Что такое плоскость эклиптики. Что такое эклиптика

В результате движения Земли по своей орбите наблюдателю на Земле кажется, что Солнце все время перемещается по небесной сфере относительно неподвижных звезд.

Правда наблюдать движение Солнце относительно звезд не представляется возможным, т.к. звезды в дневное время не видны. Перечислим некоторые убедительные факты перемещения Солнца относительно звезд

1. В разное время года в полночь видны разные звезды.

2. Меридиональная высота Cолнца в течении года изменяется.

3. Изменяются также азимуты восхода и захода Солнца, а также продолжительность дня и ночи.

Экли́птика (от лат. ecliptica - затмение), большой круг небесной сферы, по которому происходит видимое годичное движение Солнца.

Современное, более точное определение эклиптики - сечение небесной сферы плоскостью орбиты барицентра системы Земля-Луна.

Земля, двигаясь по своей орбите, сохраняет в мировом пространстве неизменное положение своей оси вращения.

Угол наклона оси вращения Земли с плоскостью орбиты Земли составляет 66 °33", следовательно, угол между плоскостью орбиты Земли и плоскостью земного экватора составляет 23 °26".

Эклиптика - это проекция плоскости земной орбиты на небесную сферу.

Т.к. плоскость небесного экватора - это продолжение земного экватора, а плоскость эклиптики - это плоскость орбиты Земли, то плоскость эклиптики составляет с плоскостью небесного экватора угол = 23 °27".

Из-за того, что орбита Луны наклонена относительно эклиптики и из-за вращения Земли вокруг барицентра системы Луна-Земля, плюс к тому же благодаря пертурбациям орбиты Земли от других планет, истинное Солнце не всегда находится точно на эклиптике, но может отклоняться на несколько секунд дуги. Можно сказать, что по эклиптике проходит путь «среднего Солнца».

Плоскость эклиптики наклонена к плоскости небесного экватора под углом: ε = 23°26′21,448″ - 46,815″ t - 0,0059″ t² + 0,00181″ t³, где t - число юлианских столетий, протёкших от начала 2000. Эта формула справедлива для ближайших столетий. В более продолжительных отрезках времени наклон эклиптики к экватору колеблется относительно среднего значения с периодом приблизительно 40 000 лет.

Кроме того, наклон эклиптики к экватору подвержен короткопериодическим колебаниям с периодом 18,6 лет и амплитудой 18,42″, а также более мелким.

В отличие от относительно быстро меняющей свой наклон плоскости небесного экватора, плоскость эклиптики более стабильна относительно удалённых звёзд и квазаров, хотя и она подвержена небольшим изменениями из-за пертурбаций от планет солнечной системы.

Название «эклиптика» связано с известным с древних времён фактом, что солнечные и лунные затмения происходят только тогда, когда Луна находится вблизи точек пересечения своей орбиты с эклиптикой. Эти точки на небесной сфере носят название лунных узлов, цикл их обращения по эклиптике, равный примерно 18 годам, называется Саросом, или Драконическим периодом.

Эклиптика проходит по зодиакальным созвездиям и созвездию Змееносца.

Плоскость эклиптики служит основной плоскостью в эклиптической системе небесных координат.

Также эклиптика имеет фундаментальное значение в астрологии, большинство школ этой оккультной дисциплины включает в себя интерпретацию положений небесных светил в знаках зодиака, то есть рассматривает их положения именно на эклиптике.

Также важные для большинства школ астрологии угловые расстояния между светилами в подавляющем большинстве случаев определяются в астрологии с учётом только их эклиптической долготы, и в этом смысле аспекты являются «резонансами» не столько между реальными положениями светил на небесной сфере, сколько фактически между их эклиптическими проекциями, то есть между точками эклиптики – их эклиптическими долготами.

Две точки, в которых эклиптика пересекается с небесным экватором, называются точками равноденствия.

В точке весеннего равноденствия Солнце в своём годовом движении переходит из южного полушария небесной сферы в северное; в точке осеннего равноденствия - из северного полушария в южное. Две точки эклиптики, отстоящие от точек равноденствия на 90° и тем самым максимально удалённые от небесного экватора, называются точками солнцестояния.

Точка летнего солнцестояния находится в северном полушарии, точка зимнего солнцестояния - в южном полушарии.

Эти четыре точки обозначаются символами зодиака, соответствующими созвездиям, в которых они находились во времена Гиппарха (в результате предварения равноденствий эти точки сместились и ныне находятся в других созвездиях): весеннего равноденствия - знаком Овна (♈), осеннего равноденствия - знаком Весов (♎), зимнего солнцестояния - знаком Козерога (♑), летнего солнцестояния - знаком Рака (♋).

Ось эклиптики - диаметр небесной сферы, перпендикулярный плоскости эклиптики. Ось эклиптики пересекается с поверхностью небесной сферы в двух точках - северном полюсе эклиптики, лежащем в северном полушарии, и южном полюсе эклиптики, лежащем в южном полушарии. Северный полюс эклиптики имеет экваториальные координаты R.A. = 18h00m, Dec = +66°33", и находится в созвездии Дракона.

