Методы решения систем нелинейных уравнений. Алгебра

В этой главе рассматривается задача отыскания корней нелинейных уравнений и излагаются методы ее решения. Это делается несколько подробнее, чем обычно принято в учебниках по численным методам. Дело в том, что нелинейное уравнение представляет собой редкий пример задачи, которая может быть сравнительно полно исследована элементарными средствами и допускает наглядные геометрические иллюстрации. В то же время многие проблемы, возникающие при отыскании корней нелинейных уравнений, типичны, а некоторые методы их решения (в особенности метод простой итерации и метод Ньютона) допускают широкие обобщения и играют в вычислительной математике фундаментальную роль.

§ 4.1. Постановка задачи. Основные этапы решения

1. Постановка задачи.

Задача отыскания корней нелинейного уравнения с одним неизвестным вида

имеет многовековую историю, но не потеряла свою актуальность и в наши дни. Она часто возникает как элементарный шаг при решении различных научных и технических проблем. Напомним, что корнем (или решением) уравнения (4.1) называется значение х, при котором

Для справедливости большинства рассуждений данной главы достаточно предположить, что в окрестности каждого из искомых корней функция дважды непрерывно дифференцируема.

Корень х уравнения (4.1) называется простым, если противном случае (т. е. в случае корень х называется кратным. Целое число назовем кратностью корня х, если для Геометрически корень х соответствует точке пересечения графика функции с осью Корень х является простым, если график пересекает ось под ненулевым углом, и кратным, если пересечение происходит под нулевым углом. Функция график который изображен на рис. 4.1, имеет четыре корня. Корни простые, кратные.

Задача отыскания простых корней является существенно более простой (и чаще встречающейся), чем задача отыскания кратных корней. В действительности большинство методов решения уравнения (4.1) ориентировано именно на вычисление простых корней.

2. Уточнение постановки задачи.

В конкретной задаче часто интерес представляют не все корни уравнения, а лишь некоторые из них. Тогда постановку задачи уточняют, указывая на то, какие из корней подлежат определению (положительные корни, корни из заданного интервала, максимальный из корней и т.д.).

В подавляющем большинстве случаев представить решение уравнения (4.1) в виде конечной формулы оказывается невозможным. Даже для простейшего алгебраического уравнения степени

явные формулы, выражающие его корни через коэффициенты с помощью конечного числа арифметических операций и извлечения корней степени не выше найдены лишь при Однако уже для

уравнений пятой и более высоких степеней таких формул не существует. Этот замечательный факт, известный как теорема Абеля, был установлен в 30-е годы XIX в. Н. Абелем и Э. Галуа.

Невозможность найти точное решение нелинейного уравнения кажется огорчительной. Однако нужно признать, что желание найти точное числовое значение решения вряд ли следует считать разумным. Во-первых, в реальных исследованиях зависимость является лишь приближенным описанием, моделирующим истинную связь между параметрами у их. Поэтому точное решение х уравнения (4.1) все равно является лишь приближенным значением того параметра х, который в действительности соответствует значению . Во-вторых, даже если уравнение (4.1) допускает возможность нахождения решения в виде конечной формулы, то результат вычислений по этой формуле почти с неизбежностью содержит вычислительную погрешность и поэтому является приближенным.

Пример 4.1. Предположим, что исследование некоторого явления привело к необходимости решить уравнение

Воспользовавшись формулами (3.2) для корней квадратного уравнения, получим значения Найдены ли нами точные значения параметра Очевидно, нет. Скорее всего коэффициенты уравнения (4.3) известны приближенно и в лучшем случае они представляют округленные значения "истинных" коэффициентов. В действительности можно лишь утверждать, что

Предположим теперь, что "истинный" вид уравнения (4.3) таков: Тогда точные значения параметра можно вычислить по формуле Однако она лишь указывает на то, какие операции и в каком порядке следует выполнить. В данном случае точное вычисление по формуле невозможно, так как она содержит операцию извлечения квадратного корня. Вычисленные по ней значения неизбежно окажутся приближенными.

В дальнейшем мы откажемся от попыток найти точные значения корней уравнения (4.1) и сосредоточим внимание на методах решения более реалистичной задачи приближенного вычисления корней с заданной точностью

В данной главе под задачей отыскания решений уравнения (4.1) будем понимать задачу вычисления с заданной точностью конечного числа подлежащих определению корней этого уравнения.

3. Основные этапы решения.

Решение задачи отыскания корней нелинейного уравнения осуществляют в два этапа. Первый этап называется этапом локализации (или отделения) корней, второй - этапом итерационного уточнения корней.

Локализация корней. Отрезок содержащий только один корень х уравнения (4.1), называют отрезком локализации корня х. Цель этапа локализации считают достигнутой, если для каждого из подлежащих определению корней удалось указать отрезок локализации (его длину стараются по возможности сделать минимальной).

Прежде чем переходить непосредственно к отысканию отрезков локализации, имеет смысл провести предварительное исследование задачи для выяснения того, существуют ли вообще корни уравнения (4.1), сколько их и как они расположены на числовой оси.

Способы локализации корней многообразны, и указать универсальный метод не представляется возможным. Иногда отрезок локализации известен либо он определяется из физических соображений. В простых ситуациях хороший результат может давать графический метод (см. пример 4.2). Широко применяют построение таблиц значений функций вида При этом способе локализации о наличии на отрезке корня судят по перемене знака функции на концах отрезка (см. пример 4.3). Основанием для применения указанного способа служит следующая хорошо известная теорема математического анализа.

Теорема 4.1. Пусть функция непрерывна на отрезке и принимает на ею концах значения разных знаков, т. е. Тогда отрезок содержит по крайней мере один корень уравнения

К сожалению, корень четной кратности не удается локализовать на основании перемены знака с помощью даже очень подробной таблицы.

Дело в том, что в малой окрестности такого корня (например, корня на рис. 4.1) функция имеет постоянный знак.

Важно подчеркнуть, что далеко не всегда для успешного отыскания

корня х уравнения (4.1) необходимо полное решение задачи локализации. Часто вместо отрезка локализации достаточно найти хорошее начальное приближение к корню х. Пример 4.2. Локализуем корни уравнения

Для этого преобразуем уравнение к виду и построим графики функций (рис. 4.2). Абсциссы точек пересечения этих графиков являются корнями данного уравнения. Из рис. 4.2 видно, что уравнение имеет два корня и расположенные на отрезках и . Убедимся, что функция принимает на концах указанных отрезков значения разных знаков. Действительно, Следовательно, в силу теоремы 4.1 на каждом из отрезков и находится по крайней мере один корень.

Пример 4.3. Локализуем корни уравнения

Для этого составим таблицу значений функции на отрезке с шагом 0.4.

