Характеристики химических связей. Зависимость свойств веществ от их состава и строения

Ковалентная химическая связь, ее разновидности и механизмы образования. Характеристика ковалентной связи (полярность и энергия связи). Ионная связь. Металлическая связь. Водородная связь

Учение о химической связи составляет основу всей теоретической химии.

Под химической связью понимают такое взаимодействие атомов, которое связывает их в молекулы, ионы, радикалы, кристаллы.

Различают четыре типа химических связей: ионную, ковалентную, металлическую и водородную.

Деление химических связей на типы носит условный характер, по скольку все они характеризуются определенным единством.

Ионную связь можно рассматривать как предельный случай ковалентной полярной связи.

Металлическая связь совмещает ковалентное взаимодействие атомов с помощью обобществленных электронов и электростатическое притяжение между этими электронами и ионами металлов.

В веществах часто отсутствуют предельные случаи химической связи (или чистые химические связи).

Например, фторид лития $LiF$ относят к ионным соединениям. Фактически же в нем связь на $80%$ ионная и на $20%$ ковалентная. Правильнее поэтому, очевидно, говорить о степени полярности (ионности) химической связи.

В ряду галогеноводородов $HF—HCl—HBr—HI—HАt$ степень полярности связи уменьшается, ибо уменьшается разность в значениях электроотрицательности атомов галогена и водорода, и в астатоводороде связь становится почти неполярной $(ЭО(Н) = 2.1; ЭО(At) = 2.2)$.

Различные типы связей могут содержаться в одних и тех же веществах, например:

  1. в основаниях: между атомами кислорода и водорода в гидроксогруппах связь полярная ковалентная, а между металлом и гидроксогруппой — ионная;
  2. в солях кислородсодержащих кислот: между атомом неметалла и кислородом кислотного остатка — ковалентная полярная, а между металлом и кислотным остатком — ионная;
  3. в солях аммония, метиламмония и т. д.: между атомами азота и водорода — ковалентная полярная, а между ионами аммония или метиламмония и кислотным остатком — ионная;
  4. в пероксидах металлов (например, $Na_2O_2$) связь между атомами кислорода ковалентная неполярная, а между металлом и кислородом — ионная и т.д.

Различные типы связей могут переходить одна в другую:

— при электролитической диссоциации в воде ковалентных соединений ковалентная полярная связь переходит в ионную;

— при испарении металлов металлическая связь превращается в ковалентную неполярную и т.д.

Причиной единства всех типов и видов химических связей служит их одинаковая химическая природа — электронно-ядерное взаимодействие. Образование химической связи в любом случае представляет собой результат электронно-ядерного взаимодействия атомов, сопровождающегося выделением энергии.

Способы образования ковалентной связи. Характеристики ковалентной связи: длина и энергия связи

Ковалентная химическая связь — это связь, возникающая между атомами за счет образования общих электронных пар.

Механизм образования такой связи может быть обменным и донорно-акцепторным.

I. Обменный механизм действует, когда атомы образуют общие электронные пары за счет объединения неспаренных электронов.

1) $H_2$ - водород:

Связь возникает благодаря образованию общей электронной пары $s$-электронами атомов водорода (перекрыванию $s$-орбиталей):

2) $HCl$ — хлороводород:

Связь возникает за счет образования общей электронной пары из $s-$ и $p-$электронов (перекрывания $s-p-$орбиталей):

3) $Cl_2$: в молекуле хлора ковалентная связь образуется за счет непарных $p-$электронов (перекрывание $p-p-$орбиталей):

4) $N_2$: в молекуле азота между атомами образуются три общие электронные пары:

II. Донорно-акцепторный механизм образования ковалентной связи рассмотрим на примере иона аммония $NH_4^+$.

Донор имеет электронную пару, акцептор — свободную орбиталь, которую эта пара может занять. В ионе аммония все четыре связи с атомами водорода ковалентные: три образовались благодаря созданию общих электронных пар атомом азота и атомами водорода по обменному механизму, одна — по донорно-акцепторному механизму.

Ковалентные связи можно классифицировать по способу перекрывания электронных орбиталей, а также по смещению их к одному из связанных атомов.

Химические связи, образующиеся в результате перекрывания электронных орбиталей вдоль линии связи, называются $σ$-связями (сигма-связями) . Сигма-связь очень прочная.

$p-$Орбитали могут перекрываться в двух областях, образуя ковалентную связь за счет бокового перекрывания:

Химические связи, образующиеся в результате «бокового» перекрывания электронных орбиталей вне линии связи, т.е. в двух областях, называются $π$-связями (пи-связями).

По степени смещенности общих электронных пар к одному из связанных ими атомов ковалентная связь может быть полярной и неполярной.

Ковалентную химическую связь, образующуюся между атомами с одинаковой электроотрицательностью, называют неполярной. Электронные пары не смещены ни к одному из атомов, т.к. атомы имеют одинаковую ЭО — свойство оттягивать к себе валентные электроны от других атомов. Например:

т.е. посредством ковалентной неполярной связи образованы молекулы простых веществ-неметаллов. Ковалентную химическую связь между атомами элементов, электроотрицательности которых различаются, называют полярной.

Длина и энергия ковалентной связи.

Характерные свойства ковалентной связи — ее длина и энергия. Длина связи — это расстояние между ядрами атомов. Химическая связь тем прочнее, чем меньше ее длина. Однако мерой прочности связи является энергия связи , которая определяется количеством энергии, необходимой для разрыва связи. Обычно она измеряется в кДж/моль. Так, согласно опытным данным, длины связи молекул $H_2, Cl_2$ и $N_2$ соответственно составляют $0.074, 0.198$ и $0.109$ нм, а энергии связи соответственно равны $436, 242$ и $946$ кДж/моль.

Ионы. Ионная связь

Представим себе, что «встречаются» два атома: атом металла I группы и атом неметалла VII группы. У атома металла на внешнем энергетическом уровне находится единственный электрон, а атому неметалла как раз не хватает именно одного электрона, чтобы его внешний уровень оказался завершенным.

Первый атом легко отдаст второму свой далекий от ядра и слабо связанный с ним электрон, а второй предоставит ему свободное место на своем внешнем электронном уровне.

Тогда атом, лишенный одного своего отрицательного заряда, станет положительно заряженной частицей, а второй превратится в отрицательно заряженную частицу благодаря полученному электрону. Такие частицы называются ионами.

Химическая связь, возникающая между ионами, называется ионной.

Рассмотрим образование этой связи на примере хорошо всем знакомого соединения хлорида натрия (поваренная соль):

Процесс превращения атомов в ионы изображен на схеме:

Такое превращение атомов в ионы происходит всегда при взаимодействии атомов типичных металлов и типичных неметаллов.

Рассмотрим алгоритм (последовательность) рассуждений при записи образования ионной связи, например между атомами кальция и хлора:

Цифры, показывающие число атомов или молекул, называются коэффициентами , а цифры, показывающие число атомов или ионов в молекуле, называют индексами.

Металлическая связь

Ознакомимся с тем, как взаимодействуют между собой атомы элементов-металлов. Металлы обычно существуют не в виде изолированных атомов, а в форме куска, слитка или металлического изделия. Что удерживает атомы металла в едином объеме?

Атомы большинства металлов на внешнем уровне содержат небольшое число электронов — $1, 2, 3$. Эти электроны легко отрываются, и атомы при этом превращаются в положительные ионы. Оторвавшиеся электроны перемещаются от одного иона к другому, связывая их в единое целое. Соединяясь с ионами, эти электроны образуют временно атомы, потом снова отрываются и соединяются уже с другим ионом и т.д. Следовательно, в объеме металла атомы непрерывно превращаются в ионы и наоборот.