Круг эклиптической широты, или просто круг широты - большой полукруг небесной сферы, проходящий через полюсы эклиптики.

Точкой Овна называется точка на небесной сфере, в которой Солнце в своём видимом годовом движении меняет своё склонение с южного на северное. В эту точку Солнце ежегодно приходит 21-го марта - в день весеннего равноденствия.

Точка Овна задает точку отсчета еще для одной координаты - для прямого восхождения.

Прямое восхождение - это дуга небесного экватора от точки Овна до меридиана светила, в сторону обратных западных часовых углов (или если смотреть со стороны северного полюса, то против часовой стрелки). Именно в этом направлении по небесной сфере перемещваются Солнце, Луна и, следовательно, увеличивается прямое восхождение этих светил.

Тропическим годом называется промежуток времени между двумя последовательными прохождения центра Солнца через точку Овна. Его продолжительность составляет 365,2422 суток. Этот период положен в основу календарного года. Уточнение величины тропического года оставило свой след в истории астрономии в виде египетского года, юлианского и григорианского стилей.

Для приближенных расчетов необходимо знать суточные изменения координат Солнца. Прямое восхождение Солнца в течение года изменяется почти равномерно. Суточная скорость изменения прямого восхождения Солнца составляет 360 °/365,2422 1 °/сутки.

Склонение Солнца в течении года изменяется неравномерно.

0,4 °/сутки в течении 1 месяца до и 1 месяца после дней равноденствий;

0,1 °/сутки в течении 1 месяца до и 1 месяца после дней солнцестояний;

0,3 °/сутки в оставшиеся 4 промежуточных месяца.

Плоскость эклиптики хорошо просматривается на этом изображении, полученном в 1994 году космическим кораблём лунной разведки Клементина. Камера Клементины показывает (справа налево) Луну, освещённую Землёй, блики Солнца, восходящего над тёмной частью поверхности Луны, и планеты Сатурн, Марс и Меркурий (три точки в нижнем левом углу)

Эклиптика (от (linea) ecliptica , от др.-греч. ἔκλειψις - затмение) - большой круг небесной сферы, по которому происходит видимое годичное движение . Соответственно плоскость эклиптики - плоскость обращения Земли вокруг Солнца (земной ). Современное, более точное, определение эклиптики - сечение небесной сферы плоскостью орбиты барицентра системы Земля - .

Описание

Из-за того, что орбита Луны наклонена относительно эклиптики и из-за вращения Земли вокруг барицентра системы Луна - Земля, а также вследствие возмущений орбиты Земли от других планет, истинное Солнце не всегда находится точно на эклиптике, но может отклоняться на несколько секунд дуги. Можно сказать, что по эклиптике проходит путь «среднего Солнца» .

Плоскость эклиптики наклонена к плоскости небесного экватора под углом ε = 23°26′21,448″ - 46,8150″ t - 0,00059″ t² + 0,001813″ t³, где t - число юлианских столетий, прошедших c 1 января 2000 года. Эта формула справедлива для ближайших столетий. На более продолжительных отрезках времени наклон эклиптики к экватору колеблется относительно среднего значения с периодом приблизительно 40 000 лет. Кроме того, наклон эклиптики к экватору подвержен короткопериодическим колебаниям с периодом 18,6 лет и амплитудой 18,42″, а также более мелким; вышеприведённая формула их не учитывает.

В отличие от относительно быстро меняющей свой наклон плоскости небесного экватора, плоскость эклиптики более стабильна относительно удалённых звёзд и квазаров, хотя и она подвержена небольшим изменениям из-за возмущений от планет Солнечной системы.

Название «эклиптика» связано с известным с древних времён фактом, что солнечные и лунные затмения происходят только тогда, когда Луна находится вблизи точек пересечения своей орбиты с эклиптикой. Эти точки на небесной сфере носят название лунных узлов, период их обращения по эклиптике, равный примерно 18 годам, называется саросом, или драконическим периодом.

Плоскость эклиптики служит основной плоскостью в эклиптической системе небесных координат.

Углы наклона орбит планет Солнечной системы к плоскости эклиптики

Планета Наклон к эклиптике
7,01°
3,39°
1,85°
), можно нарисовать узким прямоугольниками эклиптику и зодиакальный пояс (шириной 18 ° ).

Проекции эклиптики на Землю и на небесную сферу

Проекции зодиакального пояса (прозрачность 33 %) шириной 18 градусов

Можно в течение года каждый день отмечать положение Солнца, соединив потом точки отрезками, аппроксимируя плавной кривой, фиксируя и координаты Солнца.


Старые карты и эклиптика на старых картах в Google Планета Земля.
Здесь зодиакальный пояс навсю ширину между тропиками


Широтане та!!! Солнце на самом деле южнеее






Суточное вращение Земли происходит с запада на восток . А небо и все объекты на нембудут передвигаться с Востока на Запад. Солнце встает на Востоке, а заходит на Западе.