Таблица 4.1 (см. скан)

Из табл. 4.1 видно, что функция меняет знак на концах отрезков Теорема 4.1 дает основание утверждать, что каждый из этих отрезков содержит по крайней мере один корень. Учитывая, что в силу основной теоремы алгебры многочлен третьей степени не может иметь более трех корней, заключаем, что полученные три отрезка содержат ровно по одному корню. Таким образом, корни локализованы.

Итерационное уточнение корней. На этом этапе для вычисления каждого из корней с точностью используют тот или иной итерационный метод, позволяющий построить последовательность приближений к корню

Общее представление об итерационных методах и основные определения были даны в § 3.3. Введем дополнительно некоторые определения.

Итерационный метод называют одношаговым, если для вычисления очередного приближения используется только одно предыдущее приближение и к шаговым, если для вычисления используются к предыдущих приближений Заметим, что для построения итерационной последовательности одношаговым методом требуется задание только одного начального приближения в то время как при использовании -шагового метода - к начальных приближений

Скорость сходимости - одна из важнейших характеристик итерационных методов. Говорят, что метод сходится со скоростью геометрической прогрессии, знаменатель которой если для всех справедлива следующая оценка:

Как нетрудно видеть, из оценки (4.5) действительно вытекает сходимость метода.

Пусть одношаговый итерационный метод обладает следующим свойством: существует -окрестность корня х такая, что если приближение принадлежит этой окрестности, то справедлива оценка

где постоянные. В этом случае число называют порядком сходимости метода. Если то говорят, что метод обладает линейной скоростью сходимости в указанной -окрестности корня. Если то принято говорить о сверхлинейной скорости сходимости. При скорость сходимости называют

Исследование различных явлений или процессов математическими методами осуществляется с помощью математической модели. Математическая модель представляет собой формализованное описание исследуемого объекта посредством систем линейных, нелинейных или дифференциальных уравнений, систем неравенств, определенного интеграла, многочлена с неизвестными коэффициентами и т. д. Математическая модель должна охватывать важнейшие характеристики исследуемого объекта и отражать связи между ними.

После того, как математическая модель составлена, переходят к постановке вычислительной задачи. При этом устанавливают, какие характеристики математической модели являются исходными (входными)данными, какие - параметрами модели, а какие - выходными данными. Проводится анализ полученной задачи с точки зрения существования и единственности решения.

На следующем этапе выбирается метод решения задачи. Во многих конкретных случаях найти решение задачи в явном виде не представляется возможным, так как оно не выражается через элементарные функции. Такие задачи можно решить лишь приближенно. Под вычислительными (численными) методами подразумеваются приближенные процедуры, позволяющие получать решение в виде конкретных числовых значений. Вычислительные методы, как правило, реализуются на ЭВМ. Для решения одной и той же задачи могут быть использованы различные вычислительные методы, поэтому нужно уметь оценивать качество различных методов и эффективность их применения для данной задачи.

Затем для реализации выбранного вычислительного метода составляется алгоритм и программа для ЭВМ. Современному инженеру важно уметь преобразовать задачу к виду, удобному для реализации на ЭВМ и построить алгоритм решения такой задачи.

В настоящее время широко используются как пакеты, реализующие наиболее общие методы решения широкого круга задач (например, Mathcad ,
MatLAB), так и пакеты, реализующие методы решения специальных задач.

Результаты расчета анализируются и интерпретируются. При необходимости корректируются параметры метода, а иногда математическая модель, и начинается новый цикл решения задачи.

1.1. Постановка задачи

Пусть дана некоторая функция и требуется найти все или некоторые значения , для которых .

Значение , при котором , называется корнем (или решением ) уравнения. Относительно функции часто предполагается, что дважды непрерывно дифференцируема в окрестности корня.

Корень уравнения называется простым, если первая производная функции в точке не равна нулю, т. е. . Если же , то корень называется кратным корнем.

Геометрически корень уравнения есть точка пересечения графика функции с осью абсцисс. На рис. 1 изображен график функции , имеющей четыре корня: два простых и два кратных .


Большинство методов решения уравнения ориентировано на отыскание простых корней.

1.2. Основные этапы отыскания решения

В процессе приближенного отыскания корней уравнения обычно выделяют два этапа: локализация (или отделение) корня и уточнение корня .

Локализация корня заключается в определении отрезка , содержащего один и только один корень. Не существует универсального алгоритма локализации корня. Иногда удобно бывает локализовать корень с помощью построения графика или таблицы значений функции . На наличие корня на отрезке указывает различие знаков функции на концах отрезка. Основанием для этого служит следующая теорема.

Теорема. Если функция непрерывна на отрезке и принимает на его концах значения разных знаков так что , то отрезок содержит по крайней мере один корень уравнения.

Однако корень четной кратности таким образом локализовать нельзя, так как в окрестности такого корня функция имеет постоянный знак. На этапе уточнения корня вычисляют приближенное значение корня с заданной точностью . Приближенное значение корня уточняют с помощью различных итерационных методов. Суть этих методов состоит в последовательном вычислении значений , которые являются приближениями к корню .

1.3. Метод половинного деления

Метод половинного является самым простым и надежным способом решения нелинейного уравнения. Пусть из предварительного анализа известно, что корень уравнения находится на отрезке , т. е. , так, что . Пусть функция непрерывна на отрезке и принимает на концах отрезка значения разных знаков, т.е. .

Разделим отрезок пополам. Получим точку . Вычислим значение функции в этой точке: . Если , то - искомый корень, и задача решена. Если , то - число определённого знака: либо . Тогда либо на концах отрезка , либо на концах отрезка значения функции имеют разные знаки. Обозначим такой отрезок . Очевидно, что и длина отрезка в два раза меньше, чем длина отрезка . Поступим аналогично с отрезком . В результате получим либо корень , либо новый отрезок и т. д. (рис. 2).

Середина -го отрезка . Очевидно, что длина отрезка будет равна , а так как , то

Критерий окончания. Из соотношения (1) следует, что при заданной точности приближения вычисления заканчиваются, когда будет выполнено неравенство или неравенство . Таким образом, количество итераций можно определить заранее. За приближенное значение корня берется величина .

Пример. Найдем приближенно с точностью . Эта задача эквивалентна решению уравнения , или нахождению нуля функции . В качестве начального отрезка возьмем отрезок . На концах этого отрезка функция принимает значения с разными знаками: . Найдем число делений отрезка , необходимых для достижения требуемой точности. Имеем:

Следовательно, не позднее 6-го деления найдем с требуемой точностью, . Результаты вычислений представлены в таблице 1.

Таблица 1

1,0000 1,0000 1,0000 1,1250 1,1250 1,1406 1,1406
2,0000 1,5000 1,2500 1,2500 1,1875 1,1875 1,1562
1,5000 1,2500 1,1250 1,1875 1,1406 1,1562 1,1484
Зн - - - - - - -
Зн + + + + + + +
5,5938 0,7585 -0,2959 0,1812 -0,0691 0,0532 -0,0078
- 1,0000 0,5000 0,2500 0,1250 0,0625 0,0312 0,0156

1.4. Метод простой итерации

Пусть уравнение можно заменить эквивалентным ему уравнением

Выберем каким-либо образом начальное приближение . Вычислим значение функции при и найдем уточненное значение . Подставим теперь в уравнение (1) и получим новое приближение и т. д. Продолжая этот процесс неограниченно, получим последовательность приближений к корню:

Формула (3) является расчетной формулой метода простой итерации.

