Реферат правильные многогранники. Симметрия в пространстве

Михайлова Полина Когай Юля

Целью

Скачать:

Предварительный просмотр:

ПРОЕКТ

(статья по математике)

Выполнили:

Ученицы 11 класса

Михайлова Полина

Когай Юля

Руководитель:

Учитель математики

Лебедева Ирина Николаевна

РЖЕВ 2012

(Л.Кэрролл)

Введение

Целью нашего исследования являлось изучение правильных многогранников, их видов, свойств.

1. Правильные многогранники

Рис.1.

2. Свойства многогранников

В дословном переводе с

Евклид

Платон и Платоновы тела

Многогранники

земля/вода = воздух/огонь .

Многогранник

Число сторон грани

Число граней

Число рёбер

Число вершин

Тетраэдр

Куб

Октаэдр

Икосаэдр

Додекаэдр

Архимед Сиракузский

квазиправильными

ромбокубооктаэдром и ромбоикосододекаэдром

Заключение


Предварительный просмотр:

МОУ СОШ №1 г.Ржева Тверской обл

ПРОЕКТ

Правильные многогранники вокруг нас

(статья по математике)

Выполнили:

Ученицы 11 класса

Михайлова Полина

Когай Юля

Руководитель:

Учитель математики

Лебедева Ирина Николаевна

РЖЕВ 2012

Правильных многогранников вызывающе мало,

но этот весьма скромный по численности отряд

сумел пробраться в самые глубины различных наук.

(Л.Кэрролл)

Введение

Есть в школьной геометрии особые темы, которые ждешь с нетерпением,

предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести "Правильные многогранники". Здесь не только открывается

удивительный мир геометрических тел, но и неповторимые свойства, особенности которых вызывают споры у ученых и философов.

В течение всей жизни человек тесно связан с многогранниками. Несмотря на отсутствие знания таких сложных терминов, как «тетраэдр», «октаэдр», «додекаэдр» и др., он уже с самого раннего детства испытывает интерес к этим уникальным фигурам. Ведь суть «кубиков» - одной из самых популярных детских игр - состоит в том, чтобы построить из многогранников объект.

На протяжении многих веков людей словно притягивают эти тела. Древние египтяне строили гробницы своим фараонам (которых они считали полубогами) в форме тетраэдра, что еще раз подчеркивает величие и этих фигур.

Но не только руками человека создаются эти загадочные тела. Одни из правильных тел встречаются в природе в виде кристаллов, другие – в виде вирусов (были обнаружены учеными с помощью электрического микроскопа). А биологи говорят о том, что шестиугольные соты пчел, содержащие мед, имеют форму правильного многогранника. Существовала гипотеза, что именно правильная шестиугольная форма сот помогает сохранить полезные свойства этого ценного продукта.

Так что же представляют собой эти столь совершенные тела?

Целью нашего исследования являлось изучение правильных многогранников, их видов, свойств.

В задачи нашего исследования входило:

  • Дать понятие правильных многогранников (на основе определения многогранников).
  • Доказать существование только 5 типов правильных многогранников.
  • Рассмотреть свойства правильных многогранников.
  • Познакомиться с интересными историческими фактами, связанными с правильными многогранниками.
  • Ознакомление с историей изучения многогранников.
  • Показать, как можно с помощью куба построить другие виды правильных многогранников.
  • Рассмотреть связь правильных многогранников с природой.

1. Правильные многогранники

Многогранник – это часть пространства, ограниченная совокупностью конечного числа плоских многоугольников, соединённых таким образом, что каждая сторона любого многогранника является стороной ровно одного многоугольника. Многоугольники называются гранями, их стороны – рёбрами, а вершины – вершинами.

Правильным называется многогранник, у которого все грани это правильные многоугольники и все многогранные углы при вершинах равны.

Всего существует пять многогранников - ни больше ни меньше. Подтвердить это можно с помощью развертки выпуклого многогранного угла. В самом деле, для того чтобы получить какой-нибудь правильный многогранник согласно его определению, в каждой вершине должно сходиться одинаковое количество граней, каждая из которых является правильным многоугольником. Сумма плоских углов многогранного угла должна быть меньше 360 о , иначе никакой многогранной поверхности не получится.

Перебирая возможные целые решения неравенств: 60к

Рис.1.

2. Свойства многогранников

Тетраэдр - составлен из четырёх равносторонних треугольников. Каждая его вершина является вершиной трёх треугольников и в каждой вершине сходится по три ребра и по три грани. Следовательно, сумма плоских углов при каждой вершине равна 180º. У тетраэдра: 4 грани, 4 вершины и 6 ребер.

Октаэдр - составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырёх треугольников и в каждой вершине сходится по четыре ребра и по четыре грани. Следовательно, сумма плоских углов при каждой вершине 240º. У октаэдра: 8 граней, 6 вершин и 12 ребер.

Куб - составлен из шести квадратов. Каждая вершина куба является вершиной трёх квадратов и в каждой вершине сходится по три ребра и три грани. Следовательно, сумма плоских углов при каждой вершине равна 270º. У него: 6 граней, 8 вершин и 12 ребер.

Додекаэдр - составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников и в каждой вершине сходится по три ребра и три грани. Следовательно, сумма плоских углов при каждой вершине равна 324º.У додекаэдра:12 граней, 20 вершин и 30 ребер.

3. История изучения многогранников.

Названия многогранников пришли из Древней Греции, в них указывается число граней: «эдра» - грань; «тетра» - 4; «гекса» - 6; «окта» - 8; «икоса» - 20; «додека» - 12. В дословном переводе с

греческого "тетраэдр", "октаэдр", "гексаэдр", "додекаэдр", "икосаэдр"

означают: "четырехгранник", "восьмигранник", "шестигранник".

"двенадцатигранник", "двадцатигранник". Этим красивым телам посвящена 13-я книга "Начал" Евклида.

Кстати, раз уж заговорили о Евклиде, то давайте познакомимся с ним поближе. С ним, и с другими учеными, изучавшими многогранники.

Евклид (ок. 300 г. до н. э.) - древнегреческий математик.

Основное сочинение Евклида называется «Начала». «Начала» состоят из тринадцати книг. XIII книга посвящена построению пяти правильных многогранников; считается, что часть построений была разработана Теэтетом Афинским. В дошедших до нас рукописях к этим тринадцати книгам прибавлены ещё две. Некоторый «платонизм» Евклида связан с тем, что в Тимее Платона рассматривается учение о четырёх элементах, которым соответствуют четыре правильных многогранника (тетраэдр - огонь, октаэдр - воздух, икосаэдр - вода, куб - земля), пятый же многогранник, додекаэдр, «достался в удел фигуре вселенной». «Начала» могут рассматриваться как развёрнутое со всеми необходимыми посылками и связками учение о построении пяти правильных многогранников - так называемых «платоновых тел», завершающееся доказательством того факта, что других правильных тел, кроме этих пяти, не существует.

Платон и Платоновы тела

Платон (Platon) (род. 427 - ум. 347 гг.до н.э.) - греческий философ. Родился в Афинах. Настоящее имя Платона было Аристокл.

Многогранники называют телами Платона, т.к. они занимали важное место в философской концепции Платона об устройстве мироздания. Четыре многогранника олицетворяли в ней четыре сущности или "стихии". Тетраэдр символизировал огонь, т.к. его вершина устремлена вверх; икосаэдр - воду, т.к. он самый "обтекаемый"; куб - землю, как самый "устойчивый"; октаэдр - воздух, как самый "воздушный". Пятый многогранник, додекаэдр, воплощал в себе "все сущее", символизировал все мироздание, считался главным.

Гармоничные отношения древние греки считали основой мироздания, поэтому четыре стихии у них были связаны такой пропорцией: земля/вода = воздух/огонь .

Атомы "стихий" настраивались Платоном в совершенных консонансах, как четыре струны лиры. Напомню, что консонансом называется приятное созвучие. Надо сказать, что своеобразные музыкальные отношения в платоновых телах являются чисто умозрительными и не имеют под собой никакой геометрической основы. Этими отношениями не связаны ни число вершин платоновых тел, ни обьемы правильных многогранников, ни число ребер или граней.

В связи с этими телами уместно будет сказать, что первая система элементов, включавшая четыре элемента - землю, воду, воздух и огонь, - была канонизирована Аристотелем. Эти элементы оставались четырьмя краеугольными камнями мироздания в течение многих веков. Вполне возможно отождествить их с известными нам четырьмя состояниями вещества - твердым, жидким, газообразным и плазменным.

Характеристики платоновых тел

Многогранник

Число сторон грани

Число граней, сходящихся в каждой вершине

Число граней

Число рёбер

Число вершин

Тетраэдр

Куб

Октаэдр

Икосаэдр

Додекаэдр

Архимед Сиракузский

Архимед обобщил понятие правильного многогранника и открыл новые математические объекты – полуправильные многогранники. Так он назвал многогранники, у которых все грани – правильные многоугольники более как одного рода, а все многогранные углы конгруэнтны. Только в наше время удалось доказать, что тринадцатью открытыми Архимедом полуправильными многогранниками исчерпывается все множество этих геометрических фигур.

