
9.5 Более двух классов
9.6 Проверка качества дискриминации
10 Эвристические методы
10.1 Экстремальная группировка
10.1.1 Критерий квадратов
10.1.2 Критерий модулей
10 2 Метод плеяд
11 Метод главных компонент
11 1 Постановка задачи
112 Вычисление главных компонент
11.3 Пример
114 Свойства главных компонент
11.4.1 Самовоспроизводимость
11.4.2 Геометрические свойства
12 Факторный анализ
12.1 Постановка задачи
12.1.1 Связь с главными компонентами
12.1.2 Однозначность решения
12.2 Математическая модель
12.2.1 Условия на Аt А
12.2.2 Условия на матрицу нагрузок. Центроидный метод
12.3 Латентные факторы
12.3.1 Метод Бартлетта
12.3.2 Метод Томсона
12.4 Пример
13 Оцифровка
13.1 Анализ соответствий
13.1.1 Расстояние хи-квадрат
13.1.2 Оцифровка для задач дискриминантного анализа
13.2 Более двух переменных
13.2.1 Использование бинарной матрицы данных в качестве матрицы соответствий
13.2.2 Максимальные корреляции
13.3 Размерность
13.4 Пример
13.5 Случай смешанных данных
14 Многомерное шкалирование
14.1 Вводные замечания
14.2 Модель Торгерсона
14.2.1 Стресс-критерий
14.3 Алгоритм Торгерсона
14.4 Индивидуальные различия
15 Временные ряды
15.1 Общие положения
15.2 Критерии случайности
15.2.1 Пики и ямы
15.2.2 Распределение длины фазы
15.2.3 Критерии, основанные на ранговой корреляции
15.2.4 Коррелограмма
15.3 Тренд и сезонность
15.3.1 Полиномиальные тренды
15.3.2 Выбор степени тренда
15.3.3 Сглаживание
15.3.4 Оценка сезонных колебаний
А Нормальное распределение
В Распределение X2
С Распределение Стьюдента
D Распределение Фишера.


Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Многомерный статистический анализ, Дронов С.В., 2003 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.

Социальные и экономические объекты, как правило, характеризуются достаточно большим числом параметров, образующих многомерные векторы, и особое значение в экономических и социальных исследованиях приобретают задачи изучения взаимосвязей между компонентами этих векторов, причем эти взаимосвязи необходимо выявлять на основании ограниченного числа многомерных наблюдений.

Многомерным статистическим анализом называется раздел математической статистики, изучающий методы сбора и обработки многомерных статистических данных, их систематизации и обработки с целью выявления характера и структуры взаимосвязей между компонентами исследуемого многомерного признака, получения практических выводов.

Отметим, что способы сбора данных могут различаться. Так, если исследуется мировая экономика, то естественно взять в качестве объектов, на которых наблюдаются значения вектора X, страны, если же изучается национальная экономическая система, то естественно наблюдать значения вектора X на одной и той же (интересующей исследователя) стране в различные моменты времени.

Такие статистические методы, как множественный корреляционный и регрессионный анализ, традиционно изучаются в курсах теории вероятностей и математической статистики , рассмотрению прикладных аспектов регрессионного анализа посвящена дисциплина «Эконометрика» .

Другим методам исследования многомерных генеральных совокупностей на основании статистических данных посвящено данное пособие.

Методы снижения размерности многомерного пространства позволяют без существенной потери информации перейти от первоначальной системы большого числа наблюдаемых взаимосвязанных факторов к системе существенно меньшего числа скрытых (ненаблюдаемых) факторов, определяющих вариацию первоначальных признаков. В первой главе описываются методы компонентного и факторного анализа, с использованием которых можно выявлять объективно существующие, но непосредственно не наблюдаемые закономерности при помощи главных компонент или факторов.

Методы многомерной классификации предназначены для разделения совокупностей объектов (характеризующиеся большим числом признаков) на классы, в каждый из которых должны входить объекты, в определенном смысле однородные или близкие. Такую классификацию на основании статистических данных о значениях признаков на объектах можно провести методами кластерного и дискриминантного анализа, рассматриваемыми во второй главе (Многомерный статистический анализ с использованием “STATISTICA”).

Развитие вычислительной техники и программного обеспечения способствует широкому внедрению методов многомерного статистического анализа в практику. Пакеты прикладных программ с удобным пользовательским интерфейсом, такие как SPSS, Statistica, SAS и др., снимают трудности в применении указанных методов, заключающиеся в сложности математического аппарата, опирающегося на линейную алгебру, теорию вероятностей и математическую статистику, и громоздкости вычислений.

Однако применение программ без понимания математической сущности используемых алгоритмов способствует развитию у исследователя иллюзии простоты применения многомерных статистических методов, что может привести к неверным или необоснованным результатам. Значимые практические результаты могут быть получены только на основе профессиональных знаний в предметной области, подкрепленных владением математическими методами и пакетами прикладных программ, в которых эти методы реализованы.

Поэтому для каждого из рассматриваемых в данной книге методов приводятся основные теоретические сведения, в том числе алгоритмы; обсуждается реализация этих методов и алгоритмов в пакетах прикладных программ. Рассматриваемые методы иллюстрируются примерами их практического применения в экономике с использованием пакета SPSS.

Пособие написано на основе опыта чтения курса «Многомерные статистические методы» студентам Государственного университета управления. Для более подробного изучения методов прикладного многомерного статистического анализа рекомендуются книги .

Предполагается, что читатель хорошо знаком с курсами линейной алгебры (например, в объеме учебника и приложения к учебнику ), теории вероятностей и математической статистики (например, в объеме учебника ).