Если последовательность сходится при , т. е. существует

и функция непрерывна, то, переходя к пределу в (3) и учитывая (4), получим: .

Таким образом, , следовательно, - корень уравнения (2).

Сходимость метода. Сходимость метода простой итерации устанавливает следующая теорема.

Теорема. Пусть функция определена и диффе-ренцируема на отрезке , причем все ее зна-чения . Тогда, если выполняется условие при :

1) процесс итерации сходится независимо от начального значения ;

2) предельное значение является единственным корнем уравнения на отрезке .

Доказательство. Так как и , то можно записать

По теореме о среднем (она утверждает, что если производная функции непрерывна на некотором интервале, то тангенс угла наклона хорды, проведенной между точками и , (т.е. равен производной функции в некоторой промежуточной точке, лежащей между и ) частное в последнем выражении будет равно , где - некоторая промежуточная точка в интервале поиска корня. Следовательно, .

Если ввести обозначение для всего интервала поиска, то предыдущее равенство может быть переписано в виде:

Аналогично . Тогда для будет справедливо неравенство: и т. д. Продолжая эти выкладки дальше, в результате получаем , где - натуральное число. Таким образом, чтобы метод сходился, необходимо выполнение неравенства: .

Отсюда следует, что должно быть меньше единицы. В свою очередь, для всех остальных значений меньших , можно записать: . Число определим из соотношения . Тогда справедливо неравенство (вывод см. ниже): . Если поставить условие, что истинное значение корня должно отличаться от приближенного значения на величину , т.е. , то приближения надо вычислять до тех пор, пока не будет выполнено неравенство

или и тогда .

Вывод неравенства.Рассмотрим два последовательных приближения: и . Отсюда .

Используя теорему о среднем, получим:

тогда на основании условия можно записать:

С другой стороны, пусть . Очевидно, что . Отсюда, учитывая, что , получим

Тогда или .

Используя предыдущую формулу, можно получить:

Перейдём к пределу в равенстве (3), в силу непрерывности функции получим , то есть - корень уравнения (2). Других корней на нет, так как если , то , тогда , где . Равенство нулю будет достигнуто, если . То есть - корень единственный.

Теорема доказана.

Приведение уравнения к виду
для обеспечения выполнения неравенства

В общем случае получить подходящую итерационную форму возможно, проведя равносильное преобразование исходного уравнения, например, умножив его на коэффициент : . Прибавив затем к обеим частям уравнения и обозначив можно потребовать выполнения достаточного условия . Отсюда определяется необходимое значение . Так как условие должно выполняться на всем отрезке , то для выбора следует использовать наибольшее значение на этом отрезке, т.е.

Это соотношение определяет диапазон значений коэффициента , изменяющий величину в пределах .

Обычно принимают .

На рис. 3-6 показаны четыре случая взаимного расположения линий и и соответствующие итерационные процессы. Рис. 3 и 4 соответствуют случаю , и итерационный процесс сходится. При этом, если (рис. 3), сходимость носит односторонний характер, а если (рис. 4), сходимость носит двусторонний, колебательный характер. Рис. 5 и 6 соответствуют случаю - итерационный процесс расходится. При этом может быть односторонняя (рис. 5) и двусторонняя (рис. 6) расходимость.

Погрешность метода. Оценка погрешности была доказана (5).

Критерий окончания. Из оценки (5) следует, что вычисления надо продолжать до выполнения неравенство . Если же , то оценка упрощается: .

Пример 1. Используем метод простой итерации для решения уравнения с точностью . Преобразуем уравнение к виду:

, т. е. .

Нетрудно убедиться, что корень уравнения находится на отрезке . Вычислив значения на концах отрезка, получим: , а , т. е. функция на концах отрезка имеет разные знаки,

поэтому внутри отрезка есть корень. Расположение корня наглядно иллюстрирует рис. 7.

Подсчитаем первую и вторую производные функции :

Так как на отрезке , то производная монотонно возрастает на этом отрезке и принимает максимальное значение на правом конце отрезка, т. е. в точке . Поэтому справедлива оценка:

Таким образом, условие выполнено, и можно воспользоваться критерием окончания вычислений. В табл. 2 приведены приближения, полученные по расчетной формуле. В качестве начального приближения выбрано значение .

Таблица 2

0,8415 0,8861 0,8712 0,8774 0,8765

Критерий окончания выполняется при , . Сходимость двусторонняя, качественный характер такой сходимости представлен на рис. 4. Приближенное значение корня с требуемой точностью .

Пример 2. Решить методом простой итерации уравнение на отрезке с точностью 0,025. Для решения исходное уравнение приводится к виду . Для выбора величины используем приведенную выше формулу . Тогда расчетная формула имеет вид . В качестве начального приближения можно выбрать верхнюю границу заданного отрезка .

0,8 0,78

Так как , то .

1.5. Метод Ньютона (метод касательных)

Метод Ньютона является наиболее эффективным методом решения нелинейных уравнений. Пусть корень , т. е. . Предполагаем, что функция непрерывна на отрезке и дважды непрерывно дифференцируема на интервале . Положим . Проведем касательную к графику функции в точке (рис. 8).

Уравнение касательной будет иметь вид: .

Первое пересечение получим, взяв абсциссу точки пересечения этой касательной с осью , т. е. положив : .

Аналогично поступим с точкой , затем с точкой и т. д., в результате получим последовательность приближений , причем

Формула (6) является расчетной формулой метода Ньютона .

Метод Ньютона можно рассматривать как частный случай метода простых итераций, для которого .

Сходимость метода . Сходимость метода Ньютона устанавливает следующая теорема.

Теорема. Пусть - простой корень уравнения и в некоторой окрестности этого корня функция дважды непрерывно дифференцируема. Тогда найдется такая малая - окрестность корня , что при произвольном выборе начального приближения из этой окрестности итерационная последовательность, определенная по формуле (6) не выходит за пределы этой окрестности и справедлива оценка:

Сходимость метода Ньютона зависит от того, насколько близко к корню выбрано начальное приближение.

Выбор начального приближения. Пусть - отрезок, содержащий корень. Если в качестве начального приближения выбрать тот из концов отрезка, для которого , то итерации (6) сходятся, причем монотонно. Рис. 8 соответствует случаю, когда в качестве начального приближения был выбран правый конец отрезка: (Здесь ).