Множество архимедовых тел можно разбить на несколько групп.

Первую из них составят пять многогранников, которые получаются из платоновых тел в результате их усечения. Так могут быть получены пять архимедовых тел: усечённый тетраэдр, усечённый гексаэдр (куб), усечённый октаэдр, усечённый додекаэдр и усечённый икосаэдр.

Другую группу составляют всего два тела, именуемых также квазиправильными многогранниками. Эти два тела носят названия: кубооктаэдр и икосододекаэдр.

Два последующих многогранника называются ромбокубооктаэдром и ромбоикосододекаэдром . Иногда их называют также «малым ромбокубооктаэдром» и «малым ромбоикосододекаэдром» в отличие от большого ромбокубооктаэдра и большого ромбоикосододекаэдра.

Наконец существуют две так называемые «курносые» модификации - одна для куба, другая - для додекаэдра. Для каждой из них характерно несколько повёрнутое положение граней, что даёт возможность построить два различных варианта одного и того же «курносого» многогранника (каждый из них представляет собой как бы
зеркальное отражение другого).

Вклад Кеплера в теорию многогранника – это, во-первых, восстановление математического содержания утерянного трактата Архимеда о полуправильных выпуклых однородных многогранниках. Еще более существенным было предложение Кеплера рассматривать невыпуклые многогранники со звездчатыми гранями, подобными пентаграмме и последовавшее за этим открытие двух правильных невыпуклых однородных многогранников – малого звездчатого додекаэдра и большого звездчатого додекаэдра.

Весьма оригинальна космологическая гипотеза Кеплера, в которой он попытался связать некоторые свойства Солнечной системы со свойствами правильных многогранников. Кеплер предположил, что расстояния между шестью известными тогда планетами выражаются через размеры пяти правильных выпуклых многогранников (платоновых тел). Между каждой парой "небесных сфер", по которым, согласно этой гипотезе, вращаются планеты, Кеплер вписал одно из платоновых тел. Вокруг сферы Меркурия, ближайшей к Солнцу планеты, описан октаэдр. Этот октаэдр вписан в сферу Венеры, вокруг которой описан икосаэдр. Вокруг икосаэдра описана сфера Земли, а вокруг этой сферы – додекаэдр. Додекаэдр вписан в сферу Марса, вокруг которой описан тетраэдр. Вокруг тетраэдра описана сфера Юпитера, вписанная в куб. Наконец, вокруг куба описана сфера Сатурна. Эта модель выглядела для своего времени довольно правдоподобно. Во-первых, расстояния, вычисленные при помощи этой модели, были достаточно близки к истинным (учитывая доступную тогда точность измерения). Во-вторых, модель Кеплера давала объяснение, почему существует только шесть (именно столько было тогда известно) планет – именно шесть планет гармонировали с пятью платоновыми телами. Однако даже на тот момент эта привлекательная модель имела один существенный недостаток: сам же Кеплер показал, что планеты вращаются вокруг Солнца не по окружностям ("сферам"), а по эллипсам (первый закон Кеплера). Нечего и говорить, что позже, с открытием еще трех планет и более точным измерением расстояний, эта гипотеза была полностью отвергнута.

  1. Икосаэдро-додекаэдровая структура Земли .

Существует много данных о сравнении структур и процессов Земли с правильными многогранниками.

Полагают, что четырем геологическим эрам Земли соответствуют четыре силовых каркаса правильных Платоновских тел: Протозоа - тетраэдр (четыре плиты) Палеозою - гексаэдр (шесть плит) Мезозою - октаэдр (восемь плит) Кайнозою - додекаэдр (двенадцать плит).

Существует гипотеза, по которой ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. «Лучи» этого кристалла, а точнее его силовое поле, обусловливают икосаэдро-додекаэдрическую структуру Земли, проявляющуюся в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра. 62 их вершины и середины ребер, называемые узлами, оказывается, обладают рядом специфичecких свойств, позволяющих объяснить многие непонятные явления.

Если нанести на глобус очаги наиболее крупных и примечательных культур и цивилизаций Древнего мира, можно заметить закономерность в их расположении относительно географических полюсов и экватора планеты. Многие залежи полезных ископаемых тянутся вдоль икосаэдрово-додекаэдровой сетки.

Еще более удивительные вещи происходят в местах пересечения этих ребер: тут располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана, здесь шотландское озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой красивой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.

Советские инженеры В. Макаров и В. Морозов потратили десятилетия на исследование данного вопроса. Они пришли к выводу, что развитие Земли шло поэтапно, и в настоящее время процессы, происходящие на поверхности Земли, привели к появлению залежей с икосаэдро-додекаэдровым узором. Еще в 1929 году С.Н. Кислицин в своих работах сопоставлял структуру додекаэдра-икосаэдра с залежами нефти и алмазов.

В. Макаров и В. Морозов утверждают, что в настоящее время процессы жизнедеятельности Земли имеют структуру додекаэдра-икосаэдра. Двадцать районов планеты (вершины додекаэдра) - центры поясов выходящего вещества, основывающих биологическую жизнь (флора, фауна, человек). Центры всех магнитных аномалий и магнитного поля планеты расположены в узлах системы треугольников. К тому же согласно исследованиям авторов, в настоящую эпоху все ближайшие небесные тела свои процессы располагают согласно додекаэдро-икосаэдрной системе, что замечено у Марса, Венеры, Солнца. Аналогичные энергетические каркасы присущи всем элементам Космоса (Галактики, звезды и т. д.). Нечто похожее наблюдается и в микроструктурах. Например, строение аденовирусов имеет форму икосаэдра.

5. Правильные многогранники и природа.

Правильные многогранники – самые выгодные фигуры, поэтому они широко распространены в природе. Подтверждением тому служит форма некоторых кристаллов. Например, кристаллы поваренной соли имеют форму куба. При производстве алюминия пользуются алюминиево-калиевыми кварцами, монокристалл которых имеет форму правильного октаэдра. Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана. Кристаллы этого химического вещества имеют форму додекаэдра. В разных химических реакциях применяется сурьменистый сернокислый натрий – вещество, синтезированное учёными. Кристалл сурьменистого сернокислого натрия имеет форму тетраэдра. Последний правильный многогранник – икосаэдр передаёт форму кристаллов бора.

Правильные многогранники встречаются так же и в живой природе. Например, скелет одноклеточного организма феодарии (Circjgjnia icosahtdra) по форме напоминает икосаэдр. Большинство феодарий живут на морской глубине и служат добычей коралловых рыбок. Но простейшее животное защищает себя двенадцатью иглами, выходящими из 12 вершин скелета. Оно больше похоже на звёздчатый многогранник. Из всех многогранников с тем же числом граней икосаэдр имеет наибольший объём при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление толщи воды.

Икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень - икосаэдр.

Заключение

Основной целью представленной работы являлось изучение правильных многогранников, их видов и свойств. Для достижения это й цели был проведен сравнительный анализ учебной и научно-популярной литературы, а также ресурсов сети Интернет.

В процессе исследования мы изучили удивительные особенности строения правильных многогранников, их виды и свойства, особенности строения. Познакомились с интересными историческими гипотезами и фактами. Увидели красоту, совершенство и гармонию форм этих тел, которые изучаются учеными на протяжении многих столетий и не перестают удивлять нас. Узнали, что в строении нашей, казалось бы, шарообразной планеты присутствуют правильные многогранники, что еще раз доказывает их значение в окружающем нас мире. И многие современные ученые склоняются к гипотезе, что вещества в природе состоят именно из этих уникальных фигур.

Подводя итоги, можно считать цели исследования достигнутыми. В дальнейшем тему работы можно развивать, например, рассмотреть использование свойств, особенностей симметрии правильных многогранников в архитектуре, технике, искусстве.

Список используемой литературы

1.Атанасян Л.С., Бутузов В.Ф. Геометрия 10-11 класс – 2008. - №14

2.Потоскуев Е.В., Звавич Л.И. Геометрия 11 класс - 2008 - №4

3.Паповский В.М. Углубленное изучение геометрии в 10-11 классах

4. Веленкин Н.Я. За страницами учебника математики: Арифметика. Алгебра. Геометрия – 1996

5. Математика: Школьная энциклопедия – 2003

6. Депман И.Я. ,Веленкин Н.Я. За страницами учебника математики – 1989

7. Энциклопедия для детей. Аванта+ Математика - 2003

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №3

РЕФЕРАТ

по геометрии

Тема:

«Многогранники».

Выполнила: ученица 11-«б» класса

МОУ СОШ №3

Алябьева Юлия.

Проверила: преподаватель математики

г. Железноводск

План

I. Введение. 3

II. Теоретическая часть

1. Двугранный угол4

2. Трехгранный и многогранный углы4

3. Многогранник. . 5

4. Призма6

7. Параллелепипед 9

8. Центральная симметрия параллелепипеда10

9. Прямоугольный параллелепипед. . 11

11. Пирамида

13. Усеченная пирамида

14. Правильная пирамида. 15

15. Правильные многогранники

III. Практическая часть

IV. Заключение

V. Литература

I. Введение

Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести "Многогранники". Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. И тогда урок геометрии становится своеобразным исследованием неожиданных сторон привычного школьного предмета.