Связь в металлах между ионами посредством обобществленных электронов называется металлической.

На рисунке схематически изображено строение фрагмента металла натрия.

При этом небольшое число обобществленных электронов связывает большое число ионов и атомов.

Металлическая связь имеет некоторое сходство с ковалентной, поскольку основана на обобществлении внеш них электронов. Однако при ковалентной связи обобществлены внешние непарные электроны только двух соседних атомов, в то время как при металлической связи в обобществлении этих электронов принимают участие все атомы. Именно поэтому кристаллы с ковалентной связью хрупки, а с металлической, как правило, пластичны, электропроводны и имеют металлический блеск.

Металлическая связь характерна как для чистых металлов, так и для смесей различных металлов — сплавов, находящихся в твердом и жидком состояниях.

Водородная связь

Химическую связь между положительно поляризованными атомами водорода одной молекулы (или ее части) и отрицательно поляризованными атомами сильно электроотрицательных элементов, имеющих неподеленные электронные пары ($F, O, N$ и реже $S$ и $Cl$), другой молекулы (или ее части) называют водородной.

Механизм образования водородной связи имеет частично электростатический, частично донорно- акцепторный характер.

Примеры межмолекулярной водородной связи:

При наличии такой связи даже низкомолекулярные вещества могут быть при обычных условиях жидкостями (спирт, вода) или легко сжижающимися газами (аммиак, фтороводород).

Вещества с водородной связью имеют молекулярные кристаллические решетки.

Вещества молекулярного и немолекулярного строения. Тип кристаллической решетки. Зависимость свойств веществ от их состава и строения

Молекулярное и немолекулярное строение веществ

В химические взаимодействия вступают не отдельные атомы или молекулы, а вещества. Вещество при заданных условиях может находиться в одном из трех агрегатных состояний: твердом, жидком или газообразном. Свойства вещества зависят также от характера химической связи между образующими его частицами — молекулами, атомами или ионами. По типу связи различают вещества молекулярного и немолекулярного строения.

Вещества, состоящие из молекул, называются молекулярными веществами . Связи между молекулами в таких веществах очень слабые, намного слабее, чем между атомами внутри молекулы, и уже при сравнительно низких температурах они разрываются — вещество превращается в жидкость и далее в газ (возгонка йода). Температуры плавления и кипения веществ, состоящих из молекул, повышаются с увеличением молекулярной массы.

К молекулярным веществам относятся вещества с атомной структурой ($C, Si, Li, Na, K, Cu, Fe, W$), среди них есть металлы и неметаллы.

Рассмотрим физические свойства щелочных металлов. Относительно малая прочность связи между атомами обуславливает низкую механическую прочность: щелочные металлы мягкие, легко режутся ножом.

Большие размеры атомов приводят к малой плотности щелочных металлов: литий, натрий и калий даже легче воды. В группе щелочных металлов температуры кипения и плавления понижаются с увеличением порядкового номера элемента, т.к. размеры атомов увеличиваются, и ослабевают связи.

К веществам немолекулярного строения относятся ионные соединения. Таким строением обладает большинство соединений металлов с неметаллами: все соли ($NaCl, K_2SO_4$), некоторые гидриды ($LiH$) и оксиды ($CaO, MgO, FeO$), основания ($NaOH, KOH$). Ионные (немолекулярные) вещества имеют высокие температуры плавления и кипения.

Кристаллические решетки

Вещество, как известно, может существовать в трех агрегатных состояниях: газообразном, жидком и твердом.

Твердые вещества: аморфные и кристаллические.

Рассмотрим, как влияют особенности химических связей на свойства твердых веществ. Твердые вещества делятся на кристаллические и аморфные.

Аморфные вещества не имеют четкой температуры плавления — при нагревании они постепенно размягчаются и переходят в текучее состояние. В аморфном состоянии, например, находятся пластилин и различные смолы.

Кристаллические вещества характеризуются правильным расположением тех частиц, из которых они состоят: атомов, молекул и ионов — в строго определенных точках пространства. При соединении этих точек прямыми линиями образуется пространственный каркас, называемый кристаллической решеткой. Точки, в которых размещены частицы кристалла, называют узлами решетки.

В зависимости от типа частиц, расположенных в узлах кристаллической решетки, и характера связи между ними различают четыре типа кристаллических решеток: ионные, атомные, молекулярные и металлические.

Ионные кристаллические решетки.

Ионными называют кристаллические решетки, в узлах которых находятся ионы. Их образуют вещества с ионной связью, которой могут быть связаны как простые ионы $Na^{+}, Cl^{-}$, так и сложные $SO_4^{2−}, ОН^-$. Следовательно, ионными кристаллическими решетками обладают соли, некоторые оксиды и гидроксиды металлов. Например, кристалл хлорида натрия состоит из чередующихся положительных ионов $Na^+$ и отрицательных $Cl^-$, образующих решетку в форме куба. Связи между ионами в таком кристалле очень устойчивы. Поэтому вещества с ионной решеткой отличаются сравнительно высокой твердостью и прочностью, они тугоплавки и нелетучи.

Атомные кристаллические решетки.

Атомными называют кристаллические решетки, в узлах которых находятся отдельные атомы. В таких решетках атомы соединены между собой очень прочными ковалентными связями. Примером веществ с таким типом кристаллических решеток может служить алмаз — одно из аллотропных видоизменений углерода.

Большинство веществ с атомной кристаллической решеткой имеют очень высокие температуры плавления (например, у алмаза она выше $3500°С$), они прочны и тверды, практически нерастворимы.

Молекулярные кристаллические решетки.

Молекулярными называют кристаллические решетки, в узлах которых располагаются молекулы. Химические связи в этих молекулах могут быть и полярными ($HCl, H_2O$), и неполярными ($N_2, O_2$). Несмотря на то, что атомы внутри молекул связаны очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения. Поэтому вещества с молекулярными кристаллическими решетками имеют малую твердость, низкие температуры плавления, летучи. Большинство твердых органических соединений имеют молекулярные кристаллические решетки (нафталин, глюкоза, сахар).

Металлические кристаллические решетки.

Вещества с металлической связью имеют металлические кристаллические решетки. В узлах таких решеток находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы металла, отдавая свои внешние электроны «в общее пользование»). Такое внутреннее строение металлов определяет их характерные физические свойства: ковкость, пластичность, электро- и теплопроводность, характерный металлический блеск.

Рис.1. Орбитальные радиусы элементов (r a) и длина одноэлектронной химической связи (d)

Простейшая одноэлектронная химическая связь создаётся единственным валентным электроном . Оказывается, что один электрон способен удерживать в едином целом два положительно заряженных иона. В одноэлектронной связи кулоновские силы отталкивания положительно заряженных частиц компенсируются кулоновскими силами притяжения этих частиц к отрицательно заряженному электрону. Валентный электрон становится общим для двух ядер молекулы.

Примерами таких химических соединений являются молекулярные ионы: H 2 + , Li 2 + , Na 2 + , K 2 + , Rb 2 + , Cs 2 + :

Полярная ковалентная связь возникает в гетероядерных двухатомных молекулах (рис.3). Связывающая электронная пара в полярной химической связи приближена к атому с более высоким первым потенциалом ионизации .

Характеризующее пространственную структуру полярных молекул расстояние d между атомными ядрами можно приближённо рассматривать как сумму ковалентных радиусов соответствующих атомов.