Погрешность метода. Оценка (7) неудобна для практического использования. На практике пользуются следующие оценки погрешности:

Критерий окончания. Оценка (8) позволяет сформулировать следующий критерий окончания итераций метода Ньютона. При заданной точности вычисления нужно вести до тех пор, пока не будет выполнено неравенство

Пример . Вычислить методом Ньютона отрицательный корень уравнения с точностью до 0,0001. Проведя отделение корня, можно убедиться, что корень локализован на интервале . В этом интервале и . Так как и , то за начальное приближение можно принять .

-11 -5183 0,6662
-10,3336 307,3 4276,8 0,0718
-10,2618 3,496 4185,9 0,0008
-10,261 0,1477 - -

. Поэтому . Итак, в результате получаем следующее, и на , поэтому .

Так как , то

Свои способности человек может узнать, только попытавшись приложить их. (Сенека)

Численные методы: решение нелинейных уравнений

Задачи решения уравнений постоянно возникают на практике, например, в экономике, развивая бизнес, вы хотите узнать, когда прибыль достигнет определенного значения, в медицине при исследовании действия лекарственных препаратов, важно знать, когда концентрация вещества достигнет заданного уровня и т.д.

В задачах оптимизации часто необходимо определять точки, в которых производная функции обращается в 0, что является необходимым условием локального экстремума.

В статистике при построении оценок методом наименьших квадратов или методом максимального правдоподобия также приходится решать нелинейные уравнения и системы уравнений.

Итак, возникает целый класс задач, связанных с нахождением решений нелинейных уравнений, например, уравнения или уравнения и т.д.

В простейшем случае у нас имеется функция , заданная на отрезке (a , b ) и принимающая определенные значения.

Каждому значению x из этого отрезка мы можем сопоставить число , это и есть функциональная зависимость, ключевое понятие математики.

Нам нужно найти такое значение при котором такие называются корнями функции

Визуально нам нужно определить точку пересечения графика функции с осью абсцисс.

Метод деления пополам

Простейшим методом нахождения корней уравнения является метод деления пополам или дихотомия .

Этот метод является интуитивно ясным и каждый действовал бы при решении задачи подобным образом.

Алгоритм состоит в следующем.

Предположим, мы нашли две точки и , такие что и имеют разные знаки, тогда между этими точками находится хотя бы один корень функции .

Поделим отрезок пополам и введем среднюю точку .

Тогда либо , либо .

Оставим ту половину отрезка, для которой значения на концах имеют разные знаки. Теперь этот отрезок снова делим пополам и оставляем ту его часть, на границах которой функция имеет разные знаки, и так далее, достижения требуемой точности.

Очевидно, постепенно мы сузим область, где находится корень функции, а, следовательно, с определенной степенью точности определим его.

Заметьте, описанный алгоритм применим для любой непрерывной функции.

К достоинствам метода деления пополам следует отнести его высокую надежность и простоту.

Недостатком метода является тот факт, что прежде чем начать его применение, необходимо найти две точки, значения функции в которых имеют разные знаки. Очевидно, что метод неприменим для корней четной кратности и также не может быть обобщен на случай комплексных корней и на системы уравнений.

Порядок сходимости метода линейный, на каждом шаге точность возрастает вдвое, чем больше сделано итераций, тем точнее определен корень.

Метод Ньютона: теоретические основы

Классический метод Ньютона или касательных заключается в том, что если — некоторое приближение к корню уравнения , то следующее приближение определяется как корень касательной к функции , проведенной в точке .

Уравнение касательной к функции в точке имеет вид:

В уравнении касательной положим и .

Тогда алгоритм последовательных вычислений в методе Ньютона состоит в следующем:

Сходимость метода касательных квадратичная, порядок сходимости равен 2.

Таким образом, сходимость метода касательных Ньютона очень быстрая.

Запомните этот замечательный факт!

Без всяких изменений метод обобщается на комплексный случай.

Если корень является корнем второй кратности и выше, то порядок сходимости падает и становится линейным.

Упражнение 1 . Найти с помощью метода касательных решение уравнения на отрезке (0, 2).

Упражнение 2. Найти с помощью метода касательных решение уравнения на отрезке (1, 3).

К недостаткам метода Ньютона следует отнести его локальность, поскольку он гарантированно сходится при произвольном стартовом приближении только, если везде выполнено условие , в противной ситуации сходимость есть лишь в некоторой окрестности корня.

Недостатком метода Ньютона является необходимость вычисления производных на каждом шаге.

Визуализация метода Ньютона

Метод Ньютона (метод касательных) применяется в том случае, если уравнение f (x ) = 0 имеет корень , и выполняются условия:

1) функция y = f (x ) определена и непрерывна при ;

2) f (a f (b ) < 0 (функция принимает значения разных знаков на концах отрезка [a ; b ]);

3) производные f" (x ) и f"" (x ) сохраняют знак на отрезке [a ; b ] (т.е. функция f (x ) либо возрастает, либо убывает на отрезке [a ; b ], сохраняя при этом направление выпуклости);

Основная идея метода заключается в следующем: на отрезке [a ; b ] выбирается такое число x 0 , при котором f (x 0 ) имеет тот же знак, что и f "" (x 0 ), т. е. выполняется условие f (x 0 f "" (x ) > 0 . Таким образом, выбирается точка с абсциссой x 0 , в которой касательная к кривой y = f (x ) на отрезке [a ; b ] пересекает ось Ox . За точку x 0 сначала удобно выбирать один из концов отрезка.

Рассмотрим метод Ньютона на конкретном примере.

Пусть нам дана возрастающая функция y = f(x) =x 2 -2, непрерывная на отрезке (0;2), и имеющая f " (x) = 2 x > 0 и f "" (x) = 2 > 0 .

Рисунок 1 . f(x) =x 2 -2

Уравнение касательной в общем виде имеет представление:

y-y 0 = f " (x 0)·(x-x 0).

В нашем случае: y-y 0 =2x 0 ·(x-x 0). В качестве точки x 0 выбираем точку B 1 (b; f(b)) = (2,2). Проводим касательную к функции y = f(x) в точке B 1 , и обозначаем точку пересечения касательной и оси Ox точкой x 1 . Получаем уравнение первой касательной:y-2=2·2(x-2), y=4x-6.

Ox: x 1 =

Рисунок 2. Результат первой итерации

y=f(x) Ox через точку x 1 , получаем точку В 2 =(1.5; 0.25) . Снова проводим касательную к функции y = f(x) в точке В 2 , и обозначаем точку пересечения касательной и оси Ox точкой x 2 .

Уравнение второй касательной: y -0.25=2*1.5(x -1.5), y = 3 x - 4.25.

Точка пересечения касательной и оси Ox: x 2 = .

Рисунок 3. Вторая итерация метода Ньютона

Затем находим точку пересечения функции y=f(x) и перпендикуляра, проведенного к оси Ox через точку x 2 , получаем точку В 3 и так далее.

Рисунок 4. Третий шаг метода касательных

Первое приближение корня определяется по формуле:

= 1.5.