Ни одни геометрические тела не обладают таким совершенством и красотой, как многогранники. "Многогранников вызывающе мало, - написал когда-то Л. Кэролл, - но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".

II. Теоретическая часть.

1. Двугранный угол

Двугранным углом называется фигура, образованная двумя "полуплоскостями с общей ограничивающей их прямой (рис. 1). Полуплоскости называются гранями, а ограничивающая их прямая - ребром двугранного угла.

Плоскость, перпендикулярная ребру двугранного угла, пересекает его грани по двум полупрямым. Угол, образованный этими полупрямыми, называется линейным. углом двугранного угла.

За меру двугранного угла принимается мера соответствующего ему линейного угла. Все линейные углы двугранного угла совмещаются параллельным переносом, а значит, равны. Поэтому мера двугранного угла не зависит от выбора линейного угла.

2. Трехгранный и многогранный углы

Рассмотрим три луча а, Ь, с, исходящие из одной точки и не лежащие в одной плоскости. Трехгранным углом (abc) называется фигура, составленная "из трех плоских углов (аЬ), (Ьс) и (ас) (рис. 2). Эти углы называются гранями трехгранного угла, а их стороны - ребрами, общая вершина плоских углов называется вершиной трехгранного угла. Двугранные углы, образованные гранями трехгранного угла, называются двугранными углами трехгранного угла.

Аналогично определяется понятие многогранного угла (рис. 3).

3. Многогранник

В стереометрии изучаются фигуры в пространстве, называемые телами. Наглядно (геометрическое) тело надо представлять себе как часть пространства, занятую физическим телом и ограниченную поверхностью.

Многогранник - это такое тело, поверхность которого состоит из конечного числа плоских многоугольников (рис. 4). Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого плоского многоугольника на его поверхности. Общая часть такой плоскости и поверхности выпуклого многогранника называется гранью. Грани выпуклого многогранника являются плоскими выпуклыми многоугольниками. Стороны граней называются ребрами многогранника, а вершины - вершинами многогранника.

Поясним сказанное на примере знакомого вам куба (рис. 5). Куб есть выпуклый многогранник. Его поверхность состоит из шести квадратов: ABCD, BEFC, .... Они являются его гранями. Ребрами куба являются стороны этих квадратов: АВ, ВС, BE,... . Вершинами куба являются вершины квадратов: А, В, С, D, Е, .... У куба шесть граней, двенадцать ребер и восемь вершин.

Простейшим многогранникам - призмам и пирамидам, которые будут основным объектом нашего изучения,- мы дадим такие определения, которые, по существу, не используют понятие тела. Они будут определены как геометрические фигуры с указанием всех принадлежащих им точек пространства. Понятие геометрического тела и его поверхности в общем случае будет дано позже.

Призмой называется многогранник, который состоит из двух плоских многоугольников, лежащих в разных плоскостях и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих многоугольников (рис. 6). Многоугольники называются основаниями призмы, а отрезки, соединяющие соответствующие вершины,- боковыми ребрами призмы.

Так как параллельный перенос есть движение, то основания призмы равны.

Так как при параллельном переносе плоскость переходит в параллельную плоскость (или в себя), то у призмы основания лежат в параллельных плоскостях.

Так как при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то у призмы боковые ребра параллельны и равны.

Поверхность призмы состоит из оснований и боковой поверхности. Боковая поверхность состоит из параллелограммов. У каждого из этих параллелограммов две стороны являются соответствующими сторонами оснований, а две другие - соседними боковыми ребрами.

Высотой призмы называется расстояние между плоскостями её оснований. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани, называется диагональю призмы.

Призма называется n-угольной, если ее основания - n-угольники.

В дальнейшем мы будем рассматривать только призмы, у которых основания - выпуклые многоугольники. Такие призмы являются выпуклыми многогранниками.

На рисунке 6 изображена пятиугольная призма. У нее основаниями являются пятиугольники А1А2...А5, А1’А"2...А"5. XX" - отрезок, соединяющий соответствующие точки оснований. Боковые ребра призмы-отрезки А1А"2, А1А"2, ..., А5А"5. Боковые грани призмы - параллелограммы А1А2А"2А1 , А2А3А’3А"2, ... .

5. Изображение призмы и построение ее сечений

В соответствии с правилами параллельного проектирования изображение призмы строится следующим образом. Сначала строится одно из оснований Р (рис. 7). Это будет некоторый плоский многоугольник. Затем из вершин многоугольника Р проводятся боковые ребра призмы в виде параллельных отрезков равной длины. Концы этих отрезков соединяются, и получается другое основание призмы. Невидимые ребра проводятся штриховыми линиями.

Сечения призмы плоскостями, параллельными боковым ребрам, являются параллелограммами. В частности, параллелограммами являются диагональные сечения. Это сечения плоскостями, проходящими через два боковых ребра, не принадлежащих одной грани (рис. 8).

На практике, в частности, при решении задач часто приходится строить сечение призмы плоскостью, проходящей через заданную прямую g на плоскости одного из оснований призмы. Такая прямая называется следом секущей плоскости на плоскости основания. Для построения сечения призмы достаточно построить отрезки пересечения секущей плоскости с гранями призмы. Покажем, как строится такое сечение, если известна какая-нибудь точка А на поверхности призмы, принадлежащая сечению (рис. 9).

Если данная точка А принадлежит другому основанию призмы, то его пересечение с секущей плоскостью представляет собой отрезок ВС, параллельный следу g и содержащий данную точку А (рис. 9, а).

Если данная точка А принадлежит боковой грани, то пересечение этой грани с секущей плоскостью строится, как показано на рисунке 9,б. Именно: сначала строится точка D, в которой плоскость грани пересекает заданный след g. Затем проводится прямая через точки А и D. Отрезок ВС прямой AD на рассматриваемой грани и есть пересечение этой грани с секущей плоскостью. Если грань, содержащая точку А, параллельна следу g, то секущая плоскость пересекает эту грань по отрезку ВС, проходящему через точку А и параллельному прямой g.

Концы отрезка ВС принадлежат и соседним граням. Поэтому описанным способом можно построить пересечение этих граней с нашей секущей плоскостью. И т. д.

На рисунке 10 показано построение сечения четырехугольной призмы плоскостью, проходящей через прямую а в плоскости нижнего основания призмы и точку А на одном из боковых ребер.

Призма называется прямой, если ее боковые ребра перпендикулярны основаниям. В противном случае призма называется наклонной.

У прямой призмы боковые грани являются прямоугольниками. При изображении прямой призмы на рисунке боковые ребра обычно проводят вертикально (рис. 11).

Прямая призма называется правильной, если ее основания являются правильными многоугольниками.

Боковой поверхностью призмы (точнее, площадью боковой поверхности) называется сумма площадей боковых граней. Полная поверхность призмы равна сумме боковой поверхности и площадей оснований.

Теорема 19.1. Боковая поверхность прямой призмы равна произведению периметра основания на высоту призмы, т. е. .на длину бокового ребра.

Доказательство. Боковые грани прямой призмы - прямоугольники. Основания этих прямоугольников являются сторонами многоугольника, лежащего в основании призмы, а высоты равны длине боковых ребер. Отсюда следует, что боковая поверхность призмы равна

S=a1l+a1l+...+anl=pl,

где a1 ,..., an - длины ребер основания, р - периметр основания призмы, а 1 - длина боковых ребер. Теорема доказана.

7. Параллелепипед

Если основание призмы есть параллелограмм, то она называется параллелепипедом. У параллелепипеда все грани - параллелограммы.

На рисунке 12, а изображен наклонный параллелепипед, а на рисунке 12, б - прямой параллелепипед.

Грани параллелепипеда, не имеющие общих вершин, называются противолежащими.

Т е о р е м а 19.2. У параллелепипеда противолежащие грани параллельны, и равны.

Доказательство. Рассмотрим какие-нибудь две противолежащие грани параллелепипеда, например А1А2А"2А"1 и A3A4A"4A"3. (рис. 13). Так как все грани параллелепипеда - параллелограммы, то прямая A1A2 параллельна прямой А4А3, а прямая А1А"1 параллельна прямой А4А4". Отсюда следует, что плоскости рассматриваемых граней параллельны.

Из того, что грани параллелепипеда - параллелограммы, следует, что отрезки А1А4, А1"А4", A"2A"3 и A2A3 - параллельны и равны. Отсюда заключаем, что грань А1А2А"2А"1 совмещается параллельным переносом вдоль ребра А1А4. с гранью А3А4А"4А"3. Значит, эти грани равны.

Аналогично доказывается параллельность и равенство любых других противолежащих граней параллелепипеда. Теорема доказана.

8. Центральная симметрия параллелепипеда

Теорема 19.3. Диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам.