Характеристика некоторых полярных веществ

Сдвиг связывающей электронной пары к одному из ядер полярной молекулы приводит к появлению электрического диполя (электродинамика) (рис.4).

Расстояние между центрами тяжести положительного и отрицательного зарядов называют длиной диполя. Полярность молекулы, как и полярность связи, оценивают величиной дипольного момента μ, представляющего собой произведение длины диполя l на величину электронного заряда :

Кратные ковалентные связи

Кратные ковалентные связи представлены непредельными органическими соединениями, содержащими двойную и тройную химические связи. Для описания природы непредельных соединений Л.Полинг вводит понятия сигма- и π-связей, гибридизации атомных орбиталей .

Гибридизация Полинга для двух S- и двух p- электронов позволила объяснить направленность химических связей, в частности тетраэдрическую конфигурацию метана . Для объяснения структуры этилена из четырёх равноценных Sp 3 - электронов атома углерода приходится вычленять один p-электрон для образования дополнительной связи, получившей название π-связи. При этом три оставшиеся Sp 2 -гибридные орбитали располагаются в плоскости под углом 120° и образуют основные связи, например, плоскую молекулу этилена (рис.5).

В новой теории Полинга все связывающие электроны становились равноценными и равноудалёнными от линии, соединяющей ядра молекулы. Теория изогнутой химической связи Полинга учитывала статистическую интерпретацию волновой функции М.Борна , кулоновскую электронную корреляцию электронов . Появился физический смысл - природа химической связи полностью определяется электрическим взаимодействием ядер и электронов. Чем больше связывающих электронов, тем меньше межъядерное расстояние и прочнее химическая связь между атомами углерода.

Трёхцентровая химическая связь

Дальнейшее развитие представлений о химической связи дал американской физикохимик У.Липскомб , разработавший теорию двухэлектронных трёхцентровых связей и топологическую теорию, позволяющую предсказывать строение ещё некоторых гидридов бора (бороводородов) .

Электронная пара в трёхцентровой химической связи становится общей для трёх ядер атомов. В простейшем представителе трёхцентровой химической связи - молекулярном ионе водорода H 3 + электронная пара удерживает в едином целом три протона (рис.6).

Рис.7.Диборан

Существование боранов с их двухэлектронными трёхцентровыми связями с «мостиковыми» атомами водорода нарушало каноническое учение о валентности . Атом водорода, считавшийся ранее стандартным одновалентным элементом, оказался связанным одинаковыми связями с двумя атомами бора и стал формально двухвалентным элементом. Работы У.Липскомба по расшифровке строения боранов расширяли представления о химической связи. Нобелевский комитет удостоил Уильяма Нанна Липскомба премии по химии за 1976 год с формулировкой "За исследования структуры боранов (боргидритов), проясняющие проблемы химических связей).

Многоцентровая химическая связь

Рис.8.Молекула ферроцена

Рис.9.Дибензолхром

Рис.10.Ураноцен

Все десять связей (C-Fe) в молекуле ферроцена равноценны, величина межъядерного расстояния Fe-c - 2,04 Å. Все атомы углерода в молекуле ферроцена структурно и химически эквивалентны, длина каждой связи C-C 1,40 - 1,41 Å (для сравнения, в бензоле длина связи C-C 1,39 Å). Вокруг атома железа возникает 36- электронная оболочка .

Динамика химической связи

Химическая связь достаточно динамична. Так, металлическая связь трансформируется в ковалентную в процессе фазового перехода при испарении металла. Переход металла из твёрдого в парообразное состояние требует затраты больших количеств энергии.

В парах указанные металлы состоят практически из гомоядерных двухатомных молекул и свободных атомов. При конденсации паров металла ковалентная связь превращается в металлическую.

Испарение солей с типичной ионной связью, например фторидов щелочных металлов, приводит к разрушению ионной связи и образованию гетероядерных двухатомных молекул с полярной ковалентной связью. При этом имеет место образование димерных молекул с мостиковыми связями.

Характеристика химической связи в молекулах фторидов щелочных металлов и их димерах.

При конденсации паров фторидов щелочных металлов полярная ковалентная связь трансформируется в ионную с образованием соответствующей кристаллической решётки соли.

Механизм перехода ковалентной в металлическую связь

Рис.11. Соотношение между радиусом орбитали электронной пары r e и длиной ковалентной химической связи d

Рис.12.Ориентация диполей двухатомных молекул и образование искажённого октаэдрического фрагмента кластера при конденсации паров щелочных металлов

Рис.13.Объёмноцентрированное кубическое расположение ядер в кристаллах щелочных металлов и связывающего звена

Дисперсное притяжение (силы Лондона) обуславливает межатомное взаимодействие и образование гомоядерных двухатомных молекул из атомов щелочных металлов.

Образование ковалентной связи металл-металл сопряжено с деформацией электронных оболочек взаимодействующих атомов - валентные электроны создают связывающую электронную пару, электронная плотность которой концентрируется в пространстве между атомными ядрами возникшей молекулы. Характерной особенностью гомоядерных двухатомных молекул щелочных металлов является большая длина ковалентной связи (в 3,6-5,8 раза больше длины связи в молекуле водорода) и низкая энергия её разрыва.

Указанное соотношение между r e и d определяет неравномерность распределения электрических зарядов в молекуле - в средней части молекулы сосредоточен отрицательный электрический заряд связывающей электронной пары, а на концах молекулы - положительные электрические заряды двух атомных остовов.

Неравномерность распределения электрических зарядов создаёт условия взаимодействия молекул за счёт ориентационных сил (силы Ван-дер-Ваальса). Молекулы щелочных металлов стремятся ориентироваться таким образом, чтобы по сосоедству оказывались разноимённые электрические заряды. В результате между молекулами действуют силы притяжения. Благодаря наличию последних, молекулы щелочных металлов сближаются и более менее прочно стягиваются между собой. Одновременно происходит некоторая деформация каждой из них под действием ближе расположенных полюсов соседних молекул (рис.12).

Фактически, связывающие электроны исходной двухатомной молекулы, попадая в электрическое поле четырёх положительно заряженных атомных остовов молекул щелочных металлов отрываются с орбитального радиуса атома и становятся свободными.

При этом связывающая электронная пара становится общей уже для системы с шестью катионами. Начинается построение кристаллической решётки металла на этапе кластера . В кристаллической решётке щелочных металлов чётко выражена структура связывающего звена, имеющего форму искажённого сплющенного октаэдра - квадратной бипирамиды, высота которой и рёбра базиса равны величина постоянной трансляционной решётки a w (рис.13).

Величина постоянной трансляционной решётки a w кристалла щелочного металла значительно превышает длину ковалентной связи молекулы щелочного металла, поэтому принято считать, что электроны в металле находятся в свободном состоянии:

Математическое построение, связанное со свойствами свободных электронов в металле, обычно отождествляют с «поверхностью Ферми », которую следует рассматривать как геометрическое место, где пребывают электроны, обеспечивая основное свойство металла - проводить электрический ток .

При сопоставлении процесса конденсации паров щелочных металлов с процессом конденсации газов, например, водорода, проявляется характерная особенность в свойствах металла. Так, если при конденсации водорода проявляются слабые межмолекулярные взаимодействия, то при конденсации паров металла протекают процессы, характерные для химических реакций. Сама конденсация паров металла идёт в несколько стадий и может быть описана следующей процессией: свободный атом → двухатомная молекула с ковалентной связью → металлический кластер → компактный металл с металлической связью.