Второе приближение корня определяется по формуле:

=

Третье приближение корня определяется по формуле:

Таким образом, i -ое приближение корня определяется по формуле:

Вычисления ведутся до тех пор, пока не будет достигнуто совпадение десятичных знаков, которые необходимы в ответе, или заданной точности e - до выполнения неравенства | xi - xi -1 | < e .

В нашем случае, сравним приближение, полученное на третьем шаге с реальным ответом, посчитанном на калькуляторе:

Рисунок 5. Корень из 2, посчитанный на калькуляторе

Как видно, уже на третьем шаге мы получили погрешность меньше 0.000002.

Таким образом можно вычислить значение величины "корень квадратный из 2" с любой степенью точности. Этот замечательный метод был изобретен Ньютоном и позволяет находить корни очень сложных уравнений.

Метод Ньютона: приложение на С++

В данной статье мы автоматизируем процесс вычисления корней уравнений, написав консольное приложение на языке C++. Разрабатывать его мы будем в Visual C++ 2010 Express, это бесплатная и очень удобная среда разработки С++.

Для начала запустим Visual C++ 2010 Express. Появится стартовое окно программы. В левом углу нажмем «Создать проект».

Рис. 1. Начальная страница Visual C++ 2010 Express

В появившемся меню выберем «Консольное приложение Win32», введем имя приложение «Метод_Ньютона».

Рис. 2. Создание проекта

// Метод_Ньютона.cpp: определяет точку входа для консольного приложения

#include "stdafx.h"

#include

using namespace std;

float f(double x) //возвращает значение функции f(x) = x^2-2

float df(float x) //возвращает значение производной

float d2f(float x) // значение второй производной

int _tmain(int argc, _TCHAR* argv)

int exit = 0, i=0;//переменные для выхода и цикла

double x0,xn;// вычисляемые приближения для корня

double a, b, eps;// границы отрезка и необходимая точность

cout<<"Please input \n=>";

cin>>a>>b; // вводим границы отрезка, на котором будем искать корень

cout<<"\nPlease input epsilon\n=>";

cin>>eps; // вводим нужную точность вычислений

if (a > b) // если пользователь перепутал границы отрезка, меняем их местами

if (f(a)*f(b)>0) // если знаки функции на краях отрезка одинаковые, то здесь нет корня

cout<<"\nError! No roots in this interval\n";

if (f(a)*d2f(a)>0) x0 = a; // для выбора начальной точки проверяем f(x0)*d2f(x0)>0 ?

xn = x0-f(x0)/df(x0); // считаем первое приближение

cout<<++i<<"-th iteration = "<

while(fabs(x0-xn) > eps) // пока не достигнем необходимой точности, будет продолжать вычислять

xn = x0-f(x0)/df(x0); // непосредственно формула Ньютона

cout<<++i<<"-th iteration = "<

cout<<"\nRoot = "<

cout<<"\nExit?=>";

} while (exit!=1); // пока пользователь не ввел exit = 1

Посмотрим, как это работает. Нажмем на зеленый треугольник в верхнем левом углу экрана, или же клавишу F5.

Если происходит ошибка компиляции «Ошибка error LNK1123: сбой при преобразовании в COFF: файл недопустим или поврежден», то это лечится либо установкой первого Service pack 1, либо в настройках проекта Свойства -> Компоновщик отключаем инкрементную компоновку.

Рис. 4. Решение ошибки компиляции проекта

Мы будем искать корни у функции f(x) = x2-2 .

Сначала проверим работу приложения на «неправильных» входных данных. На отрезке нет корней, наша программа должна выдать сообщение об ошибке.

У нас появилось окно приложения:

Рис. 5. Ввод входных данных

Введем границы отрезка 3 и 5, и точность 0.05. Программа, как и надо, выдала сообщение об ошибке, что на данном отрезке корней нет.

Рис. 6. Ошибка «На этом отрезке корней нет!»

Выходить мы пока не собираемся, так что на сообщение «Exit?» вводим «0».

Теперь проверим работу приложения на корректных входных данных. Введем отрезок и точность 0.0001.

Рис. 7. Вычисление корня с необходимой точностью

Как мы видим, необходимая точность была достигнута уже на 4-ой итерации.

Чтобы выйти из приложения, введем «Exit?» => 1.

Метод секущих

Чтобы избежать вычисления производной, метод Ньютона можно упростить, заменив производную на приближенное значение, вычисленное по двум предыдущим точкам:

Итерационный процесс имеет вид:

Это двухшаговый итерационный процесс, поскольку использует для нахождения последующего приближения два предыдущих.

Порядок сходимости метода секущих ниже, чем у метода касательных и равен в случае однократного корня .

Эта замечательная величина называется золотым сечением:

Убедимся в этом, считая для удобства, что .

Таким образом, с точностью до бесконечно малых более высокого порядка

Отбрасывая остаточный член, получаем рекуррентное соотношение, решение которого естественно искать в виде .

После подстановки имеем: и

Для сходимости необходимо, чтобы было положительным, поэтому .

Поскольку знание производной не требуется, то при том же объёме вычислений в методе секущих (несмотря на меньший порядок сходимости) можно добиться большей точности, чем в методе касательных.

Отметим, что вблизи корня приходится делить на малое число, и это приводит к потере точности (особенно в случае кратных корней), поэтому, выбрав относительно малое , выполняют вычисления до выполнения и продолжают их пока модуль разности соседних приближений убывает.

Как только начнется рост, вычисления прекращают и последнюю итерацию не используют.

Такая процедура определения момента окончания итераций называется приемом Гарвика.

Метод парабол

Рассмотрим трехшаговый метод, в котором приближение определяется по трем предыдущим точкам , и .

Для этого заменим, аналогично методу секущих, функцию интерполяционной параболой проходящей через точки , и .

В форме Ньютона она имеет вид:

Точка определяется как тот из корней этого полинома, который ближе по модулю к точке .

Порядок сходимости метода парабол выше, чем у метода секущих, но ниже, чем у метода Ньютона.

Важным отличием от ранее рассмотренных методов, является то обстоятельство, что даже если вещественна при вещественных и стартовые приближения выбраны вещественными, метод парабол может привести к комплексному корню исходной задачи.

Этот метод очень удобен для поиска корней многочленов высокой степени.

Метод простых итераций

Задачу нахождения решений уравнений можно формулировать как задачу нахождения корней: , или как задачу нахождения неподвижной точки.

Пусть и — сжатие: (в частности, тот факт, что — сжатие, как легко видеть, означает, что).

По теореме Банаха существует и единственна неподвижная точка

Она может быть найдена как предел простой итерационной процедуры

где начальное приближение — произвольная точка промежутка .

Если функция дифференцируема, то удобным критерием сжатия является число . Действительно, по теореме Лагранжа

Таким образом, если производная меньше единицы, то является сжатием.