Доказательство. Рассмотрим какие-нибудь две диагонали параллелепипеда, например А1А"3 и A4A"2 (рис. 14). Так как четырехугольники А1А2А3А4 и A2A"2A"3A3 - параллелограммы с общей стороной A2A3, то их стороны А1А4 и A"2A"3 параллельны друг другу, а значит, лежат в одной плоскости. Эта плоскость пересекает плоскости противолежащих граней параллелепипеда по параллельным прямым A1A"2 и A4A"3. Следовательно, четырехугольник A4A1A"2A"3- параллелограмм. Диагонали параллелепипеда A1A"3 и A4A"2 являются диагоналями этого параллелограмма. Поэтому они пересекаются и точкой пересечения О делятся пополам.

Аналогично доказывается, что диагонали A1A"3 и A2A"4, а также диагонали A1A"3 и A3A"1 пересекаются и точкой пересечения делятся пополам. Отсюда заключаем, что все четыре диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам. Теорема доказана.

Из теоремы 19.3 следует, что точка пересечения диагоналей параллелепипеда является его центром симметрий.

9. Прямоугольный параллелепипед

Прямой параллелепипед, у которого основанием является прямоугольник, называется прямоугольным параллелепипедом. У прямоугольного параллелепипеда все грани - прямоугольники.

Прямоугольный параллелепипед, у которого все ребра равны, называется кубом.

Длины непараллельных ребер прямоугольного параллелепипеда называются его линейными размерами (измерениями). У прямоугольного параллелепипеда три измерения.

Теорема 19.4. В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его измерений.

Доказательство. Рассмотрим прямоугольный параллелепипед ABCDA"B"C"D" (рис. 15). Из прямоугольного треугольника AC"C по теореме Пифагора получаем:

AC"2 = AC2 + CC"2.

Из прямоугольного треугольника АСВ по теореме Пифагора получаем

АС2 = АВ2 + ВС2.

Отсюда AC"2 =CC"2 +AB2 + BC2.

Ребра АВ, ВС и СС" не параллельны, а, следовательно, их длины являются линейными размерами параллелепипеда. Теорема доказана.

10. Симметрия прямоугольного параллелепипеда

У прямоугольного параллелепипеда, как у всякого параллелепипеда, есть центр симметрии - точка пересечения его диагоналей. У него есть также три плоскости симметрий, проходящие через центр симметрии параллельно граням. На рисунке 16 показана одна из таких плоскостей. Она проходит через середины четырех параллельных ребер параллелепипеда. Концы ребер являются симметричными точками.

Если у параллелепипеда все линейные размеры разные, то у него нет других плоскостей симметрии, кроме названных.

Если же у параллелепипеда два линейных размера равны, то у него есть еще две плоскости симметрии. Это плоскости диагональных сечений, показанные на рисунке 17.

Если у параллелепипеда все линейные размеры равны, т. е. он является кубом, то у него плоскость любого диагонального сечения является плоскостью симметрии. Таким образом, у куба девять плоскостей симметрии.

11. Пирамида

Пирамидой называется многогранник, который состоит из плоского многоугольника - основания пирамиды, точки, не лежащей в плоскости основания,- вершины пирамиды и всех отрезков, соединяющих вершину пирамиды с точками основания (рис. 18).

Отрезки, соединяющие вершину пирамиды с вершинами основания, называются боковыми ребрами.

Поверхность пирамиды состоит из основания и боковых граней. Каждая боковая грань - треугольник. Одной из его вершин является вершина пирамиды, а противолежащей стороной – сторона основания пирамиды.

Высотой пирамиды, называется перпендикуляр, опущенный из вершины пирамиды на плоскость основания.

Пирамида называется n-угольной, если ее основанием является n-угольник. Треугольная пирамида называется также тетраэдром.

У пирамиды, изображенной на рисунке 18, основание - многоугольник А1А2 …An, вершина пирамиды – S, боковые ребра - SА1, S А2, …, S Аn, боковые грани – DSА1А2, DSА2А3, ... .

В дальнейшем мы будем рассматривать только пирамиды с выпуклым многоугольником в основании. Такие пирамиды являются выпуклыми многогранниками.

12. Построение пирамиды и ее плоских сечений

В соответствии с правилами параллельного проектирования изображение пирамиды строится следующим образом. Сначала строится основание. Это будет некоторый плоский многоугольник. Затем отмечается вершина пирамиды, которая соединяется боковыми ребрами с вершинами основания. На рисунке 18 показано изображение пятиугольной пирамиды.

Сечения пирамиды плоскостями, проходящими через ее вершину, представляют собой треугольники (рис. 19). В частности, треугольниками являются диагональные сечения. Это сечения плоскостями, проходящими через два несоседних боковых ребра пирамиды (рис. 20).

Сечение пирамиды плоскостью с заданным следом g на плоскости основания строится так же, как и сечение призмы.

Для построения сечения пирамиды плоскостью достаточно построить пересечения ее боковых граней с секущей плоскостью.

Если на грани, не параллельной следу g, известна какая-нибудь точка А, принадлежащая сечению, то сначала строится пересечение следа g секущей плоскости с плоскостью этой грани - точка D на рисунке 21. Точка D соединяется с точкой А прямой. Тогда отрезок этой прямой, принадлежащий грани, есть пересечение этой грани с секущей плоскостью. Если точка А лежит на грани, параллельной следу g, то секущая плоскость пересекает эту грань по отрезку, параллельному прямой g. Переходя к соседней боковой грани, строят ее пересечение с секущей плоскостью и т. д. В итоге получается требуемое сечение пирамиды.

На рисунке 22 построено сечение четырехугольной пирамиды плоскостью, проходящей через сторону основания и точку А на одном из ее боковых ребер.

13. Усеченная пирамида

T е о р е м а 19.5. Плоскость, пересекающая пирамиду и параллельная ее основанию, отсекает подобную пирамиду.

Доказательство. Пусть S - вершина пирамиды, А - вершина основания и А"- точка пересечения секущей плоскости с боковым ребром SA (рис. 23). Подвергнем пирамиду преобразованию гомотетии относительно вершины S с коэффициентом гомотетии

При этой гомотетии плоскость основания переходит в параллельную плоскость, проходящую через точку А", т. е. в секущую плоскость, а следовательно, вся пирамида - в отсекаемую этой плоскостью часть. Так как гомотетия есть преобразование подобия, то отсекаемая часть пирамиды является пирамидой, подобной данной. Теорема доказана.

По теореме 19.5 плоскость, параллельная плоскости основания пирамиды и пересекающая ее боковые ребра, отсекает от нее подобную пирамиду. Другая часть представляет собой многогранник, который называется усеченной пирамидой (рис. 24). Грани усеченной пирамиды, лежащие в параллельных плоскостях, называются основаниями; остальные грани называются боковыми гранями. Основания усеченной пирамиды представляют собой подобные (более того, гомотетичные) многоугольники, боковые грани - трапеции.

14. Правильная пирамида

Пирамида называется правильной, если ее основанием является правильный многоугольник, а основание высоты совпадает с центром этого многоугольника. Осью правильной пирамиды называется прямая, содержащая ее высоту. Очевидно, у правильной пирамиды боковые ребра равны; следовательно, боковые грани - равные равнобедренные треугольники.

Высота боковой грани правильной пирамиды, проведенная из её вершины, называется апофемой. Боковой поверхностью пирамиды называется сумма площадей ее боковых граней.

Т е о р е м а 19.6. Боковая поверхность правильной пирамиды равна произведению полупериметра основания на апофему.

Доказательство. Если сторона основания а, число сторон п, то боковая поверхность пирамиды равна:

(а1/2)ап=а1п/2= р1/2"

где I - апофема, a p - периметр основания пирамиды. Теорема доказана.

Усеченная пирамида, которая получается из правильной пирамиды, также называется правильной. Боковые грани правильной усеченной пирамиды - равные равнобокие трапеции; их высоты называются апофемами.

15. Правильные многогранники

Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине многогранника сходится одно и то же число ребер.)

Существует пять типов правильных выпуклых многогранников (рис.25): правильный тетраэдр (1), куб (2), октаэдр (3), додекаэдр (4); икосаэдр (5).

У правильного тетраэдра грани - правильные треугольники; в каждой вершине сходится по три ребра. Тетраэдр представляет собой треугольную пирамиду, у которой все ребра равны.

У куба все грани - квадраты; в каждой вершине сходится по три ребра. Куб представляет собой прямоугольный параллелепипед с равными ребрами.

У октаэдра грани - правильные треугольники, но в отличие от тетраэдра в каждой его вершине сходится по четыре ребра.

У додекаэдра грани - правильные пятиугольники. В каждой вершине сходится по три ребра.

У икосаэдра грани - правильные треугольники, но в отличие от тетраэдра и октаэдра в каждой вершине сходится по пять ребер.

III. Практическая часть.

Задача 1.

Из точек А и В, лежащих в гранях двугранного угла, опущены перпендикуляры АА\ и ВВ\ на ребро угла. Найдите длину отрезка АВ, если АА1=а, ВВ1=b, А1В1=с и двугранный угол равен а (рис. 26).