Взаимодействие молекул галогенидов щелочных металлов сопровождается их димеризацией. Димерную молекулу можно рассматривать как электрический квадруполь (рис.15). В настоящее время известны основные характеристики димеров галогенидов щелочных металлов (длины химической связи и валентные углы между связями).

Длина химической связи и валентные углы в димерах галогенидов щелочных металлов (Э 2 X 2)(газовая фаза).

Э 2 X 2 X=F X=Cl X=Br X=I
d ЭF , Å d ЭCl , Å d ЭBr , Å d ЭI , Å
Li 2 X 2 1,75 105 2,23 108 2,35 110 2,54 116
Na 2 X 2 2,08 95 2,54 105 2,69 108 2,91 111
K 2 X 2 2,35 88 2,86 98 3,02 101 3,26 104
Cs 2 X 2 2,56 79 3,11 91 3,29 94 3,54 94

В процессе конденсации действие ориентационных сил усиливается, межмолекулярное взаимодействие сопровождается образованием кластеров, а затем и твёрдого вещества. Галогениды щелочных металлов образуют кристаллы с простой кубической и объёмно-центрированной кубической решёткой.

Тип кристаллической решётки и постоянная трансляционной решётки для галогенидов щелочных металлов.

В процессе кристаллизации происходит дальнейшее увеличение межатомного расстояния, приводящее к срыву электрона с орбитального радиуса атома щелочного металла и передаче электрона атому галогена с образованием соответствующих ионов. Силовые поля ионов равномерно распределяются во всех направлениях в пространстве. В связи с этим в кристаллах щелочных металлов силовое поле каждого иона координирует отнюдь не один ион с противоположным знаком, как принято качественно представлять ионную связь (Na + Cl -).

В кристаллах ионных соединений понятие простых двухионных молекул типа Na + Cl - и Cs + Cl - теряет смысл, поскольку ион щелочного металла связан с шестью ионами хлора (в кристалле хлористого натрия) и с восемью ионами хлора (в кристалле хлористого цезия. При этом все межионные расстояния в кристаллах равноудалены.

Примечания

  1. Справочник по неорганической химии. Константы неорганических веществ. - М .: «Химия», 1987. - С. 124. - 320 с.
  2. Лидин Р.А., Андреева Л.Л., Молочко В.А. Справочник по неорганической химии. Константы неорганических веществ. - М .: «Химия», 1987. - С. 132-136. - 320 с.
  3. Ганкин В.Ю., Ганкин Ю.В. Как образуется химическая связь и протекают химические реакции. - М .: издат.группа "Граница", 2007. - 320 с. - ISBN 978-5-94691296-9
  4. Некрасов Б. В. Курс общей химии. - М .: Госхимиздат, 1962. - С. 88. - 976 с.
  5. Паулинг Л. Природа химической связи / под редакцией Я.К.Сыркина. - пер. с англ. М.Е.Дяткиной. - М.-Л.: Госхимиздат, 1947. - 440 с.
  6. Теоретическая органическая химия / под ред. Р.Х.Фрейдлиной. - пер. с англ. Ю.Г.Бунделя. - М .: Изд. иностранной литературы, 1963. - 365 с.
  7. Леменовский Д.А., Левицкий М.М. Российский химический журнал (журнал Российского химического общества им. Д.И.Менделеева). - 2000. - Т. XLIV, вып.6. - С. 63-86.
  8. Химический энциклопедический словарь / гл. ред. И.Л.Кнунянц. - М .: Сов. энциклопедия, 1983. - С. 607. - 792 с.
  9. Некрасов Б. В. Курс общей химии. - М .: Госхимиздат, 1962. - С. 679. - 976 с.
  10. Лидин Р.А., Андреева Л.Л., Молочко В.А. Справочник по неорганической химии. Константы неорганических веществ. - М .: «Химия», 1987. - С. 155-161. - 320 с.
  11. Гиллеспи Р. Геометрия молекул / пер. с англ. Е.З. Засорина и В.С. Мастрюкова, под ред. Ю.А Пентина. - М .: «Мир», 1975. - С. 49. - 278 с.
  12. Справочник химика. - 2-е изд., перераб. и доп. - Л.-М.: ГНТИ Химической литературы, 1962. - Т. 1. - С. 402-513. - 1072 с.
  13. Лидин Р.А., Андреева Л.Л., Молочко В.А. Справочник по неорганической химии. Константы неорганических веществ.. - М .: «Химия», 1987. - С. 132-136. - 320 с.
  14. Зиман Дж. Электроны в металлах (введение в теорию поверхностей Ферми). Успехи физических наук.. - 1962. - Т. 78, вып.2. - 291 с.

См. также

  • Химическая связь - статья из Большой советской энциклопедии
  • Химическая связь - Chemport.ru
  • Химическая связь - Физическая Энциклопедия

Ковалентная связь (от латинского «со» совместно и «vales» имеющий силу) осуществляется за счет электронной пары, принадлежащей обоим атомам. Образуется между атомами неметаллов.

Электроотрицательность неметаллов довольно велика, так что при химическом взаимодействии двух атомов неметаллов полный перенос электронов от одного к другому (как в случае ) невозможен. В этом случае для выполнения необходимо объединение электронов.

В качестве примера обсудим взаимодействие атомов водорода и хлора:

H 1s 1 — один электрон

Cl 1s 2 2s 2 2 p 6 3 s 2 3 p 5 — семь электронов на внешнем уровне

Каждому из двух атомов недостает по одному электрону для того, чтобы иметь завершенную внешнюю электронную оболочку. И каждый из атомов выделяет „в общее пользование” по одному электрону. Тем самым правило октета оказывается выполненным. Лучше всего изобра­жать это с помощью формул Льюиса:

Образование ковалентной связи

Обобществленные электроны принадлежат теперь обоим атомам. Атом водорода имеет два электрона (свой собственный и обобществленный электрон атома хлора), а атом хлора - восемь электронов (свои плюс обобществленный электрон атома водорода). Эти два обобществленных электрона образуют ковалентную связь между атомами водорода и хло­ра. Образовавшаяся при связывании двух атомов частица называется молекулой.

Неполярная ковалентная связь

Ковалентная связь может образоваться и между двумя одинаковы­ми атомами. Например:

Эта схема объясняет, почему водород и хлор существуют в виде двухатомных молекул. Благодаря спариванию и обобществлению двух элек­тронов удается выполнить правило октета для обоих атомов.

Помимо одинарных связей может образовываться двойная или тройная ковалентная связь, как, например, в молекулах кислорода О 2 или азота N 2 . Атомы азота имеют по пять валентных электронов, следовательно, для завершения оболочки требуется еще по три электро­на. Это достигается обобществлением трех пар электронов, как показано ниже:

Ковалентные соединения — обычно газы, жидкости или сравнитель­но низкоплавкие твердые вещества. Одним из редких исключений явля­ется алмаз, который плавится выше 3 500 °С. Это объясняется строением алмаза, который представляет собой сплошную решетку ковалентно связанных атомов углерода, а не совокупность отдельных молекул. Фак­тически любой кристалл алмаза, независимо от его размера, представля­ет собой одну огромную молекулу.

Ковалентная связь возникает при объединении электронов двух атомов неметаллов. Возникшая при этом структура называется молекулой.