Условие существенно, ибо если, например, на , то неподвижная точка отсутствует, хотя производная равна нулю. Скорость сходимости зависит от величины . Чем меньше , тем быстрее сходимость.

Идея метода. Выбирается уравнение, в котором одна из переменных наиболее просто выражается через остальные переменные. Полученное выражение этой переменной подставляется в оставшиеся уравнения системы.

  1. b) Комбинирование с другими методами.

Идея метода . Если метод прямой подстановки не применим на начальном этапе решения, то используются равносильные преобразования систем (почленное сложение, вычитание, умножение, деление), а затем проводят непосредственно прямую подстановку.

2) Метод независимого решения одного из уравнений.

Идея метода . Если в системе содержится уравнение, в котором находятся взаимно обратные выражения, то вводится новая переменная и относительно её решается уравнение. Затем система распадается на несколько более простых систем.

Решить систему уравнений

Рассмотрим первое уравнение системы:

Сделав замену , где t ≠ 0, получаем

Откуда t 1 = 4, t 2 = 1/4.

Возвращаясь к старым переменным, рассмотрим два случая.

Корнями уравнения 4у 2 – 15у – 4 = 0 являются у 1 = 4, у 2 = — 1/4 .

Корнями уравнения 4х 2 + 15х – 4 = 0 являются х 1 = — 4, х 2 = 1/4 .

3)Сведение системы к объединению более простых систем.

  1. a ) Разложение на множители способом вынесения общего множителя.

Идея метода. Если в одном из уравнений есть общий множитель, то это уравнение раскладывают на множители и, учитывая равенство выражения нулю, переходят к решению более простых систем.

  1. b ) Разложение на множители через решение однородного уравнения .

Идея метода. Если одно из уравнений представляет собой однородное уравнение (, то решив его относительно одной из переменных, раскладываем на множители, например: a(x-x 1)(x-x 2) и, учитывая равенство выражения нулю, переходим к решению более простых систем.

Решим первую систему

  1. c ) Использование однородности.

Идея метода. Если в системе есть выражение, представляющее собой произведение переменных величин, то применяя метод алгебраического сложения, получают однородное уравнение, а затем используют метод разложение на множители через решение однородного уравнения.

4) Метод алгебраического сложения.

Идея метода. В одном из уравнений избавляемся от одной из неизвестных, для этого уравниваем модули коэффициентов при одной из переменных, затем производим или почленное сложение уравнений, или вычитание.

5) Метод умножения уравнений.

Идея метода. Если нет таких пар (х;у), при которых обе части одного из уравнений обращаются в ноль одновременно, то это уравнение можно заменить произведением обоих уравнений системы.

Решим второе уравнение системы.

Пусть = t, тогда 4t 3 + t 2 -12t -12 = 0. Применяя следствие из теоремы о корнях многочлена, имеем t 1 = 2.

Р(2) = 4∙2 3 + 2 2 — 12∙2 – 12 = 32 + 4 — 24 — 12 = 0. Понизим степень многочлена, используя метод неопределенных коэффициентов.

4t 3 + t 2 -12t -12 = (t – 2) (at 2 + bt + c).

4t 3 +t 2 -12t -12 = at 3 + bt 2 + ct — 2at 2 -2bt — 2c.

4t 3 + t 2 — 12t -12 = at 3 + (b – 2a) t 2 + (c -2b) t — 2c.

Получаем уравнение 4t 2 + 9t + 6 = 0, которое не имеет корней, так как D = 9 2 — 4∙4∙6 = -15<0.

Возвращаясь к переменной у, имеем = 2, откуда у = 4.

Ответ. (1;4).

6) Метод деления уравнений.

Идея метода. Если нет таких пар (х; у), при которых обе части одного из уравнений обращаются в ноль одновременно, то это уравнение можно заменить уравнением, которое получается при делении одного уравнения системы на другое.

7) Метод введения новых переменных.

Идея метода. Некоторые выражения от исходных переменных принимаются за новые переменные, что приводит к более простой, чем первоначальная, системе от этих переменных. После того как новые переменные будут найдены, нужно найти значения исходных переменных.

Возвращаясь к старым переменным, имеем:

Решаем первую систему.

8) Применение теоремы Виета .

Идея метода. Если система составлена так, одно из уравнений представлено в виде суммы, а второе — в виде произведения некоторых чисел, которые являются корнями некоторого квадратного уравнения, то применяя теорему Виета составляем квадратное уравнение и решаем его.

Ответ. (1;4), (4;1).

Для решения симметричных систем применяется подстановка: х + у = а; ху = в. При решении симметричных систем используются следующие преобразования:

х 2 + у 2 = (х + у) 2 – 2ху = а 2 – 2в; х 3 + у 3 = (х + у)(х 2 – ху + у 2) = а(а 2 -3в);

х 2 у + ху 2 = ху (х + у) = ав; (х +1)∙(у +1) = ху +х +у+1 =а + в +1;

Ответ. (1;1), (1;2), (2;1).

10) «Граничные задачи».

Идея метода. Решение системы получаются путем логических рассуждений, связанных со структурой области определения или множества значений функций, исследование знака дискриминанта квадратного уравнения.

Особенность этой системы в том, что число переменных в ней больше числа уравнений. Для нелинейных систем такая особенность часто является признаком «граничной задачи». Исходя из вида уравнений, попытаемся найти множество значений функции, которая встречается и в первом, и во втором уравнении системы. Так как х 2 + 4 ≥ 4, то из первого уравнения следует, что

Ответ (0;4;4), (0;-4;-4).

11) Графический метод.

Идея метода . Строят графики функций в одной системе координат и находят координаты точек их пересечения.

1) Переписав первое уравнение систем в виде у = х 2 , приходим к выводу: графиком уравнения является парабола.

2) Переписав второе уравнение систем в виде у =2/х 2 , приходим к выводу: графиком уравнения является гипербола.

3) Парабола и гипербола пересекаются в точке А. Точка пересечения только одна, поскольку правая ветвь параболы служит графиком возрастающей функции, а правая ветвь гиперболы — убывающей. Судя по построенной геометрической модели точка А имеет координаты (1;2). Проверка показывает, что пара (1;2) является решением обоих уравнений системы.

Постановка задачи

Отделение корней

Уточнение корней

1.2.3.2. Метод итерации

1.2.3.4. Метод хорд

Постановка задачи

Алгебраическими уравнениями

(1.2.1-1)

трансцендентным уравнением

(1.2.1-2)

Итерационное уточнение корней.

На этапе отделения корней решается задача отыскания возможно более узких отрезков , в которых содержится один и только один корень уравнения.

Этап уточнения корня имеет своей целью вычисление приближенного значения корня с заданной точностью. При этом применяются итерационные методы вычисления последовательных приближений к корню: x 0 , x 1 , ..., x n , …, в которых каждое последующее приближение x n+1 вычисляется на основании предыдущего x n . Каждый шаг называется итерацией. Если последовательность x 0 , x 1 , ..., x n , …при n ® ¥ имеет предел, равный значению корня , то говорят, что итерационный процесс сходится.