Зодиа́к (зодиакальный круг, от греч. ζῷον - ж ивое существо) - пояс на небесной сфере, простирающийся на 9° в обе стороны от эклиптики. По зодиаку проходят видимые пути Солнца, Луны и планет. При этом Солнце движется по эклиптике, а остальные светила в своём движении по зодиаку уходят то вверх от эклиптики, то вниз.

Начальной точкой зодиакального круга принято считать точку весеннего равноденствия - восходящий узел солнечной орбиты, в котором эклиптика пересекает небесный экватор.

Зодиак проходит через 13 созвездий, однако зодиакальный круг делится на 12 равных частей, каждая из 30° дуг обозначается знаком зодиака, символом соответствующего зодиакального созвездия; при этом созвездию Змееносца никакой знак зодиака не соответствует.

В современной астрономии символы зодиакальных знаков используются для обозначения весеннего (знак Овна) и осеннего (знак Весов) равноденствий и восходящего и нисходящего узлов орбит небесных тел (знаки Льва в прямом и перевёрнутом виде).

Зодиакальный пояс относительноэкватора небесной сферы (шириной 46 55’ по 23 градуса на север и юг от экватора) –23 27 – угол наклона плоскости эклиптики к экватору

Моделирование эклиптики в системе «Вектор» (см. листинг)

Моделирование движения Солнцавдоль эклиптики в системе Вектор

ДВИЖЕНИЕ ПЛАНЕТ ПО ЗОДИАКУ (оригинал см. ).
Наблюдая с Земли за ночным небом вся картина звездного неба в течение ночи медленно поворачивается как целое. Это происходит из-за суточного вращения Земли вокруг свой оси. Раньше люди думали, что наоборот некая огромная сфера, к которой неподвижно прикреплены звезды, вращается вокруг Земли. Эту сферу назвали "сферой неподвижных звезд". Подобное понятие используется в астрономии и сегодня, хотя в реальности такой сферы, конечно, не существует. Тем не менее, часто бывает очень удобно считать, что сфера неподвижных звезд все же есть. Это, с одной стороны, упрощает астрономические рассуждения, связанные с видимым движением планет, а с другой - приводит в точности к той же картине видимого с Земли звездного неба, что и в реальности.

Звезды расположены от Земли настолько далеко по сравнению с телами Солнечной системы, что расстояние до них можно считать бесконечным. Или, что то же самое, - очень большим и одинаковым для всех звезд. Поэтому можно представлять себе, что все звезды действительно расположены на некоторой сфере весьма большого ("бесконечного") радиуса с центром в Земле. Так как радиус воображаемой сферы несравнимо больше, чем расстояние от Земли до Солнца, то с тем же успехом можно считать, что центр сферы расположен не в Земле, а в Солнце. Вокруг Солнца по орбитам конечного радиуса вращаются планеты, в том числе и Земля. Причем вся Солнечная система помещается в центре звездной сферы, рис. 16.2.


Рис. 16.2

Вращении Земли вокруг своей оси определяет лишь видимую в данный момент из данной точки земной поверхности часть звездного неба. Можно находиться на земной поверхности со стороны Солнца и видеть на небе Солнце.В данном месте Земли будет день. Наоборот, если наблюдатель оказался с другой стороны Земли, то Солнца он не увидит - оно будет загорожено для него Землей вместе с половиной всей звездной сферы. Зато он увидит звезды и планеты на другой половине звездной сферы. Граница видимой и невидимой половин звездной сферы - это местный горизонт наблюдателя.

Итак, суточное вращение Земли вокруг своей оси определяет лишь видимость или невидимость Солнца и планет в тот или иной момент в том или ином месте земной поверхности. Сам гороскоп - то есть расположение планет по созвездиям Зодиака в данный момент - от этого вращения никак не зависит. Тем не менее, суточное вращение Земли нам все-таки придется учитывать, когда надо проверять условия видимости планет в том или ином гороскопе. А пока будем считать, что наблюдатель видит все. Другими словами, представим себе воображаемого наблюдателя, который сидит в центре прозрачной Земли и видит Солнце, планеты и звезды одновременно.