Полярная ковалентная связь

В большинстве случаев два ковалентно связанных атома имеют раз­ную электроотрицательность и обобществленные электроны не принад­лежат двум атомам в равной степени. Большую часть времени они нахо­дятся ближе к одному атому, чем к другому. В молекуле хлороводорода, например, электроны, образующие ковалентную связь, располагаются ближе к атому хлора, поскольку его электроотрицательность выше, чем у водорода. Однако разница в способности притягивать электроны не столь велика, чтобы произошел полный перенос электрона с атома водо­рода на атом хлора. Поэтому связь между атомами водорода и хлора можно рассматривать как нечто среднее между ионной связью (полный перенос электрона) и неполярной ковалентной связью (симмет­ричное расположение пары электронов между двумя атомами). Частич­ный заряд на атомах обозначается греческой буквой δ. Такая связь называется полярной ковалентной связью, а о молеку­ле хлороводорода говорят, что она полярна, т. е. имеет положительно заряженный конец (атом водорода) и отрицательно заряженный конец (атом хлора).


В таблице ниже перечислены основные типы связей и примеры веществ:


Обменный и донорно-акцепторный механизм образования ковалентной связи

1) Обменный механизм. Каждый атом дает по одному неспаренному электрону в общую электронную пару.

2) Донорно-акцепторный механизм. Один атом (донор) предоставляет электронную пару, а другой атом (акцептор) предоставляет для этой пары свободную орбиталь.

Любое взаимодействие между атомами возможно лишь при наличии химической связи. Такая связь является причиной образования устойчивой многоатомной системы - молекулярного иона, молекулы, кристаллической решетки. Прочная химическая связь требует много энергии для разрыва, поэтому она и является базовой величиной для измерения прочности связи.

Условия образования химической связи

Образование химической связи всегда сопровождается выделением энергии. Этот процесс происходит за счет уменьшения потенциальной энергии системы взаимодействующих частиц - молекул, ионов, атомов. Потенциальная энергия образовавшейся системы взаимодействующих элементов всегда меньше энергии несвязанных исходящих частиц. Таким образом, основанием для возникновения химической связи в системе является спад потенциальной энергии ее элементов.

Природа химического взаимодействия

Химическая связь - это следствие взаимодействия электромагнитных полей, возникающих вокруг электронов и ядер атомов тех веществ, которые принимают участие в образовании новой молекулы или кристалла. После открытия теории строения атома природа этого взаимодействия стала более доступной для изучения.

Впервые идея об электрической природе химической связи возникла у английского физика Г. Дэви, который предположил, что молекулы образуются по причине электрического притяжения разноименно заряженных частиц. Данная идея заинтересовала шведского химика и естествоиспытателя И.Я. Берцеллиуса, который разработал электрохимическую теорию возникновения химической связи.

Первая теория, объяснявшая процессы химического взаимодействия веществ, была несовершенной, и со временем от нее пришлось отказаться.

Теория Бутлерова

Более успешная попытка объяснить природу химической связи веществ была предпринята русским ученым А.М.Бутлеровым. В основу своей теории этот ученый положил такие предположения:

  • Атомы в соединенном состоянии связаны друг с другом в определенном порядке. Изменение этого порядка служит причиной образования нового вещества.
  • Атомы связываются между собой по законам валентности.
  • Свойства вещества зависят от порядка соединения атомов в молекуле вещества. Иной порядок расположения становится причиной изменения химических свойств вещества.
  • Атомы, связанные между собой, наиболее сильно влияют друг на друга.

Теория Бутлерова объясняла свойства химических веществ не только их составом, но и порядком расположения атомов. Такой внутренний порядок А.М. Бутлеров назвал «химическим строением».

Теория русского ученого позволила навести порядок в классификации веществ и предоставила возможность определять строение молекул по их химическим свойствам. Также теория дала ответ на вопрос: почему молекулы, содержащие одинаковое количество атомов, имеют разные химические свойства.

Предпосылки создания теорий химической связи

В своей теории химического строения Бутлеров не касался вопроса о том, что такое химическая связь. Для этого тогда было слишком мало данных о внутреннем строении вещества. Лишь после открытия планетарной модели атома американский ученый Льюис принялся разрабатывать гипотезу о том, что химическая связь возникает посредством образования электронной пары, которая одновременно принадлежит двум атомам. Впоследствии эта идея стала фундаментом для разработки теории ковалентной связи.

Ковалентная химическая связь

Устойчивое химическое соединение может быть образовано при перекрытии электронных облаков двух соседних атомов. Результатом такого взаимного пересечения становится возрастающая электронная плотность в межъядерном пространстве. Ядра атомов, как известно, заряжены положительно, и поэтому стараются как можно ближе притянуться к отрицательно заряженному электронному облаку. Это притяжение значительно сильнее, чем силы отталкивания между двумя положительно заряженными ядрами, поэтому такая связь является устойчивой.

Впервые расчеты химической связи были выполнены химиками Гейтлером и Лондоном. Ими была рассмотрена связь между двумя атомами водорода. Простейшее наглядное представление о ней может выглядеть следующим образом:

Как видно, электронная пара занимает квантовое место в обоих атомах водорода. Такое двуцентровое размещение электронов получило название «ковалентная химическая связь». Ковалентная связь типична для молекул простых веществ и их соединений неметаллов. Вещества, созданные в результате ковалентной связи, обычно не проводят электрический ток или же являются полупроводниками.

Ионная связь

Химическая связь ионного типа возникает при взаимном электрическом притяжении двух противоположно заряженных ионов. Ионы могут быть простыми, состоящими из одного атома вещества. В соединениях подобного типа простые ионы - чаще всего положительно заряженные атомы металлов 1,2 группы, потерявшие свой электрон. Образование отрицательных ионов присуще атомам типичных неметаллов и оснований их кислот. Поэтому среди типичных ионных соединений имеется множество галогенидов щелочных металлов, например CsF, NaCl, и других.

В отличие от ковалентной связи, ион не обладает насыщенностью: к иону или группе ионов может присоединиться различное число противоположно заряженных ионов. Количество присоединенных частиц ограничивается лишь линейными размерами взаимодействующих ионов, а также условием, при котором силы притяжения противоположно заряженных ионов должны быть больше, чем силы отталкивания одинаково заряженных частиц, участвующих в соединении ионного типа.

Водородная связь

Еще до создания теории химического строения опытным путем было замечено, что соединения водорода с различными неметаллами обладают несколько необычными свойствами. Например, температура кипения фтороводорода и воды значительно выше, чем это можно было ожидать.

Эти и другие особенности водородных соединений можно объяснить способностью атома Н + образовывать еще одну химическую связь. Такой тип соединения получил название «водородная связь». Причины возникновения водородной связи кроются в свойствах электростатических сил. Например, в молекуле фтороводорода общее электронное облако настолько смещено в сторону фтора, что пространство вокруг атома этого вещества насыщенно отрицательным электрическим полем. Вокруг атома водорода, лишенного своего единственного электрона, поле значительно слабее, и имеет положительных заряд. В результате возникает дополнительная взаимосвязь между положительными полями электронных облаков Н + и отрицательными F - .

Химическая связь металлов

Атомы всех металлов расположены в пространстве определенным образом. Порядок расположения атомов металлов называется кристаллической решеткой. При этом электроны различных атомов слабо взаимодействуют друг с другом, образуя общее электронное облако. Такой вид взаимодействия между атомами и электронами получил название «металлическая связь».

Именно свободным передвижением электронов в металлах можно объяснить физические свойства металлических веществ: электропроводность, теплопроводность, прочность, плавкость и другие.

m определение химической связи;

m типы химических связей;

m метод валентных связей;

m основные характеристики ковалентной связи;

m механизмы образования ковалентной связи;

m комплексные соединения;

m метод молекулярных орбиталей;

m межмолекулярные взаимодействия.