Решение. Проведем прямые A1C||BB1 и ВС||А1В1. Четырехугольник А1В1ВС - параллелограмм, значит АА1==ВВ1=b. Прямая А1В1 перпендикулярна плоскости треугольника АA1C, так как она перпендикулярна двум прямым в этой плоскости АА1 и СА1. Следовательно, параллельная ей прямая ВС тоже перпендикулярна этой плоскости. Значит, треугольник АВС - прямоугольный с прямым углом С. По теореме косинусов

AC2=AA12+A1C2-2AA1 A1C cos a=a2+b2-2abcos a.

По теореме Пифагора

АВ =AC2 + ВС2 = a2 + b2- 2ab cos a + с2.

Задача 2.

У трехгранного угла (abc) двугранный угол при ребре с прямой, двугранный угол при ребре b равен j, а плоский угол (bс) равен g (j, g

Решение. Опустим из произвольной точки А ребра а перпендикуляр АВ на ребро b и перпендикуляр АС на ребро с (рис. 27). По теореме о трех перпендикулярах СВ - перпендикуляр к ребру b.

Из прямоугольных треугольников ОАВ, ОСВ, АОС и АВС получаем:

tg a =AB/OB=(BC/ cos j)/(BC/tg g)= tg g/ cos j

tg b =AC/OC=BC tg j / (BC/sin g)= tg g sin g

Задача 3 .

В наклонной призме проведено сечение, перпендикулярное боковым ребрам и пересекающее все боковые ребра. Найдите боковую поверхность призмы, если периметр сечения равен р, а боковые ребра равны l.

Решение. Плоскость проведенного сечения разбивает призму на две части (рис. 28). Подвергнем одну из них параллельному переносу, совмещающему основания призмы. При этом получим прямую призму, у которой основанием служит сечение исходной призмы, а боковые ребра равны l. Эта призма имеет ту же боковую поверхность, что и исходная. Таким образом, боковая поверхность исходной призмы равна рl.

Задача 4.

Боковое ребро пирамиды разделено на четыре равные части и через точки деления проведены плоскости, параллельные основанию. Площадь основания равна 400 см2. Найдите площади сечений.

Решение. Сечения подобны основанию пирамиды с коэффициентами подобия ¼, 2/4, и ¾. Площади подобных фигур относятся как квадраты линейных размеров. Поэтому отношения площадей сечений к площади основания пирамиды есть (¼)2, (2/4)2, и (¾)2. Следовательно, площади сечений равны

400 (¼)2 =25 (см2),

400 (2/4)2 =100 (см2),

400 (¾)2 =225 (см2).

Задача 5.

Докажите, что боковая поверхность правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему.

Решение. Боковые грани усеченной пирамиды - трапеции с одним и тем же верхним основанием а, нижним b и высотой (апофемой) l. Поэтому площадь одной грани равна ½ (а + b)l. Площадь всех граней, т. е. боковая поверхность, равна ½ (аn + bn)l, где n - число вершин у основания пирамиды, an и bn - периметры оснований пирамиды.

IV. Заключение

Благодаря этой работе я обобщила и систематизировала знания, полученные за курс обучения в 11 классе , ознакомилась с правилами выполнения творческой работы, получила новые знания и применила их на практике.

Хочу отметить 3 наиболее понравившиеся мне книги:. «Геометрия», Г. Якушева «Математика - справочник школьника», «За страницами учебника геометрии». Эти книги помогли мне больше, чем другие.

Мне бы хотелось чаще использовать свои новые полученные знания на практике.

V. Литература

1. «Геометрия». – М.: Просвещение, 1992

2. Г. Якушева «Математика - справочник школьника». М.: Слово, 1995

3. «Курс математического анализа» т.1, Москва 1981

4. «За страницами учебника геометрии». – М.: Просвещение, 1990

На тему: «Тела Платона»

«Правильные многогранники»

Выполнил ученик 10«А» класса Преподаватель Школы№528 ЦАО

г. Москвы Сурин М. Н.

Савельев К. А.

Москва 3.03.1999 год

Тела Платона

Правильные многогранники

Есть в школьной геометрии особые темы, которые ждешь с нетерпением,

предвкушая встречу с невероятно красивым материалом. К таким темам можно

отнести "Правильные многогранники". Здесь не только открывается

удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и

интересные научные гипотезы. И тогда урок геометрии становится своеобразным

исследованием неожиданных сторон привычного школьного предмета.

Ни одни геометрические тела не обладают таким совершенством и красотой, как

правильные многогранники. "Правильных многогранников вызывающе мало, -

написал когда-то Л. Кэролл, - но этот весьма скромный по численности отряд

сумел пробраться в самые глубины различных наук".

Каково же это вызывающе малое количество и почему их именно столько. А сколько?

Оказывается, ровно пять - ни больше ни меньше. Подтвердить это можно с помощью

развертки выпуклого многогранного угла. В самом деле, для того чтобы получить

какой-нибудь правильный многогранник согласно его определению, в каждой вершине

должно сходиться одинаковое количество граней, каждая из которых является

правильным многоугольником. Сумма плоских углов многогранного угла должна быть

меньше 360о, иначе никакой многогранной поверхности не получится.

Перебирая возможные целые решения неравенств: 60к < 360, 90к < 360 и 108к

< 360, можно доказать, что правильных многогранников ровно пять (к - число

плоских углов, сходящихся в одной вершине многогранника), рис.1.

Названия правильных многогранников пришли из Греции. В дословном переводе с

греческого "тетраэдр", "октаэдр", "гексаэдр", "додекаэдр", "икосаэдр"

означают: "четырехгранник", "восьмигранник", "шестигранник".

"двенадцатигранник", "двадцатигранник". Этим красивым телам посвящена 13-я

книга "Начал" Евклида. Их еще называют телами Платона, т.к. они занимали

важное место в философской концепции Платона об устройстве мироздания. Четыре

многогранника олицетворяли в ней четыре сущности или "стихии". Тетраэдр

символизировал огонь, т.к. его вершина устремлена вверх; икосаэдр - воду,

т.к. он самый "обтекаемый"; куб - землю, как самый "устойчивый"; октаэдр -

воздух, как самый "воздушный". Пятый многогранник, додекаэдр, воплощал в себе

"все сущее", символизировал все мироздание, считался главным.

Гармоничные отношения древние греки считали основой мироздания, поэтому четыре

стихии у них были связаны такой пропорцией: земля/вода=воздух/огонь .

Атомы "стихий" настраивались Платоном в совершенных консонансах, как четыре

струны лиры. Напомню, что консонансом называется приятное созвучие. Надо

сказать, что своеобразные музыкальные отношения в платоновых телах являются

чисто умозрительными и не имеют под собой никакой геометрической основы. Этими

отношениями не связаны ни число вершин платоновых тел, ни обьемы правильных

многогранников, ни число ребер или граней.

В связи с этими телами уместно будет сказать, что первая система элементов,

включавшая четыре элемента - землю, воду, воздух и огонь, - была

канонизирована Аристотелем. Эти элементы оставались четырьмя краеугольными

камнями мироздания в течение многих веков. Вполне возможно отождествить их с

известными нам четырьмя состояниями вещества - твердым, жидким, газообразным

и плазменным.

Важное место занимали правильные многогранники в системе гармоничного

устройства мира И. Кеплера. Все та же вера в гармонию, красоту и

математически закономерное устройство мироздания привела И. Кеплера к мысли о

том, что поскольку существует пять правильных многогранников, то им

соответствуют только шесть планет. По его мнению, сферы планет связаны между

собой вписанными в них платоновыми телами. Поскольку для каждого правильного

многогранника центры вписанной и описанной сфер совпадают, то вся модель

будет иметь единый центр, в котором будет находиться Солнце.

Проделав огромную вычислительную работу, в 1596 г. И. Кеплер в книге "Тайна

вписывает куб, в куб - сферу Юпитера, в сферу Юпитера - тетраэдр, и так далее

последовательно вписываются друг в друга сфера Марса - додекаэдр, сфера Земли

Икосаэдр, сфера Венеры - октаэдр, сфера Меркурия. Тайна мироздания кажется

открытой.

Сегодня можно с уверенностью сказать, что расстояния между планетами не

связаны ни с какими многогранниками. Впрочем, возможно, что без "Тайны

мироздания", "Гармонии мира" И. Кеплера, правильных многогранников не было бы

трех знаменитых законов И. Кеплера, которые играют важную роль в описании

движения планет.

Где еще можно увидеть эти удивительные тела? В очень красивой книге немецкого

биолога начала нашего века Э. Геккеля "Красота форм в природе" можно

количество удивительных созданий, которые по красоте и разнообразию далеко

превосходят все созданные искусством человека формы". Создания природы,

приведенные в этой книге, красивы и симметричны. Это неотделимое свойство

природной гармонии. Но здесь видно и одноклеточные организмы - феодарии,

форма которых точно передает икосаэдр. Чем же вызвана такая природная

геометризация? Может быть, тем, что из всех многогранников с таким же

количеством граней именно икосаэдр имеет наибольший обьем и наименьшую

площадь поверхности. Это геометрическое свойство помогает морскому

микроорганизму преодолевать давление водной толщи.

Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их

спорах относительно формы вирусов. Вирус не может быть совершенно круглым,

как считалось ранее. Чтобы установить его форму, брали различные

многогранники, направляли на них свет под теми же углами, что и поток атомов

на вирус. Оказалось, что только один многогранник дает точно такую же тень -

икосаэдр. Его геометрические свойства, о которых говорилось выше, позволяют

экономить генетическую информацию. Правильные многогранники - самые выгодные

фигуры. И природа этим широко пользуется. Кристаллы некоторых знакомых нам

веществ имеют форму правильных многогранников. Так, куб передает форму

кристаллов поваренной соли NaCl, монокристалл алюминиево-калиевых квасцов

(KAlSO4)2 12Н2О имеет форму октаэдра, кристалл сернистого колчедана FeS имеет

форму додекаэдра, сурьменистый сернокислый натрий - тетраэдра, бор -

икосаэдра. Правильные многогранники определяют форму кристаллических решеток

некоторых химических веществ. Проиллюстрирую эту мысль следующей задачей.

Задача. Модель молекулы метана CH4 имеет форму правильного тетраэдра, в

четырех вершинах которого находятся атомы водорода, а в центре - атом углерода.

Определить угол связи между двумя СН связями.

Решение. Так как правильный тетраэдр имеет шесть равных ребер, то можно

подобрать такой куб, чтобы диагонали его граней были ребрами правильного

тетраэдра (рис.2). Центр куба является и центром тетраэдра, ведь четыре вершины

тетраэдра являются и вершинами куба, а описываемая около них сфера однозначно

определяется четырьмя точками, не лежащими в одной плоскости. Искомый угол j

между двумя СН связями равен углу АОС. Треугольник АОС-равнобедренный. Отсюда,

где а - сторона куба, d- длина диагонали боковой грани или ребро тетраэдра.

Итак, откуда =54,73561О и j= 109,47О

Идеи Пифагора, Платона, И. Кеплера о связи правильных многогранников с

гармоничным устройством мира уже в наше время нашли свое продолжение в

московские инженеры В. Макаров и В. Морозов. Они считают, что ядро

Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на

развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а

точнее, его силовое поле, обусловливают икосаэдро-додекаэдрическую структуру

Земли (рис.3), проявляющуюся в том, что в земной коре как бы проступают

проекции вписанных в земной шар правильных многогранников: икосаэдра и

додекаэдра. Их 62 вершины и середины ребер, называемых авторами узлами,

обладают рядом специфических свойств, позволяющих объяснить некоторые

непонятные явления.

Если нанести на глобус очаги наиболее крупных и примечательных культур и

цивилизаций Древнего мира, можно заметить закономерность в их расположении

относительно географических полюсов и экватора планеты. Многие залежи

полезных ископаемых тянутся вдоль икосаэдрово-додекаэдровой сетки. Еще более

удивительные вещи происходят в местах пересечения этих ребер: тут

располагаются очаги древнейших культур и цивилизаций: Перу, Северная

Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются

максимумы и минимумы атмосферного давления, гигантские завихрения Мирового

океана, здесь шотландское озеро Лох-Несс, Бермудский треугольник. Дальнейшие

исследования Земли, возможно, определят отношение к этой красивой научной

гипотезе, в которой, как видно, правильные многогранники занимают важное

Итак, было выяснено, что правильных многогранников ровно пять. А как

определить в них количество ребер, граней, вершин? Это нетрудно сделать для

многогранников с небольшим числом ребер, а как, например, получить такие

сведения для икосаэдра? Знаменитый математик Л. Эйлер получил формулу В+Г-

Р=2, которая связывает число вершин /В/, граней /Г/ и ребер /Р/ любого

многогранника. Простота этой формулы заключается в том, что она не связана ни

с расстоянием, ни с углами. Для того чтобы определить число ребер, вершин и

граней правильного многогранника, найдем сначала число к=2у - ху+2х, где х -

число ребер, принадлежащих одной грани, у - число граней, сходящихся в одной

вершине. Для нахождения количества граней, вершин и ребер правильного

многогранника используем формулы. После этого нетрудно заполнить таблицу, в

которой приведены сведения об элементах правильных многогранников:

многогранник Г В Р

тетраэдр 4-4-6

гексаэдр 6-8-12

октаэдр 8-6-12

додекаэдр 12-20-30

икосаэдр 20-12-30

И еще один вопрос возникает в связи с правильными многогранниками: можно ли

ими заполнить пространство так, чтобы между ними не было просветов? Он

возникает по аналогии с правильными многоугольниками, некоторыми из которых

можно заполнить плоскость. Оказывается, заполнить пространство можно только с

помощью одного правильного многогранника-куба. Пространство можно заполнить и

ромбическими додекаэдрами. Чтобы это понять, надо решить задачу.

Задача. С помощью семи кубов, образующих пространственный "крест",

постройте ромбододекаэдр и покажите, что ими можно заполнить пространство.

Решение. Кубами можно заполнить пространство. Рассмотрим часть кубической

решетки, изображенной на рис.4. Средний куб оставим нетронутым, а в каждом из

"окаймляющих" кубов проведем плоскости через все шесть пар противолежащих

ребер. При этом "окаймляющие" кубы разобьются на шесть равных пирамид с

квадратными основаниями и боковыми ребрами, равными половине диагонали куба.

Пирамиды, примыкающие к нетронутому кубу, и образуют вместе с последним

ромбический додекаэдр. Отсюда ясно, что ромбическими додекаэдрами можно

заполнить все пространство. Как следствие получаем, что объем ромбического

додекаэдра равен удвоенному объему куба, ребро которого совпадает с меньшей

диагональю грани додекаэдра.

Решая последнюю задачу, мы пришли к ромбическим додекаэдрам. Интересно, что

пчелиные ячейки, которые также заполняют пространство без просветов, также

являются в идеале геометрическими фигурами. Верхняя часть пчелиной ячейки

представляет собой часть ромбододекаэдра.

Итак, правильные многогранники открыли нам попытки ученых приблизиться к

тайне мировой гармонии и показали неотразимую привлекательность геометрии.

Человек проявляет интерес к многогранникам на протяжении всей своей сознательной деятельности – от двухлетнего ребёнка, играющего деревянными кубиками, до зрелого математика. Особый интерес к правильным многоугольникам и правильным многогранникам связан с красотой и совершенством формы. Они довольно часто встречаются в природе. Достаточно вспомнить форму снежинок, граней кристаллов, ячеек в пчелиных сотах. Из правильных многоугольников можно складывать не только плоские фигуры, но и пространственные.

Древними греками исследовались также и многие геометрические свойства платоновых тел; (с плодами их изысканий можно ознакомиться по 13-й книге Начал Евклида ((см. также ГЕОМЕТРИЯ)). Изучение платоновых тел и связанных с ними фигур продолжается и поныне. И хотя основными мотивами современных исследований служат красота и симметрия, они имеют также и некоторое научное значение, особенно в кристаллографии. Кристаллы поваренной соли, тиоантимонида натрия и хромовых квасцов встречаются в природе в виде куба, тетраэдра и октаэдра соответственно. Икосаэдр и додекаэдр среди кристаллических форм не встречаются, но их можно наблюдать среди форм микроскопических морских организмов, известных под названием радиолярий.

Звёздчатый многогранник - это правильный невыпуклый многогранник. Многогранники из-за их необычных свойствсимметрии исследуются с древнейших времён. Также формы многогранников широко используются в декоративном искусстве.

Звездчатые многогранники очень декоративны, что позволяет широко применять их в ювелирной промышленности при изготовлении всевозможных украшений. Применяются они и в архитектуре. Многие формы звездчатых многогранников подсказывает сама природа. Снежинка - это звездчатые многогранники. С древности люди пытались описать все возможные типы снежинок, составляли специальные атласы. Сейчас известно несколько тысяч различных типов снежинок. Есть много видов звёздчатых многогранников.

Тетраэдр

(от греческого tetra – четыре и hedra – грань)

Простейшим многогранником является Тетраэдр. Здесь нам потребуется продолжить не рёбра, а грани многогранника. Однако четыре плоскости - продолжения граней тетраэдра - ограничивают лишь ту часть трёхмерного пространства, которая совпадает с исходным телом. Шесть плоскостей куба попарно параллельны и взаимно перпендикулярны, подобно сторонам двумерного аналога куба - квадрата. Поэтому и в трёхмерном случае к кубу не добавляется новых частей. Но уже случай октаэдра даёт интересные результаты. Восемь плоскостей - продолжения граней октаэдра - отделяют от пространства новые части, так сказать, «отсеки», внешние по отношению к октаэдру. Вы обнаружите, что эти части суть не что иное, как малые тетраэдры, основания которых совпадают с гранями октаэдра. Если вы теперь мысленно присоедините эти части к октаэдру таким образом, чтобы их общие с октаэдром грани исчезли, оставив нутро нового тела полым, перед вашим взором возникнет невыпуклый многогранник.