Существуют различные способы отделения и уточнения корней, которые мы рассмотрим ниже.

Отделение корней

Корень уравнения f(x)=0считается отделенным (локализованным) на отрезке , если на этом отрезке данное уравнение не имеет других корней. Чтобы отделить корни уравнения, необходимо разбить область допустимых значений функции f(x) на достаточно узкие отрезки, в каждом их которых содержится только один корень. Существуют графический и аналитический способы отделения корней.

Уточнение корней

Задача уточнения корня уравнения с точностью , отделенного на отрезке , состоит в нахождении такого приближенного значения корня , для которого справедливо неравенство . Если уравнение имеет не один, а несколько корней, то этап уточнения проводится для каждого отделенного корня.

Метод половинного деления

Пусть корень уравнения f(x)=0 отделен на отрезке , то есть на этом отрезке имеется единственный корень, а функция на данном отрезке непрерывна.

Метод половинного деления позволяет получить последовательность вложенных друг в друга отрезков , , …,,…, , таких что f(a i).f(b i) < 0 , где i=1,2,…,n, а длина каждого последующего отрезка вдвое меньше длины предыдущего:

Последовательное сужение отрезка вокруг неизвестного значения корня обеспечивает выполнение на некотором шаге n неравенства |b n - a n | < e. Поскольку при этом для любого хÎ будет выполняться неравенство | - х| <, то с точностью любое

Может быть принято за приближенное значение корня, например его середину отрезка

В методе половинного деления от итерации к итерации происходит последовательное уменьшение длины первоначального отрезка в два раза (рис. 1.2.3-1). Поэтому на n-м шаге справедлива следующая оценка погрешности результата:

(1.2.3-1)

где - точное значение корня, х n Î – приближенное значение корня на n-м шаге.

Сравнивая полученную оценку погрешности с заданной точностью , можно оценить требуемое число шагов:

(1.2.3-2)

Из формулы видно, что уменьшение величины e (повышение точности) приводит к значительному увеличению объема вычислений, поэтому на практике метод половинного деления применяют для сравнительно грубого нахождения корня, а его дальнейшее уточнение производят с помощью других, более эффективных методов.

Рис. 1.2.3-2. Схема алгоритма метода половинного деления

Схема алгоритма метода половинного деления приведена на рис. 1.2.3-2. В приведенном алгоритме предполагается, что левая часть уравнения f(x)оформляется в виде программного модуля.

Пример 1.2.3-1. Уточнить корень уравнения x 3 +x-1=0 с точностью =0.1, который локализован на отрезке .

Результаты удобно представить с помощью таблицы 1.2.3-3.

Таблица 1.2.3-3

k a b f(a) f(b) (a+b)/2 f((a+b)/2) a k b k
-1 0.5 -0.375 0.5
0.5 -0.375 0.75 0.172 0.5 0.75
0.5 0.75 -0.375 0.172 0.625 -0.131 0.625 0.75
0.625 0.75 -0.131 0.172 0.688 0.0136 0.625 0.688

После четвертой итерации длина отрезка |b 4 -a 4 | = |0.688-0.625| = 0.063 стала меньше величины e , следовательно, за приближенное значение корня можно принять значение середины данного отрезка: x = (a 4 +b 4)/2 = 0.656.

Значение функции f(x) в точке x = 0.656 равно f(0.656) = -0.062.

Метод итерации

Метод итераций предполагает замену уравнения f(x)=0 равносильным уравнением x=j(x). Если корень уравнения отделен на отрезке , то исходя из начального приближения x 0 Î, можно получить последовательность приближений к корню

x 1 = j(x 0), x 2 = j(x 1), …, , (1.2.3-3)

где функция j(x) называется итерирующей функцией.

Условие сходимости метода простой итерации определяется следующей теоремой.

Пусть корень х* уравнения x=j(x) отделен на отрезке и построена последовательность приближений по правилу x n =j(x n -1). Тогда, если все члены последовательности x n =j(x n -1) Î и существует такое q (0, что для всех х Î выполняется |j’(x)| = q<1, то эта последовательность является сходящейся и пределом последовательности является значение корня x*, т.е. процесс итерации сходится к корню уравнения независимо от начального приближения.

Таким образом, если выполняется условие сходимости метода итераций, то последовательность x 0 , x 1 , x 2 , …, x n ,…, полученная с помощью формулы x n +1 = j(x n ), сходится к точному значению корня :

Условие j(x)Î при xÎ означает, что все приближения x 1 , x 2 , …, x n ,…, полученные по итерационной формуле, должны принадлежать отрезку , на котором отделен корень.


Для оценки погрешности метода итерации справедливо условие

За число q можно принимать наибольшее значение |j"(x)|, а процесс итераций следует продолжать до тех пор, пока не выполнится неравенство

(1.2.3-5)

На практике часто используется упрощенная формула оценки погрешности. Например, если 0

|x n -1 - x n | £ .

Использование итерационной формулы x n +1 = j(x n) позволяет получить значение корня уравнения f(x)=0 с любой степенью точности.

Геометрическая иллюстрация метода итераций . Построим на плоскости X0Y графики функций y=x и y=j(x). Корень уравнения х=j(x) является абсциссой точки пересечения графиков функции y = j(x) и прямой y=x. Возьмем некоторое начальное приближение x 0 Î . На кривой y = j(x) ему соответствует точка А 0 = j(x 0). Чтобы найти очередное приближение, проведем через точку А 0 прямую горизонтальную линию до пересечения с прямой y = x (точкаВ 1) и опустим перпендикуляр до пересечения с кривой (точкаА 1), то есть х 1 =j(x 0). Продолжив построение аналогичным образом, имеем ломаную линию А 0 , В 1 , А 1 , В 2 , А 2 …, для которой общие абсциссы точек представляют собой последовательное приближение х 1 , х 2 , …, х n («лестницу») к корню х*. Из рис. 1.2.3-3а видно, что процесс сходится к корню уравнения.

Рассмотрим теперь другой вид кривой y = j(x) (рис. 1.2.6b). В данном случае ломаная линия А 0 , В 1 , А 1 , В 2 , А 2 …имеет вид “спирали”. Однако, и в этом случае наблюдается сходимость.

Нетрудно видеть, что в первом случае для производной выполняется условие 0< j’(x)< 1, а во втором случае производная j’(x)<0иj’(x)>-1. Таким образом, очевидно, что если |j’(x)|<1, то процесс итераций сходится к корню.

Теперь рассмотрим случаи, когда |j’(x) |> 1. На рис. 1.2.3-4а показан случай, когда j’(x)>1, а на рис. 1.2.3-4b – когда j’(x) < -1. В обоих случаях процесс итерации расходится, то есть, полученное на очередной итерации значение х все дальше удаляется от истинного значения корня.