Встав на такую точку зрения, легко понять, как происходит видимое с Земли движение планет по звездному небу. В самом деле, положение любой планеты, а также Солнца среди звезд (при взгляде с Земли) определяется направлением луча, направленного из Земли на планету. Если мысленно продолжить луч до пересечения со сферой неподвижных звезд, то он "проткнет" ее в некоторой точке. Эта точка и даст положение нашей планеты среди звезд в данный момент времени.
Поскольку все планеты, включая Землю, вращаются вокруг Солнца, то луч, направленный из Земли на любую из планет (включая Солнце и Луну), все время поворачивается, рис. 16.2. Поскольку поворачивается как начало, так и конец отрезка, продолжением которого является луч. Соответственно, Солнце и все планеты медленно (но с разной скоростью) смещаются относительно неподвижных звезд. Небесный путь каждой из планет определяется, очевидно, траекторией точки пересечения луча, направленного на планету с Земли, и воображаемой сферы неподвижных звезд. Заметим теперь, что все эти лучи постоянно находятся в одной и той же плоскости - "плоскости орбит" Солнечной системы. В самом деле, в астрономии известно, что плоскости вращения планет вокруг Солнца очень близки друг к другу, хотя и не совпадают в точности. Приближенно можно считать, что все они являются одной той же плоскостью - "плоскостью орбит". Пересечение этой плоскости со сферой неподвижных звезд и даст тот "звездный путь", по которому будет происходить видимое с Земли годовое движение всех планет (включая Солнце и Луну) среди звезд.

Самым простым будет звездный путь Солнца. Приблизительно равномерное вращение Земли вокруг Солнца превращается, с точки зрения земного наблюдателя, в такое же равномерное вращение Солнца вокруг Земли. Это сводится к тому, что Солнце движется среди звезд в одном и том же направлении и с постоянной скоростью. Совершая полный круг в течение года. Точная величина этого промежутка времени называется в астрономии "звездным годом".
Пути движения других планет сложнее. Они получаются в итоге взаимодействия двух вращений: вращения Земли - начала отрезка, - и вращения планеты - конца отрезка, определяющего направление на планету. В результате, с точки зрения земного наблюдателя планеты время от времени останавливаются на звездном небе. Затем поворачивают назад, потом снова поворачивают и продолжают движение в основном направлении. Это - так называемое попятное движение планет. Оно было замечено давно и его объяснению были посвящены усилия многих древних астрономов. Надо сказать, что "античная" теория Птолемея описывает указанное явление уже с весьма высокой точностью.

Здесь мы все время говорили о годовом движении Солнца и планет среди звезд. Что касается суточного движения Солнца по небу - от восхода до заката и обратно, - то оно не смещает Солнце относительно звезд и вообще ничего не меняет на звездном небе. То есть не меняет гороскоп. Поскольку причиной суточного движения является вращение Земли вокруг своей оси, которое не влияет на взаимную конфигурацию планет в солнечной системе. Поэтому при суточном движении ни Солнце, ни планеты не смещаются по сфере неподвижных звезд и вращаются с ней как единое целое.




Рис. 16.3

4. РАЗБИЕНИЕ ЗОДИАКАЛЬНОГО ПОЯСА НА СОЗВЕЗДИЯ.
Воспроизведем еще раз геометрию звездной сферы на рис. 16.3 Годовой путь Солнца, Луны и планет среди звезд проходит вдоль одной и той же окружности на небесной сфере, которая в астрономии называется ЭКЛИПТИКОЙ. Звезды, расположенные вблизи эклиптики, образуют ЗОДИАКАЛЬНЫЕ СОЗВЕЗДИЯ. Получается замкнутый пояс созвездий, охватывающий небесный свод и как бы нанизанный на эклиптику.

Если говорить точнее, то эклиптикой называется окружность пересечения плоскости вращения Земли вокруг Солнца с воображаемой сферой неподвижных звезд. За центр сферы можно принять центр Солнца, лежащий в плоскости эклиптики. На 16.3это точка O. Впрочем, по отношению к далеким звездам движением Земли, а также расстоянием от Земли до Солнца, можно пренебречь и считать Землю неподвижным центром небесной сферы.

Сегодня известно, что эклиптика поворачивается с течением веков, хотя и очень медленно. Поэтому вводится понятие мгновенной эклиптики для данного года или для данной эпохи. Мгновенное положение эклиптики для той или иной эпохи называется ЭКЛИПТИКОЙ ДАННОЙ ЭПОХИ. Например, положение эклиптики на 1 января 2000 года называется "эклиптикой эпохи 2000 года" или, сокращенно, "эклиптикой J2000".

Буква "J" в обозначении эпохи J2000 напоминает о том, что в астрономии время обычно исчисляется в юлианских веках. Есть и другой способ астрономического исчисления времени - в ДНЯХ ЮЛИАНСКОГО ПЕРИОДА СКАЛИГЕРА. Скалигер предложил пронумеровать дни подряд, начиная с 4713 года до н.э. Например, юлианский день 1 января 1400 года равен 2232407.

Кроме эклиптики на небесной сфере на рис. 16.3изображена еще одна большая окружность - так называемый ЭКВАТОР. Экватор на небесной сфере - это окружность, по которой плоскость земного экватора пересекается с воображаемой сферой. Окружность экватора довольно быстро поворачивается со временем, постоянно меняя свое положение на небесной сфере.