Звёздчатый октаэдр

(от греческого octo – восемь и hedra – грань)

Был открыт Леонардо Да Винчи, затем спустя почти 100 лет переоткрыт И.Кеплером, и назван им «Stella octangula» – звезда восьмиугольная. Отсюда октаэдр имеет и второе название «stella octangula Кеплера».

Октаэдр имеет 6 вершин и 12 рёбер. На примере октаэдра можно проверить формулу Эйлера 6в+8г-12р=2. В каждой вершине сходятся 4 треугольника, таким образом, сумма плоских углов при вершине октаэдра составляет 240 °.Из определения правильного многогранника следует, что все ребра октаэдра имеют равную длину, а грани - равную площадь.

Кристаллы алмаза представляют собой гигантские полимерные молекулы и обычно имеют форму октаэдров

Большой звёздчатый додекаэдр

Большой звездчатый додекаэдр принадлежит к семейству тел Кеплера-Пуансо, то есть правильных невыпуклых многогранников. Грани большого звездчатого додекаэдра – пентаграммы, как и у малого звездчатого додекаэдра. У каждой вершины соединяются три грани. Вершины большого звездчатого додекаэдра совпадают с вершинами описанного додекаэдра.Большой звездчатый додекаэдр был впервые описан Кеплером в 1619 г. Это последняя звездчатая форма правильного додекаэдра.

Правильный многогранник, составленный из 12 равносторонних пятиугольников. Додекаэдр имеет 20 вершин и 30 ребер . Вершина додекаэдра является вершиной трех пятиугольников, таким образом, сумма плоских углов при каждой вершине равна 324°.

В алхимии обычно говорится только об этих элементах: огонь, земля, воздух и вода; редко упоминается эфир, потому что это настолько священно. В Пифагорейской школе, стоило бы вам только лишь упомянуть за стенами школы слово «додекаэдр», как вас убили бы на месте. Настолько священной считалась эта фигура. О ней даже не говорили. Спустя двести лет, при жизни Платона, о ней говорили, но только очень осторожно. Почему? Потому, что додекаэдр расположен у внешнего края вашего энергетического поля и является высшей формой сознания. Когда вы достигаете 55-футового предела своего энергетического поля, то оно будет иметь форму сферы. Но самая близкая к сфере внутренняя фигура – это додекаэдр (в действительности, додекаэдро-икосаэдральная взаимосвязь). Вдобавок к этому, мы живём внутри большого додекаэдра, который содержит в себе вселенную. Когда ваш ум достигает предела пространства космоса – а предел тут есть – то он натыкается на додекаэдр, замкнутый в сфере. Додекаэдр есть завершающая фигура геометрии и она очень важна

В основе структуры ДНК лежит священная геометрия, хотя, могут обнаружиться ещё и другие скрытые взаимосвязи. В книге Дана Уинтера «Математика Сердца» (Dan Winter, Heartmath) показано, что молекула ДНК составлена из взаимоотношений двойственности додекаэдров и икосаэдров.

Звёздчатый икосаэдр

Икосаэдр имеет двадцать граней. Если каждую из них продолжить неограниченно, то тело будет окружено великим многообразием отсеков – частей пространства, ограниченных плоскостями граней. Все звездчатые формы икосаэдра можно получить добавлением к исходному телу таких отсеков. Не считая самого икосаэдра, продолжения его граней отделяют от пространства 20+30+60+20+60+120+ 12+30+60+60 отсеков десяти различных форм и размеров. Большой икосаэдр (см. рис) состоит из всех этих кусков, за исключением последних шестидесяти.

Правильный выпуклый многогранник, составленный из 20 правильных треугольников. Каждая из 12 вершин икосаэдра является вершиной 5 равносторонних треугольников, поэтому сумма углов при вершине равна 300° .

В природе встречаются объекты, обладающие симметрией 5-го порядка. Известны, например, вирусы, содержащие кластеры в форме икосаэдра . Открытие фуллерена, молекула которого С60 также обладает этим типом симметрии, стимулировало интерес к подобным объектам. Г.Хуберт с сотрудниками (H.Hubert; Аризонский университет, США) синтезировали кристаллы B6 O из смеси B и B2 O3, которая выдерживалась при температуре 1700o С и давлении от 4 до 5.5 ГПа в течение 30 мин. Образовавшийся субоксид бора имеет ромбоэдрическую кристаллическую решетку с одним из плоских углов при вершине, равным 63.1o. Это значение очень близко к величине угла 63.4o, необходимого для того, чтобы из 20 тетраэдров можно было составить правильный икосаэдр . Первичные икосаэдры способны группироваться в более крупные кластеры: центральный икосаэдр окружен 12 такими же частицами, центры которых лежат в вершинах более крупного икосаэдра второго порядка. Число атомов в таком сверхкластере может достигать 1014. Икосаэдричесий кластер имеет размер около 15 мкм. Этот продукт синтеза не может считаться монокристаллом, так как не имеет периодической кристаллической решетки. Малая плотность таких частиц при твердости, близкой к твердости алмаза, и высокая химическая стойкость делают их перспективными в создании новых материалов для техники.

Тела Кеплера – Пуансо

Два тетраэдра, прошедших один сквозь другой, образуют восьмигранник. Иоганн Кеплер присвоил этой фигуре имя «стелла октангула» -«восьмиугольная звезда».
Она встречается и в природе: это так называемый двойной кристалл . Мы вынуждены признать «стеллу октангулу» правильным многогранником: ведь все ее грани - правильные треугольники одинакового размера и все углы между ними равны! Что же это - шестое Платоново тело?! Нет, просто удавшаяся провокация.

В определении правильного многогранника сознательно - в расчете на кажущуюся очевидность - не было подчеркнуто слово «выпуклый». А оно означает дополнительное требование: «и все грани, которого лежат по одну сторону от плоскости, проходящей через любую из них». Если же отказаться от такого ограничения, то к Платоновым телам, кроме «продолженного октаэдра», придется добавить еще четыре многогранника (их называют телами Кеплера - Пуансо), каждый из которых будет «почти правильным». Все они получаются «озвездыванием» Платонова тела, то есть продлением его граней до пересечения друг с другом, и потому называются звездчатыми. Куб и тетраэдр не порождают новых фигур - грани их, сколько ни продолжай, не пересекаются.

Если же продлить все грани октаэдра до пересечения их друг с другом, то получится фигура, что возникает при взаимопроникновении двух тетраэдров - «стелла октангула», которая называется «продолженным октаэдром».

Икосаэдр и додекаэдр дарят миру сразу четыре «почти правильных многогранника». Один из них - малый звездчатый додекаэдр , полученный впервые Иоганном Кеплером.

Столетиями математики не признавали за всякого рода звездами права называться многоугольниками из-за того, что стороны их пересекаются. А тут - геометрическое тело, гранями которого служат пятиконечные звезды, да еще вдобавок пересекающиеся! Какой же это многогранник?! Людвиг Шлефли не изгонял геометрическое тело из семейства многогранников только за то, что его грани самопересекаются, тем не менее, оставался непреклонным, как только речь заходила про малый звездчатый додекаэдр. Довод его был прост и весом: это кеплеровское животное не подчиняется формуле Эйлера! Его колючки образованы двенадцатью гранями, тридцатью ребрами и двенадцатью вершинами, и, следовательно, В+Г-Р вовсе не равняется двойке.

Шлефли был и прав, и не прав. Конечно же, геометрический ежик не настолько уж колюч, чтобы восстать против непогрешимой формулы. Надо только не считать, что он образован двенадцатью пересекающимися звездчатыми гранями, а взглянуть на него как на простое, честное геометрическое тело, составленное из 60 треугольников, имеющее 90 ребер и 32 вершины.

Тогда В+Г-Р=32+60-90 равно, как и положено, 2. Но зато тогда к этому многограннику неприменимо слово «правильный» - ведь грани его теперь не равносторонние, а всего лишь равнобедренные треугольники. Кеплер не додумался, что у полученной им фигуры есть двойник. Многогранник, который называется «большой додекаэдр » - построил французский геометр Луи Пуансо спустя двести лет после кеплеровских звездчатых фигур.

Большой икосаэдр был впервые описан Луи Пуансо в 1809 году. И опять Кеплер, увидев большой звездчатый додекаэдр , честь открытия второй фигуры оставил Луи Пуансо. Эти фигуры также наполовину подчиняются формуле Эйлера.

На гравюре Маурица Эсхера «Порядок и хаос» звездчатый додекаэдр , символ математической красоты и порядка, окружен прозрачной сферой. В ней отражена бессмысленная коллекция бесполезных вещей. Красота звездчатых фигур находит на удивление мало места в нашей жизни: разве что светильники, да и то очень редко. Даже изготовители елочных украшений не додумались сделать трехмерные звезды, а ими как раз и оказались бы эти многогранники.

Многогранники не только занимают видное место в геометрии, но и встречаются в повседневной жизни каждого человека. Не говоря уже об искусственно созданных предметах обихода в виде различных многоугольников, начиная со спичечного коробка и заканчивая архитектурными элементами, в природе также встречаются кристаллы в форме куба (соль), призмы (хрусталь), пирамиды (шеелит), октаэдра (алмаз) и т. д.