Способы улучшения сходимости процесса итераций . Рассмотрим два варианта представления функции j(x) при переходе от уравнения f(x)кx=j(x).

1. Пусть функция j(x) дифференцируема и монотонна в окрестностях корня и существует числоk £ |j‘(x)|, где k ³ 1 (т.е. процесс расходится). Заменим уравнение х=j(x) эквивалентным ему уравнением х=Y(х) , где Y(х) = 1/j(x) (перейдем к обратной функции). Тогда

а значит q=1/k < 1 и процесс будет сходиться.

2. Представим функцию j(x) как j(x) = х - lf(x), где l - коэффициент, не равный

нулю. Для того чтобы процесс сходился, необходимо, чтобы
0<|j¢(x)| = |1 - lf¢(x)| < 1. Возьмем l= 2/(m 1 +M 1 ), где m 1 и M 1 – минимальное и максимальное значения f’(x) (m 1 =min|f’(x)|, M 1 =max|f’(x)|) для хÎ, т.е. 0£ m 1 £ f¢(x) £ M 1 £1. Тогда

и процесс будет сходящимся, рекуррентная формула имеет вид

Если f¢(x) < 0, то в рекуррентной формуле f(x) следует умножить на -1 .

Параметр λ может быть также определен по правилу:

Если , то , а если , то , где .

Схема алгоритма метода итерации приведена на рис. 1.2.3-5.

Исходное уравнение f(x)=0преобразовано к виду, удобному для итераций: Левая часть исходного уравнения f(x) и итерирующая функция fi(x) в алгоритме оформлены в виде отдельных программных модулей.

Рис. 1.2.3-5. Схема алгоритма метода итерации

Пример 1.2.3-2. Уточнить корень уравнения 5x – 8∙ln(x) – 8 =0 с точностью 0.1, который локализован на отрезке .

Приведем уравнение к виду, удобному для итераций:

Следовательно, за приближенное значение корня уравнения принимаем значение x 3 =3.6892, обеспечивающее требуемую точность вычислений. В этой точке f(x 3)=0.0027.

Метод хорд

Геометрическая интерпретация метода хорд состоит в следующем
(рис.1.2.3-8).

Проведем отрезок прямой через точки A и B. Очередное приближение x 1 является абсциссой точки пересечения хорды с осью 0х. Построим уравнение отрезка прямой:

Положим y = 0 и найдем значение х = х 1 (очередное приближение):

Повторим процесс вычислений для получения очередного приближения к корню - х 2 :

В нашем случае (рис.1.2.11) и расчетная формула метода хорд будет иметь вид

Эта формула справедлива, когда за неподвижную точку принимается точка b, а в качестве начального приближения выступает точка a.

Рассмотрим другой случай (рис. 1.2.3-9), когда .

Уравнение прямой для этого случая имеет вид

Очередное приближение х 1 при y = 0

Тогда рекуррентная формула метода хорд для этого случая имеет вид

Следует отметить, что за неподвижную точку в методе хорд выбирают тот конец отрезка , для которого выполняется условие f (x)∙ f¢¢ (x)>0.

Таким образом, если за неподвижную точку приняли точку а, то в качестве начального приближения выступает х 0 = b, и наоборот.

Достаточные условия, которые обеспечивают вычисление корня уравнения f(x)=0 по формуле хорд, будут теми же, что и для метода касательных (метод Ньютона), только вместо начального приближения выбирается неподвижная точка. Метод хорд является модификацией метода Ньютона. Разница состоит в том, что в качестве очередного приближения в методе Ньютона выступает точка пересечения касательной с осью 0Х, а в методе хорд – точка пересечения хорды с осью 0Х – приближения сходятся к корню с разных сторон.

Оценка погрешности метода хорд определяется выражением

(1.2.3-15)

Условие окончания процесса итераций по методу хорд

(1.2.3-16)

В случае, если M 1 <2m 1 , то для оценки погрешности метода может быть использована формула | x n - x n -1 | £ e.

Пример 1.2.3-4. Уточнить корень уравнения e x – 3x = 0, отделенный на отрезке с точностью 10 -4 .

Проверим условие сходимости:

Следовательно, за неподвижную точку следует выбрать а=0, а в качестве начального приближения принять х 0 =1, поскольку f(0)=1>0 и f(0)*f"(0)>0.

Результаты расчета, полученные с использованием формулы
1.2.3-14, представлены в таблице 1.2.3-4.

Таблица 1.2.3-4

Рис. 1.2.3-10. Схема алгоритма метода хорд

Нелинейное уравнение – это

1) алгебраическое или трансцендентное уравнение

2) алгебраическое уравнение

3) тригонометрическое уравнение

4) трансцендентное уравнение

Тема 1.2. Методы решения нелинейных уравнений

Постановка задачи

Отделение корней

1.2.2.1. Графическое отделение корней

1.2.2.2. Аналитическое отделение корней

Уточнение корней

1.2.3.1. Метод половинного деления

1.2.3.2. Метод итерации

1.2.3.3. Метод Ньютона (метод касательных)

1.2.3.4. Метод хорд

1.2.3.5. Сравнение методов решения нелинейных уравнений

1.2.4. Тестовые задания по теме «Методы решения нелинейных уравнений»

Постановка задачи

Одной из важнейших и наиболее распространенных задач математического анализа является задача определения корней уравнения с одним неизвестным, которое в общем виде можно представить как f(x) = 0. В зависимости от вида функции f(x)различают алгебраические и трансцендентные уравнения. Алгебраическими уравнениями называются уравнения, в которых значение функции f(x)представляет собой полином n-й степени:

f(x) = Р(х) = a n x n + a 2 x 2 + …+ a 1 x + a 0 = 0.(1.2.1-1)

Всякое неалгебраическое уравнение называется трансцендентным уравнением . Функция f(x) в таких уравнениях представляет собой хотя бы одну из следующих функций: показательную, логарифмическую, тригонометрическую или обратную тригонометрическую.

Решением уравнения f(x)=0называется совокупность корней, то есть такие значения независимой переменной , при которых уравнение обращается в тождество . Однако, точные значения корней могут быть найдены аналитически только для некоторых типов уравнений. В частности, формулы, выражающие решение алгебраического уравнения, могут быть получены лишь для уравнений не выше четвертой степени. Еще меньше возможностей при получении точного решения трансцендентных уравнений. Следует отметить, что задача нахождения точных значений корней не всегда корректна. Так, если коэффициенты уравнения являются приближенными числами, точность вычисленных значений корней заведомо не может превышать точности исходных данных. Эти обстоятельства заставляют рассматривать возможность отыскания корней уравнения с ограниченной точностью (приближенных корней).

Задача нахождения корня уравнения с заданной точностью ( >0)считается решенной, если вычислено приближенное значение , которое отличается от точного значения корня не более чем на значение e

(1.2.1-2)

Процесс нахождения приближенного корня уравнения состоит из двух этапов:

1) отделение корней (локализация корней);