Эклиптика и экватор пересекаются на небесной сфере под углом приблизительно 23 градуса 27 минут. Точки их пересечения обозначены через Q и R. Солнце в своем годичном движении вдоль эклиптики два раза пересекает экватор в этих точках. Точка Q, через которую Солнце переходит в северную полусферу, называется точкой ВЕСЕННЕГО РАВНОДЕНСТВИЯ. В это время день равен ночи. Противоположная ей точка на небесной сфере - точка ОСЕННЕГО РАВНОДЕНСТВИЯ. На рис. 16.3 она обозначена через R. Через точку осеннего равноденствия Солнце переходит в южную полусферу. В этот момент день также сравнивается с ночью.

Точки ЗИМНЕГО И ЛЕТНЕГО СОЛНЦЕСТОЯНИЙ на небесной сфере тоже расположены на эклиптике. Четыре точки равноденствий и солнцестояний делят эклиптику на 4 равные части.

С течением времени все четыре точки равноденствий и солнцестояний медленно движутся вдоль эклиптики в направлении уменьшения эклиптикальных долгот. Такое движение называется в астрономии ПРЕЦЕССИЕЙ ДОЛГОТ или просто прецессией. Скорость прецессии составляет примерно 1 градус за 72 года. Это смещение точек равноденствий и солнцестояний приводит к так называемому предварению равноденствий в юлианском календаре.

В самом деле, поскольку юлианский год очень близок к звездному году - то есть к периоду обращения Земли вокруг Солнца, - то смещение точки весеннего равноденствия по эклиптике влечет за собой смещение дня весеннего равноденствия в юлианском календаре (то есть - по "старому стилю"). А именно, день весеннего равноденствия по "старому стилю" постепенно передвигается на все более ранние числа марта - со скоростью приблизительно 1 сутки за 128 лет.

Для определения положений небесных светил необходимы координаты на небесной сфере. В астрономии существует несколько таких систем координат. ЭКЛИПТИКАЛЬНЫЕ КООРДИНАТЫ.

Рассмотрим небесный меридиан, проходящий через полюс эклиптики P и через данную точку A на небесной сфере, координаты которой надо определить. Он пересечет плоскость эклиптики в некоторой точке D, рис. 16.3. Тогда дуга QD будет изображать ЭКЛИПТИКАЛЬНУЮ ДОЛГОТУ точки А , а дуга AD - ее ЭКЛИПТИКАЛЬНУЮ ШИРОТУ. Напомним, что Q - это точка весеннего равноденствия.

Таким образом, эклиптикальные долготы на небесной сфере отсчитываются от точки весеннего равноденствия той эпохи, эклиптику которой мы выбрали в данном случае. Другими словами, система эклиптикальных координат на небесной сфере "привязана" к некоторой фиксированной эпохе. Однако, один раз зафиксировав эклиптику и выбрав систему координат на небесной сфере, можно с ее помощью задавать положения Солнца, Луны, планет и вообще - любых небесных тел - В ЛЮБОЙ МОМЕНТ ВРЕМЕНИ.

В своих расчетах для задания координат на небесной сфере мы пользовались эклиптикой J2000 эпохи 1 января 2000 года. В качестве приблизительной основы для разграничения зодиакальных созвездий по эклиптикальной долготе J2000 мы взяли разбиение эклиптики J1900 (1 января 1900 года), предложенное Т.Н.Фоменко. Это разбиение выполнено по очертаниям созвездий на карте звездного неба. В пересчете на координаты эпохи J2000 (1 января 2000 года) это разбиение выглядит следующим образом:



Таблица

Надо сказать, что границы созвездий на звездном небе определены не совсем четко. Поэтому любое разбиение эклиптики по зодиакальным созвездиям в какой-то мере приблизительно и грешит условностью. Различные авторы приводят несколько разнящиеся разбиения.

слегка аким образом, оба р

Рис. 15.2

Примерно такое же разбиение и на средневековой звездной карте А.Дюрера, которая была приведена выше. Отличия опять-таки находятся в пределах 5 градусов дуги. Эту условность границ между зодиакальными созвездиями приходилось учитывать. Мы учитывали ее в своих расчетах двумя путями. Во-первых, написанная нами программа астрономического расчета дат гороскопов автоматически добавляла 5-градусный допуск ко всем границам созвездий. Другими словами, "нарушение" любой границы между созвездиями с любой стороны на величину не более 5 градусов дуги нарушением не считалось. Во-вторых, при расшифровке зодиаков и поиске предварительных астрономических решений мы всегда несколько расширяли границы указанных на зодиаке интервалов для планет. А именно - планетам разрешалось "залезать" в соседние созвездия на половину длины созвездий вдоль эклиптики.

Это полностью исключало возможность потерять правильное решение из-за мелких неточностей в разграничении зодиакальных созвездий. При этом, естественно, появлялось некоторое количество лишних решений. Однако все они отсеивались на стадии проверки по частным гороскопам и по признакам видимости планет.
Кроме того, на последнем этапе нашего исследования каждое из полученных нами окончательных решений было тщательно проверено с помощью компьютерной программы Turbo-Sky на точное соответствие положений всех планет с указаниями исходного египетского зодиака.