ОПРЕДЕЛЕНИЕ ХИМИЧЕСКОЙ СВЯЗИ

Химической связью называют взаимодействие между атомами, приводящее к образованию молекул или ионов и прочному удерживанию атомов друг около друга.

Химическая связь имеет электронную природу, т. е. осуществляется за счёт взаимодействия валентных электронов. В зависимости от распределения валентных электронов в молекуле, различают следующие виды связей: ионная, ковалентная, металлическая и др. Ионную связь можно рассматривать как предельный случай ковалентной связи между атомами, резко отличающимися по природе.

ТИПЫ ХИМИЧЕСКОЙ СВЯЗИ

Ионная связь.

Основные положения современной теории ионной связи.

1.) Ионная связь образуется при взаимодействии элементов, резко отличающихся друг от друга по свойствам, т. е. между металлами и неметаллами.

2.) Образование химической связи объясняется стремлением атомов к достижению устойчивой восьмиэлектронной внешней оболочки (s 2 p 6).

Ca: 1s 2 2s 2 p 6 3s 2 p 6 4s 2

Ca 2+ : 1s 2 2s 2 p 6 3s 2 p 6

Cl: 1s 2 2s 2 p 6 3s 2 p 5

Cl – : 1s 2 2s 2 p 6 3s 2 p 6

3.) Образовавшиеся разноименно заряженные ионы удерживаются друг около друга за счёт электростатического притяжения.

4.) Ионная связь не направленная.

5.) Чисто ионной связи не существует. Так как энергия ионизации больше энергии сродства к электрону, то полного перехода электронов не происходит даже в случае пары атомов с большой разницей электроотрицательностей. Поэтому можно говорить о доле ионности связи. Наибольшая ионность связи имеет место во фторидах и хлоридах s-элементов. Так, в кристаллах RbCl, KCl, NaCl и NaF она равна 99, 98, 90 и 97% соответственно.

Ковалентная связь.

Основные положения современной теории ковалентной связи.

1.) Ковалентная связь образуется между элементами, сходными по свойствам, то есть, неметаллами.

2.) Каждый элемент предоставляет для образования связей 1 электрон, причём спины электронов должны быть антипараллельными.

3.) Если ковалентная связь образована атомами одного и того же элемента, то эта связь не полярная, т. е. общая электронная пара не смещена ни к одному из атомов. Если же ковалентная связь образована двумя разными атомам, то общая электронная пара смещена к наиболее электроотрицательному атому, это полярная ковалентная связь .

4.) При образовании ковалентной связи происходит перекрывание электронных облаков взаимодействующих атомов, в результате, в пространстве между атомами возникает зона повышенной электронной плотности, притягивающая к себе положительно заряженные ядра взаимодействующих атомов, и удерживающая их друг около друга. Вследствие этого снижается энергия системы (рис. 14). Однако при очень сильном сближении атомов возрастает отталкивание ядер. Поэтому имеется оптимальное расстояние между ядрами (длина связи , l св), при котором система имеет минимальную энергию. При таком состоянии выделяется энергия, называемая энергией связи – Е св.


Рис. 14. Зависимость энергии систем из двух атомов водорода с параллельными (1) и антипараллельными (2) спинами от расстояния между ядрами (Е – энергия системы, Е св – энергия связи, r – расстояние между ядрами, l – длина связи).

Для описания ковалентной связи используют 2 метода: метод валентных связей (ВС) и метод молекулярных орбиталей (ММО).

МЕТОД ВАЛЕНТНЫХ СВЯЗЕЙ.

В основе метода ВС лежат следующие положения:

1. Ковалентная химическая связь образуется двумя электронами с противоположно направленными спинами, причем эта электронная пара принадлежит двум атомам. Комбинации таких двухэлектронных двухцентровых связей, отражающие электронную структуру молекулы, получили название валентных схем.

2. Ковалентная связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака.

Для наглядного изображения валентных схем обычно пользуются следующим способом: электроны, находящиеся во внешнем электронном слое обозначают точками, располагаемыми вокруг химического символа атома. Общие для двух атомов электроны показывают точками, помещаемыми между их химическими символами; двойная или тройная связь обозначается соответственно двумя или тремя парами общих точек:

N: 1s 2 2s 2 p 3 ;

C: 1s 2 2s 2 p 4

Из приведенных схем видно, что каждая пара электронов, связывающая два атома, соответствует одной черточке, изображающей ковалентную связь в структурных формулах:

Число общих электронных пар, связывающих атом данного элемента с другими атомами, или, иначе говоря, число образуемых атомом ковалентных связей, называется ковалентностью по методу ВС. Так, ковалентность водорода равна 1, азота – 3.

По способу перекрывания электронных облаков, связи бывают двух видов: s - связь и p - связь.

s - связь возникает при перекрывании двух электронных облаков по оси, соединяющей ядра атомов.

Рис. 15. Схема образования s - связей.

p - связь образуется при перекрывании электронных облаков по обе стороны от линии, соединяющей ядра взаимодействующих атомов.

Рис. 16. Схема образования p - связей.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ КОВАЛЕНТНОЙ СВЯЗИ.

1. Длина связи, ℓ. Это минимальное расстояние между ядрами взаимодействующих атомов, которое соответствует наиболее устойчивому состоянию системы.

2. Энергия связи, E min – это то количество энергии, которое необходимо затратить для разрыва химической связи и для удаления атомов за пределы взаимодействия.

3. Дипольный момент связи, , m=qℓ. Дипольный момент служит количественной мерой полярности молекулы. Для неполярных молекул дипольный момент равен 0, для неполярных не равен 0. Дипольный момент многоатомной молекулы равен векторной сумме диполей отдельных связей:

4. Ковалентная связь характеризуется направленностью. Направленность ковалентной связи определяется необходимостью максимального перекрывания в пространстве электронных облаков взаимодействующих атомов, которые приводят к образованию наиболее прочных связей.

Так как эти s-связи строго ориентированы в пространстве, в зависимости от состава молекулы они могут находиться под определенным углом друг к другу – такой угол называется валентным.

Двухатомные молекулы имеют линейное строение. Многоатомные молекулы имеют более сложную конфигурацию. Рассмотрим геометрию различных молекул на примере образования гидридов.

1. VI группа, главная подгруппа (кроме кислорода), Н 2 S, Н 2 Sе, Н 2 Те.

S 1s 2 2s 2 р 6 3s 2 р 4

У водорода в образовании связи участвует электрон с s-АО, у серы – 3р у и 3р z . Молекула Н 2 S имеет плоское строение с углом между связями 90 0 . .

Рис 17. Строение молекулы Н 2 Э

2. Гидриды элементов V группы, главной подгруппы: РН 3 , АsН 3 , SbН 3 .

Р 1s 2 2s 2 р 6 3s 2 р 3 .

В образовании связи принимают участие: у водорода s-АО, у фосфора - р у, р х и р z АО.

Молекула РН 3 имеет форму тригональной пирамиды (в основании – треугольник).

Рис 18. Строение молекулы ЭН 3

5. Насыщаемость ковалентной связи - это число ковалентных связей, которые может образовывать атом. Оно ограничено, т.к. элемент обладает ограниченным количеством валентных электронов. Максимальное число ковалентных связей, которые может образовывать данный атом в основном или возбуждённом состоянии, называется его ковалентностью.

Пример: водород – одноковалентен, кислород – двухковалентен, азот – трёхковалентен и т. д.

Некоторые атомы могут повышать свою ковалентность в возбуждённом состоянии за счёт разъединения спаренных электронов.