Понятие многогранника, виды многогранников в геометрии

Геометрия как наука содержит раздел стереометрию, изучающую характеристики и свойства объёмных тела, стороны которых в трёхмерном пространстве образованы ограниченными плоскостями (гранями), носят название "многогранники". Виды многогранников насчитывают не один десяток представителей, отличающихся количеством и формой граней.

Тем не менее у всех многогранников есть общие свойства:

  1. Все они имеют 3 неотъемлемых компонента: грань (поверхность многоугольника), вершина (углы, образовавшиеся в местах соединения граней), ребро (сторона фигуры или отрезок, образованный в месте стыка двух граней).
  2. Каждое ребро многоугольника соединяет две, и только две грани, которые по отношению друг к другу являются смежными.
  3. Выпуклость означает, что тело полностью расположено только по одну сторону плоскости, на которой лежит одна из граней. Правило применимо ко всем граням многогранника. Такие геометрические фигуры в стереометрии называют термином выпуклые многогранники. Исключение составляют звёздчатые многогранники, которые являются производными правильных многогранных геометрических тел.

Многогранники можно условно разделить на:

  1. Виды выпуклых многогранников, состоящих из следующих классов: обычные или классические (призма, пирамида, параллелепипед), правильные (также называемые Платоновыми телами), полуправильные (второе название - Архимедовы тела).
  2. Невыпуклые многогранники (звёздчатые).

Призма и её свойства

Стереометрия как раздел геометрии изучает свойства трёхмерных фигур, виды многогранников (призма в их числе). Призмой называют геометрическое тело, которое имеет обязательно две совершенно одинаковые грани (их также называют основаниями), лежащие в параллельных плоскостях, и n-ое число боковых граней в виде параллелограммов. В свою очередь, призма имеет также несколько разновидностей, в числе которых такие виды многогранников, как:

  1. Параллелепипед - образуется, если в основании лежит параллелограмм - многоугольник с 2 парами равных противоположных углов и двумя парами конгруэнтных противоположных сторон.
  2. имеет перпендикулярные к основанию рёбра.
  3. характеризуется наличием непрямых углов (отличных от 90) между гранями и основанием.
  4. Правильная призма характеризуется основаниями в виде с равными боковыми гранями.

Основные свойства призмы:

  • Конгруэнтные основания.
  • Все рёбра призмы равны и параллельны по отношению друг к другу.
  • Все боковые грани имеют форму параллелограмма.

Пирамида

Пирамидой называют геометрическое тело, которое состоит из одного основания и из n-го числа треугольных граней, соединяющихся в одной точке - вершине. Следует отметить, что если боковые грани пирамиды представлены обязательно треугольниками, то в основании может быть как треугольный многоугольник, так и четырёхугольник, и пятиугольник, и так до бесконечности. При этом название пирамиды будет соответствовать многоугольнику в основании. Например, если в основании пирамиды лежит треугольник - это , четырёхугольник - четырёхугольная, и т. д.

Пирамиды - это конусоподобные многогранники. Виды многогранников этой группы, кроме вышеперечисленных, включают также следующих представителей:

  1. имеет в основании правильный многоугольник, и высота ее проектируется в центр окружности, вписанной в основание или описанной вокруг него.
  2. Прямоугольная пирамида образуется тогда, когда одно из боковых рёбер пересекается с основанием под прямым углом. В таком случае это ребро справедливо также назвать высотой пирамиды.

Свойства пирамиды:

  • В случае если все боковые рёбра пирамиды конгруэнтны (одинаковой высоты), то все они пересекаются с основанием под одним углом, а вокруг основания можно прочертить окружность с центром, совпадающим с проекцией вершины пирамиды.
  • Если в основании пирамиды лежит правильный многоугольник, то все боковые рёбра конгруэнтны, а грани являются равнобедренными треугольниками.

Правильный многогранник: виды и свойства многогранников

В стереометрии особое место занимают геометрические тела с абсолютно равными между собой гранями, в вершинах которых соединяется одинаковое количество рёбер. Эти тела получили название Платоновы тела, или правильные многогранники. Виды многогранников с такими свойствами насчитывают всего пять фигур:

  1. Тетраэдр.
  2. Гексаэдр.
  3. Октаэдр.
  4. Додекаэдр.
  5. Икосаэдр.

Своим названием правильные многогранники обязаны древнегреческому философу Платону, описавшему эти геометрические тела в своих трудах и связавшему их с природными стихиями: земли, воды, огня, воздуха. Пятой фигуре присуждали сходство со строением Вселенной. По его мнению, атомы природных стихий по форме напоминают виды правильных многогранников. Благодаря своему самому захватывающему свойству - симметричности, эти геометрические тела представляли большой интерес не только для древних математиков и философов, но и для архитекторов, художников и скульпторов всех времён. Наличие всего лишь 5 видов многогранников с абсолютной симметрией считалось фундаментальной находкой, им даже присуждали связь с божественным началом.

Гексаэдр и его свойства

В форме шестигранника преемники Платона предполагали сходство со строением атомов земли. Конечно же, в настоящее время эта гипотеза полностью опровергнута, что, однако, не мешает фигурам и в современности привлекать умы известных деятелей своей эстетичностью.

В геометрии гексаэдр, он же куб, считается частным случаем параллелепипеда, который, в свою очередь, является разновидностью призмы. Соответственно и свойства куба связаны со с той лишь разницей, что все грани и углы куба равны между собой. Из этого вытекают следующие свойства:

  1. Все рёбра куба конгруэнтны и лежат в параллельных плоскостях по отношению друг к другу.
  2. Все грани - конгруэнтные квадраты (всего в кубе их 6), любой из которых может быть принят за основание.
  3. Все межгранные углы равны 90.
  4. Из каждой вершины исходит равное количество рёбер, а именно 3.
  5. Куб имеет 9 которые все пересекаются в точке пересечения диагоналей гексаэдра, именуемой центром симметрии.

Тетраэдр

Тетраэдр - это четырёхгранник с равными гранями в форме треугольников, каждая из вершин которых является точкой соединения трёх граней.

Свойства правильного тетраэдра:

  1. Все грани тетраэда - это из чего следует, что все грани четырёхгранника конгруэнтны.
  2. Так как основание представлено правильной геометрической фигурой, то есть имеет равные стороны, то и грани тетраэдра сходятся под одинаковым углом, то есть все углы равны.
  3. Сумма плоских углов при каждой из вершин равняется 180, так как все углы равны, то любой угол правильного четырёхгранника составляет 60.
  4. Каждая из вершин проецируется в точку пересечения высот противоположной (ортоцентр) грани.

Октаэдр и его свойства

Описывая виды правильных многогранников, нельзя не отметить такой объект, как октаэдр, который визуально можно представить в виде двух склеенных основаниями четырёхугольных правильных пирамид.

Свойства октаэдра:

  1. Само название геометрического тела подсказывает количество его граней. Восьмигранник состоит из 8 конгруэнтных равносторонних треугольников, в каждой из вершин которого сходится равное количество граней, а именно 4.
  2. Так как все грани октаэдра равны, равны и его межгранные углы, каждый из которых равняется 60, а сумма плоских углов любой из вершин составляет, таким образом, 240.

Додекаэдр

Если представить, что все грани геометрического тела представляют собой правильный пятиугольник, то получится додекаэдр - фигура из 12 многоугольников.

Свойства додекаэдра:

  1. В каждой вершине пересекаются по три грани.
  2. Все грани равны и имеют одинаковую длину рёбер, а также равную площадь.
  3. У додекаэдра 15 осей и плоскостей симметрии, причём любая из них проходит через вершину грани и середину противоположного ей ребра.

Икосаэдр

Не менее интересная, чем додекаэдр, фигура икосаэдр представляет собой объёмное геометрическое тело с 20 равными гранями. Среди свойств правильного двадцатигранника можно отметить следующие:

  1. Все грани икосаэдра - равнобедренные треугольники.
  2. В каждой вершине многогранника сходится пять граней, и сумма смежных углов вершины составляет 300.
  3. Икосаэдр имеет так же, как и додекаэдр, 15 осей и плоскостей симметрии, проходящих через середины противоположных граней.

Полуправильные многоугольники

Кроме Платоновых тел, в группу выпуклых многогранников входят также Архимедовы тела, которые представляют собой усечённые правильные многогранники. Виды многогранников данной группы обладают следующими свойствами:

  1. Геометрические тела имеют попарно равные грани нескольких типов, например, усечённый тетраэдр имеет так же, как и правильный тетраэдр, 8 граней, но в случае Архимедова тела 4 грани будут треугольной формы и 4 - шестиугольной.
  2. Все углы одной вершины конгруэнтны.

Звёздчатые многогранники

Представители необъёмных видов геометрических тел - звёздчатые многогранники, грани которых пересекаются друг с другом. Они могут быть образованы путём слияния двух правильных трёхмерных тел либо в результате продолжения их граней.

Таким образом, известны такие звёздчатые многогранники, как: звёздчатые формы октаэдра, додекаэдра, икосаэдра, кубооктаэдра, икосододекаэдра.