Однако при этом ни одного случая плохого соответствия между положениями планет на зодиаке и в окончательном решении не возникло. Другими словами, все найденные нами окончательные решения - то есть решения, прошедшие проверку на частные гороскопы и на признаки видимости планет, - оказались в очень хорошем соответствии со своими зодиаками и по расположению планет. Хотя, повторим, при первоначальном поиске это соответствие проверялось лишь в ослабленном варианте.

Все выше сказанное мы попытаемся смоделировать а системе Вектор, начав с самого простого: изобразить зодиакальный пояс, созвездия ипуть движения Солнца по ним.

Листинг

" Эклептика - круг через три точки

Ug_e =23.45

Ug_ep =9

Rr = 6.378

Krug.ss p(0,0,0), Rr , p(0,0,1)

Set O = p(0,0,0)

Set E1 = p(0,0,Rr)

Set E2 = p(0, 0,-Rr)

Set E3 = PointSfera (-ug_e , 0, Rr , 0)

Set Nn = NormPlosk (E1,E2 , E3)

Krug.ss p(0,0,0), Rr , Nn

Width= 77

SetColor 0,0,255

Set Zp11 = PointSfera (-ug_e+9, 0, Rr , 0)

Set Zp12 = PointSfera (180-ug_e-9, 0, Rr , 0)

" Сначаланайти 3-ю точку.

" Set C = PointSfera (((-ug_e+9)+(180-ug_e-9))/2, 90, Rr , 0)

Set C1 = PointSfera (8.38, 86.08, Rr , 0)

Set Oc = CentrDuga3p (Zp11,Zp12,C1 ) " метод вычисляет центр окружности через три тчоки

Rp = RadiusDuga3p (Zp11,Zp12,C1) " вычисляет радиусокружности описанной вокруг трех точек

Set N1 = NormPlosk (Zp11,Zp12,C1) " нормаль к плоскости орбиты

"Krug.ss Oc , Rp , N1"круг

" построим круги через три точки

" Сначаланайти 3-ю точку.

" Зодикальный пояс - круги через три точки

Set Zp21 = PointSfera (-ug_e-9, 0, Rr , 0)

Set Zp22 = PointSfera (180-ug_e+9, 0, Rr , 0)

Set C2 = PointSfera (-8.38, 94, Rr , 0)

Set Oc = CentrDuga3p (Zp21,Zp22,C2 ) " метод вычисляет центр окружности через три тчоки

Rp = RadiusDuga3p (Zp21,Zp22,C2) " вычисляет радиусокружности описанной вокруг трех точек

Set N1 = NormPlosk (Zp21,Zp22,C2) " нормаль к плоскости орбиты

n11 = LastNmb

Krug.ss Oc , Rp , N1"круг

Dubl

Obj.Translate P(-0.37, 0.95, 0)

obj.scale =1.02

Dubl

Obj.Translate P(-0.37, 0.95, 0)

obj.scale =0.98

n12 = LastNmb

MoveToGroup n11+1, n12+1, "grupa "

n13 = LastNmb

PolyPov.Reset

PolyPov.SS p(0,0,0), n13, 20, 51, 0, 1

" зададим Землю

Set N = p (0, 0, 1)

Arc.ss O, 0.5, 0.5, 90, -90, N, 0

n71 = Vector.LastNmb ()

RoundPov.ss P(0, 0, 0), n71, 51,51, -180,180

Dubl

SetFillColor 255,0,0

" Точка на окружности от t

" Сначала активизируем линию эклиптики

CurrObjNmb = n61

Polyline.FromCurrObj 360" перезадаем линию эклиптики полилинией

hag = 1/360

Set A = Polyline.P (225.5*hag)

Ngpoint.ss A

Width = 555

SetColor 255,0,0

Text.ss A , " Весы "

Как смоделировать движение, чтобы по эклиптики оно начиналось из точки весеннего равноденствия (Овна)?

Для этого в листинге заменим строку задания круга эклиптика

" Krug.ss p(0,0,0), Rr , Nn

так:

Arc.ss O, Rr , Rr , - 90 + Ug _ e , 270+ Ug _ e , N n , 0 " изменить начало движения

Следующаясразу возникает задача: Задать Солнце в том или ином знаке Зодиака.

В Google Планета Земля задать долготу(см. таблицу) и широту на эклиптике по соответствующей долготе. В системе Вектор это можно осуществить параметрически (1/360 умноженное на соответствующий угол)

Пример. Определить положение Солнца в созвездии Весов. Это будет (215+236)/2=225.5

К точке «Весов» можно поместить картинку, знак.

Также можно найти остальные знаки.

Ниже показаны разные варианты заданиязодиакального пояса



На рисунке видно, что некоторые созвездия реально выходят из эклиптического пояса .