Пример. Be 0 1s 2 2s 2

У атома бериллия в возбужденном состоянии один валентный электрон находится на 2p-АО и один электрон на 2s-АО, то есть ковалентность Be 0 = 0 а ковалентность Be* = 2. В ходе взаимодействия происходит гибридизация орбиталей.

Гибридизация - это выравнивание энергии различных АО в результате смешения перед химическим взаимодействием. Гибридизация - условный прием, позволяющий предсказать структуру молекулы при помощи комбинации АО. В гибридизации могут принимать участие те АО, энергии которых близки.

Каждому виду гибридизации соответствует определенная геометрическая форма молекул.

В случае гидридов элементов II группы главной подгруппы в образовании связи участвуют две одинаковые sр-гибридные орбитали. Подобный тип связи называется sр-гибридизация.

Рис 19. Молекула ВеН 2 . sp-Гибридизация.

sp-Гибридные орбитали имеют несимметричную форму, в сторону водорода направлены удлиненные части АО с валентным углом, равным 180 о. Поэтому молекула ВеН 2 имеет линейное строение (рис.).

Строение молекул гидридов элементов III группы главной подгруппы рассмотрим на примере образования молекулы BH 3 .

B 0 1s 2 2s 2 p 1

Ковалентность B 0 = 1, ковалентность B* = 3.

В образовании связей принимают участие три sр-гибридные орбитали, которые образуются в результате перераспределения электронных плотностей s-АО и двух р-АО. Такой тип связи называется sр 2 - гибридизацией. Валентный угол при sр 2 - гибридизации равен 120 0 , поэтому молекула ВН 3 имеет плоское треугольное строение.

Рис.20. Молекула BH 3 . sp 2 -Гибридизация.

На примере образования молекулы СH 4 рассмотрим строение молекул гидридов элементов IV группы главной подгруппы.

C 0 1s 2 2s 2 p 2

Ковалентность C 0 = 2, ковалентность C* = 4.

У углерода в образовании химической связи участвуют четыре sр-гибридные орбитали, образованные в результате перераспределения электронных плотностей между s-АО и тремя р-АО. Форма молекулы СН 4 - тетраэдр, валентный угол равен 109 о 28`.

Рис. 21. Молекула СН 4 . sp 3 -Гибридизация.

Исключениями из общего правила являются молекулы Н 2 О и NН 3 .

В молекуле воды углы между связями равны 104,5 о. В отличии от гидридов других элементов этой группы, вода имеет особые свойства, она полярна, диамагнитна. Все это объясняется тем, что в молекуле воды тип связи sр 3 . То есть в образовании химической связи участвуют четыре sр - гибридные орбитали. На двух орбиталях находится по одному электрону, эти орбитали взаимодействуют с водородом, на двух других орбиталях находится по паре электронов. Наличие этих двух орбиталей и объясняет уникальные свойства воды.

В молекуле аммиака углы между связями равны примерно 107,3 о, то есть форма молекулы аммиака - тетраэдр, тип связи sр 3 . В образовании связи у молекулы азота принимает участие четыре гибридные sр 3 -орбитали. На трех орбиталях находится по одному электрону, эти орбитали связаны с водородом, на четвертой АО находится неподеленная пара электронов, которая обуславливает уникальность молекулы аммиака.

МЕХАНИЗМЫ ОБРАЗОВАНИЯ КОВАЛЕНТНОЙ СВЯЗИ.

МВС позволяет различать три механизма образования ковалентной связи: обменный, донорно-акцепторный, дативный.

Обменный механизм . К нему относят те случаи образования химической связи, когда каждый из двух связываемых атомов выделяет для обобществления по одному электрону, как бы обмениваясь ими. Для связывания ядер двух атомов нужно, чтобы электроны находились в пространстве между ядрами. Эта область в молекуле называется областью связывания (область наиболее вероятного пребывания электронной пары в молекуле). Чтобы произошел обмен не спаренными электронами у атомов необходимо перекрывание атомных орбиталей (рис. 10,11). В этом и заключается действие обменного механизма образования ковалентной химической связи. Атомные орбитали могут перекрываться только в том случае, если они обладают одинаковыми свойствами симметрии относительно межъядерной оси (рис. 10, 11, 22).

Рис. 22. Перекрывание АО, не приводящее к образованию химической связи.

Донорно-акцепторный и дативный механизмы .

Донорно-акцепторный механизм связан с передачей неподеленной пары электронов от одного атома на вакантную атомную орбиталь другого атома. Например, образование иона - :

Вакантная р-АО в атоме бора в молекуле BF 3 акцептирует пару электронов от фторид-иона (донор). В образовавшемся анионе четыре ковалентные связи В-F равноценны по длине и энергии. В исходной молекуле все три связи В-F образовались по обменному механизму.

Атомы, внешняя оболочка которых состоит только из s- или р-электронов, могут быть либо донорами, либо акцепторами неподеленной пары электронов. Атомы, у которых валентные электроны находятся и на d-АО, могут одновременно выступать и в роли доноров, и в роли акцепторов. Чтобы различить эти два механизма ввели понятия дативного механизма образования связи.

Простейший пример проявления дативного механизма - взаимодействие двух атомов хлора.

Два атома хлора в молекуле хлора образуют ковалентную связь по обменному механизму, объединяя свои неспаренные 3р-электроны. Кроме того, атом Сl - 1 передает неподеленную пару электронов 3р 5 - АО атому Сl - 2 на вакантную 3d-АО, а атом Сl - 2 такую же пару электронов на вакантную 3d -АО атома Сl - 1. Каждый атом выполняет одновременно функции акцептора и донора. В этом и есть дативный механизм. Действие дативного механизма повышает прочность связи, поэтому молекула хлора прочнее молекулы фтора.

КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ.

По принципу донорно-акцепторного механизма образуется огромный класс сложных химических соединений - комплексные соединения.

Комплексные соединения - это соединения, имеющие в своем составе сложные ионы, способные к существованию как в кристаллическом виде, так и в растворе, включающие центральный ион или атом, связанный с отрицательно заряженными ионами или нейтральными молекулами ковалентными связями, образованными по донорно-акцепторному механизму.

Структура комплексных соединений по Вернеру.

Комплексные соединения состоят из внутренней сферы (комплексный ион) и внешней сферы. Связь между ионами внутренней сферы осуществляется по донорно-акцепторному механизму. Акцепторы называются комплексообразователями, ими часто могут быть положительные ионы металлов (кроме металлов IA группы), имеющие вакантные орбитали. Способность к комплексообразованию возрастает с увеличением заряда иона и уменьшением его размера.

Доноры электронной пары называются лигандами или аддендами. Лигандами являются нейтральные молекулы или отрицательно заряженные ионы. Количество лигандов определяется координационным числом комплексообразователя, которое, как правило, равно удвоенной валентности иона-комплексообразователя. Лиганды бывают монодентантными и полидентантными. Дентантность лиганда определяется числом координационных мест, которые лиганд занимает в координационной сфере комплексообразователя. Например, F - - монодентантный лиганд, S 2 O 3 2- - бидентантный лиганд. Заряд внутренней сферы равен алгебраической сумме зарядов составляющих ее ионов. Если внутренняя сфера имеет отрицательный заряд – это анионный комплекс, если положительный – катионный. Катионные комплексы называют по имени иона-комплексообразователя по-русски, в анионных комплексах комплексообразователь называется по-латыни с добавлением суффикса –ат . Связь между внешней и внутренней сферами в комплексном соединении – ионная.

Пример: K 2 – тетрагидроксоцинкат калия, анионный комплекс.