Здесь зодиакальный пояс по ширине увеличен

По таблице получилось расположение в пересчете на координаты эпохи J2000 (1 января 2000 года) знаков:


Следующий этап: определить положение Солнца в тот или иной день той или иной эпохи.

Начала отсчета возьмем способ астрономического исчисления времени - в ДНЯХ ЮЛИАНСКОГО ПЕРИОДА по Скалигеру, который предложил пронумеровать дни подряд, начиная с 4713 года до н.э.Например, юлианский день 1 января 1400 года равен 2232407. Вопрос : какой будет день на 1 января 2012 года? Поищем в Интернете., найдем ответ.

Да есть такой счетчик ; по нему1 января2012 года будет 2 456 262-й деньв днях Юлианского периода.

Так далеко забираться назад нет, по-видимому, смысла, потому надо уметь устанавливать периоды эпох.

Есть калькулятор сколько дней прошло между двумя датами?

Вращение Солнца и Луны вокруг Земли в геоцентрической системе Пталомея Так что за год Луна вращается вокруг своей оси 365/28 (тринадцать раз и один день в остатке) . Отсюда можно определить сколько будет затмений Солнца и Луны из условия, что Земля, Луна и Солнце лежат в одной плоскости. Обычно их бывает 5-6. Не трудно смоделировать 13оборотов Луны за один оборот Солнца и, действительно, наблюдается такое количество солнечных затмений - посчитайте.

.

В научно-популярных статьях на темы космоса и астрономии часто можно встретить не совсем понятный термин «эклиптика». Это слово кроме учёных часто используется также астрологами. Его употребляют для обозначения местоположения удалённых от Солнечной системы космических объектов, для описания орбит небесных тел в самой системе. Так что же такое «эклиптика»?

При чём тут зодиак

Ещё наблюдавшие за небесными светилами древние жрецы заметили одну особенность поведения Солнца. Оно, как оказалось, движется относительно звёзд. Отслеживая его перемещение по небу, наблюдатели заметили, что ровно через год Солнце всегда возвращается в исходную точку. Мало того, «маршрут» движения из года в год всегда один и тот же. Его и называют «эклиптика». Это линия, по которой наше главное светило движется по небу в течение календарного года.

Не остались без внимания и звёздные области, через которые пролегал путь сияющего Гелиоса в своей золотой, запряжённой золотыми конями колеснице (так представляли себе древние греки нашу родную звезду).

Круг из 12 созвездий, по которым перемещается Солнце, назвали зодиаком, а сами эти созвездия принято называть зодиакальными.

Если по гороскопу вы, скажем, Лев, то не ищите на небе ночью в июле, месяце в котором родились. В вашем созвездии в этот период находится Солнце, а значит, увидеть его вы сможете, только если повезёт застать полное солнечное затмение.

Линия эклиптики

Если взглянуть на звёздное небо днём (а это можно сделать не только во время полного солнечного затмения, но и с помощью обычного телескопа), мы увидим, что солнце находится в какой-то определённой точке одного из зодиакальных созвездий. Например, в ноябре этим созвездием с большой долей вероятности будет Скорпион, а в августе - Лев. На следующий день положение Солнца чуть сместится влево и так будет происходить каждый день. А спустя месяц (22 ноября) светило наконец дойдёт до границы созвездия Скорпион и переместится на территорию Стрельца.

В августе, это хорошо видно на рисунке, Солнце будет находиться в границах Льва. И так далее. Если каждый день на звёздной карте отмечать положение Солнца, то через год в наших руках окажется карта с нанесённым на неё замкнутым эллипсом. Так вот эклиптикой называется именно эта самая линия.

А когда наблюдать

А вот наблюдать свои созвездия под которыми человек рождается) получится в месяце, противоположном дате рождения. Ведь эклиптика это - маршрут движения Солнца, поэтому, если человек появляется на свет в августе под знаком Льва, то созвездие это находится высоко над горизонтом в полдень, то есть тогда, когда солнечный свет не даст его увидеть.

Зато в феврале Лев украсит собой полуночное небо. В безлунную безоблачную ночь он прекрасно «читается» на фоне других звёзд. Не так повезло рождённым под знаком, скажем, Скорпиона. Созвездие лучше всего видно в мае. Но чтобы его рассмотреть, необходимо запастись терпением и удачей. Лучше отправиться загород, в местность без высоких гор, деревьев и зданий. Лишь тогда наблюдатель сможет разглядеть очертания Скорпиона с его рубиновым Антаресом (альфа Скорпиона, яркая звезда кроваво-красного цвета, относящаяся к классу красных гигантов, имеющая диаметр, сопоставимый с размерами орбиты нашего Марса).

Почему употребляется выражение «плоскость эклиптики»

Кроме описания звёздного маршрута годичного движения Солнца, эклиптика часто рассматривается как плоскость. Выражение «плоскость эклиптики» частенько можно услышать при описании положения в пространстве различных космических объектов и их орбит. Разберёмся, что это такое.

Если вернуться в схеме движения нашей планеты вокруг материнской звезды и линии, которые можно проложить от Земли до Солнца в разные моменты времени, собрать воедино, окажется, что все они лежат в одной плоскости - эклиптике. Это своеобразный воображаемый диск, по сторонам которого расположены все 12 описанных созвездий. Если из центра диска провести перпендикуляр, то в северном полушарии он упрётся в точку на небесной сфере с координатами:

  • склонение +66,64°;
  • прямое восхождение - 18 ч. 00 мин.

И расположена эта точка недалеко от обеих «медведиц» в созвездии Дракона.

Ось вращения Земли, как мы знаем, наклонена к оси эклиптики (на 23,44°), благодаря чему на планете есть смена времён года.

А у наших «соседей»

Вот вкратце, что такое эклиптика. В астрономии исследователей интересует и то, как движутся другие тела Солнечной системы. Как показывают вычисления и наблюдения, все основные планеты вращаются вокруг светила практически в одной плоскости.

Больше всех выбивается из общей стройной картинки ближайшая к звезде планета - Меркурий, угол между его плоскостью вращения с эклиптикой составляет целых 7°.

Из планет внешнего кольца наибольший угол наклона имеет орбита Сатурна (около 2,5°), но учитывая его громадное расстояние от Солнца - в десять раз дальше Земли, солнечному гиганту это простительно.

А вот орбиты более мелких космических тел: астероидов, карликовых планет и комет отклоняются от плоскости эклиптики гораздо сильнее. Так, например, двойник Плутона, Эрида имеет чрезвычайно вытянутую орбиту.

Приближаясь к Солнцу на минимальное расстояние, она подлетает к светилу ближе Плутона, на 39 а. е. (а. е. - астрономическая единица, равная расстоянию от Земли до Солнца - 150 миллионов километров), чтобы потом вновь удалиться в пояс Койпера. Максимальное её удаление почти 100 а. е. Так вот её плоскость вращения наклонена к эклиптике почти на 45°.

Плоскость эклиптики

Плоскость эклиптики хорошо заметна на этом изображении, полученном в 1994 году космическим кораблём лунной разведки Клементина. Камера Клементины показывает (справа налево) Луну освещённую Землёй , блики Солнца , восходящего над тёмной частью поверхности Луны, и планеты Сатурн , Марс и Меркурий (три точки в нижнем левом углу)

Название «эклиптика» связано с известным с древних времён фактом, что солнечные и лунные затмения происходят только тогда, когда Луна находится вблизи точек пересечения её орбиты с эклиптикой. Эти точки на небесной сфере носят название лунных узлов. Эклиптика проходит по зодиакальным созвездиям и Змееносцу . Плоскость эклиптики служит основной плоскостью в эклиптической системе небесных координат .

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Плоскость эклиптики" в других словарях:

    Плоскость Лапласа плоскость, проходящая через центр масс Солнечной системы перпендикулярно вектору момента количества движения, иначе говоря она перпендикулярна вектору суммарного орбитального момента всех планет и вращательному моменту… … Википедия

    Небесная сфера разделена небесным экватором. Небесная сфера воображаемая вспомогательная сфера произвольного радиуса, на которую проецируются небесные светила: служит для решения различных астрометрических задач. За центр небесной сферы, как… … Википедия

    Небесная сфера разделена небесным экватором. Небесная сфера воображаемая вспомогательная сфера произвольного радиуса, на которую проецируются небесные светила: служит для решения различных астрометрических задач. За центр небесной сферы, как… … Википедия

    Фундаментальная плоскость плоскость, выбором которой (как, впрочем, и началом координат в заданной точке этой плоскости) определяются различные системы сферических, географических, геодезических и астрономических координат (включая небесные … Википедия

    Плоскость, проходящая через центр масс Солнечной системы перпендикулярно вектору момента количества движения. Понятие Л. н. п. было введено в 1789 П. Лапласом, указавшим на преимущества её использования в качестве основной координатной… … Большая советская энциклопедия

    - (англ. Deep Ecliptic Survey) проект по поиску объектов пояса Койпера, с использованием средств Национальной оптической астрономической обсерватории (NOAO) в Национальной обсерватории Китт Пик. Глава проекта Боб Миллис. Проект действовал с… … Википедия

    Плоскость эклиптики хорошо заметна на этом изображении, полученном в 1994 году космическим кораблём лунной разведки Клементина. Камера Клементины показывает (справа налево) Луну освещённую Землёй, блики Солнца, восходящего над тёмно … Википедия

    Небесная сфера разделена небесным экватором. Небесная сфера воображаемая вспомогательная сфера произвольного радиуса, на которую проецируются небесные светила: служит для решения различных астрометрических задач. За центр небесной сферы, как… … Википедия

    Небесная сфера разделена небесным экватором. Небесная сфера воображаемая вспомогательная сфера произвольного радиуса, на которую проецируются небесные светила: служит для решения различных астрометрических задач. За центр небесной сферы, как… … Википедия