1. 2- - внутренняя сфера

2. 2K + - внешняя сфера

3. Zn 2+ - комплексообразователь

4. OH – - лиганды

5. координационное число – 4

6. связь между внешней и внутренней сферами ионная:

K 2 = 2K + + 2- .

7. связь между ионом Zn 2+ и гидроксильными группами – ковалентная, образованная по донорно-акцепторному механизму: OH – - доноры, Zn 2+ - акцептор.

Zn 0: … 3d 10 4s 2

Zn 2+ : … 3d 10 4s 0 p 0 d 0

Типы комплексных соединений :

1. Аммиакаты - лиганды молекулы аммиака.

Cl 2 – хлорид тетраамминмеди (II). Аммиакаты получают действием аммиака на соединения, содержащие комплексообразователь.

2. Гидроксосоединения - лиганды ОН - .

Na – тетрагидроксоалюминат натрия. Получают гидроксокомплексы действием избытка щелочи на гидроксиды металлов, обладающие амфотерными свойствами.

3. Аквакомплексы - лиганды молекулы воды.

Cl 3 – хлорид гексааквахрома (III). Аквакомплексы получают взаимодействием безводных солей с водой.

4. Ацидокомплексы - лиганды анионы кислот – Cl - , F - , CN - , SO 3 2- , I – , NO 2 – , C 2 O 4 – и др.

K 4 – гексацианоферрат (II) калия. Получают взаимодействием избытка соли, содержащей лиганд на соль, содержащую комплексообразователь.

МЕТОД МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ.

МВС достаточно хорошо объясняет образование и структуру многих молекул, но этот метод не универсален. Например, метод валентных связей не даёт удовлетворительного объяснения существованию иона , хотя еще в конце XIX века было установлено существование довольно прочного молекулярного иона водорода : энергия разрыва связи составляет здесь 2,65эВ. Однако никакой электронной пары в этом случае образовываться не может, поскольку в состав иона входит всего один электрон.

Метод молекулярных орбиталей (ММО) позволяет объяснить ряд противоречий, которые нельзя объяснить, используя метод валентных связей.

Основные положения ММО.

1. При взаимодействии двух атомных орбиталей, образуются две молекулярные орбитали. Соответственно, при взаимодействии n-атомных орбиталей, образуется n-молекулярных орбиталей.

2. Электроны в молекуле в равной степени принадлежат всем ядрам молекулы.

3. Из двух образовавшихся молекулярных орбиталей, одна обладает более низкой энергией, чем исходная, это связывающая молекулярная орбиталь , другая обладает более высокой энергией чем исходная, это разрыхляющая молекулярная орбиталь .

4. В ММО используют энергетические диаграммы без масштаба.

5. При заполнении энергетических подуровней электронами, используют те же правила, что и для атомных орбиталей:

1) принцип минимальной энергии, т.е. в первую очередь заполняются подуровни, обладающие меньшей энергией;

2) принцип Паули: на каждом энергетическом подуровне не может быть больше двух электронов с антипараллельными спинами;

3) правило Хунда: заполнение энергетических подуровней идёт таким образом, чтобы суммарный спин был максимальным.

6. Кратность связи. Кратность связи в ММО определяется по формуле:

, когда Кp= 0, связь не образуется.

Примеры.

1. Может ли существовать молекула Н 2 ?

Рис. 23. Схема образования молекулы водорода Н 2 .

Вывод: молекула Н 2 будет существовать, так как кратность связи Кр > 0.

2. Может ли существовать молекула Не 2 ?

Рис. 24. Схема образования молекулы гелия He 2 .

Вывод: молекула Не 2 не будет существовать, так как кратность связи Кр = 0.

3. Может ли существовать частица Н 2 + ?

Рис. 25. Схема образования частицы Н 2 + .

Частица Н 2 + может существовать, так как кратность связи Кр > 0.

4. Может ли существовать молекула О 2 ?

Рис. 26. Схема образования молекулы О 2 .

Молекула О 2 существует. Из рис.26 следует, что у молекулы кислорода имеется два неспаренных электрона. За счет этих двух электронов молекула кислорода парамагнитна.

Таким образом метод молекулярных орбиталей объясняет магнитные свойства молекул.

МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ.

Все межмолекулярные взаимодействия можно разделить на две группы: универсальные и специфические . Универсальные проявляются во всех молекулах без исключения. Эти взаимодействия часто называют связью или силами Ван-дер-Ваальса . Хотя эти силы слабые (энергия не превышает восемь кДж/моль), они являются причиной перехода большинства веществ из газообразного состояния в жидкое, адсорбции газов поверхностями твердых тел и других явлений. Природа этих сил электростатическая.

Основные силы взаимодействия:

1). Диполь – дипольное (ориентационное) взаимодействие существует между полярными молекулами.

Ориентационное взаимодействие тем больше, чем больше дипольные моменты, меньше расстояния между молекулами и ниже температура. Поэтому чем больше энергия этого взаимодействия, тем до большей температуры нужно нагреть вещество, чтобы оно закипело.

2). Индукционное взаимодействие осуществляется, если в веществе имеется контакт полярных и неполярных молекул. В неполярной молекуле индуцируется диполь в результате взаимодействия с полярной молекулой.

Cl d + - Cl d - … Al d + Cl d - 3

Энергия этого взаимодействия возрастает с увеличением поляризуемости молекул, то есть способности молекул к образованию диполя под воздействием электрического поля. Энергия индукционного взаимодействия значительно меньше энергии диполь-дипольного взаимодействия.

3). Дисперсионное взаимодействие – это взаимодействие неполярных молекул за счет мгновенных диполей, возникающих за счет флуктуации электронной плотности в атомах.

В ряду однотипных веществ дисперсионное взаимодействие возрастает с увеличением размеров атомов, составляющих молекулы этих веществ.

4) Силы отталкивания обусловлены взаимодействием электронных облаков молекул и проявляются при их дальнейшем сближении.

К специфическим межмолекулярным взаимодействиям относятся все виды взаимодействий донорно-акцепторного характера, то есть, связанные с переносом электронов от одной молекулы к другой. Образующаяся при этом межмолекулярная связь обладает всеми характерными особенностями ковалентной связи: насыщаемостью и направленностью.

Химическая связь, образованная положительно поляризованным водородом, входящим в состав полярной группы или молекулы и электроотрицательным атомом другой или той же молекулы, называется водородной связью. Например, молекулы воды можно представить следующим образом:

Сплошные черточки – ковалентные полярные связи внутри молекул воды между атомами водорода и кислорода, точками обозначены водородные связи. Причина образования водородных связей состоит в том, что атомы водорода практически лишены электронных оболочек: их единственные электроны смещены к атомам кислорода своих молекул. Это позволяет протонам, в отличие от других катионов, приближаться к ядрам атомов кислорода соседних молекул, не испытывая отталкивания со стороны электронных оболочек атомов кислорода.

Водородная связь характеризуется энергией связи от 10 до 40 кДж/моль. Однако этой энергии достаточно, чтобы вызвать ассоциацию молекул, т.е. их ассоциацию в димеры или полимеры, которые в ряде случаев существуют не только в жидком состоянии вещества, но сохраняются и при переходе его в пар.

Например, фтороводород в газовой фазе существует в виде димера.

В сложных органических молекулах существуют как межмолекулярные водородные связи так и внутримолекулярные водородные связи.

Молекулы с внутримолекулярными водородными связями не могут вступать в межмолекулярные водородные связи. Поэтому вещества с такими связями не образуют ассоциатов, более летучи, имеют более низкие вязкости, температуры плавления и кипения, чем их изомеры, способные образовывать межмолекулярные водородные связи.