Происхождение рукавов галактики млечный путь. Интересные факты о галактике млечный путь Звездное население галактики

Спирали Млечного пути

Определяющим источником развития планетарной жизни выступает система сложных космофизических отношений, которые возникают в ходе ритмопеременных пульсаций и взаимообращений различных тел и образований Солнечной системы, Галактики, Вселенной. В этом косморитмическом механизме наша Галактика "Млечный путь” образует гигантский "соленоид”, состоящий из множества энергетических "катушек” (спирально- эллиптических траекторий различных вращающихся космических объектов), которые иерархически нанизаны одна на другую (по принципу "спираль на спирали ”).

Сложные - динамичные, многоуровневые и многомерные - пульсационно-волновые взаимоотношения всех, параллельно вращающихся, элементов этого галактического "соленоида” генерируют космогеофизические (гравитационные, электрические, магнитные, электромагнитные и др.) взаимовлияния и резонансы, которые выступают важнейшими инициаторами ритмики всех базовых геофизических, климатических, биологических, психологических и общественно-исторических процессов Земли (в т. ч. в таких динамичных режимах, которые вызывают мощные энергофлюидные выбросы, стихийно-катастрофические бедствия и другие дисфункции планетарной жизни в соответствующих геоактивных зонах). Особую роль при этом играют Солнце и динамичные космические тела.




Подчиняясь ритмам Галактики и Солнечной Системы, базовый ряд (свыше сорока показателей) земных пульсаций {эксцентриситета орбиты, наклона и прецессии оси вращения, географических полюсов и др) последовательно (и также строго описываемыми математическими законами) разветвляет свои компоненты в иерархические ряды более мелких и далее ветвящихся гармоник, которые одновременно (и жестко) синхронизированы со смежными иерархическими пульсациями остальных субъектов Солнечной Системы.

Данный глобальный механизм синхронно связанных параметров и пульсаций всех космических тел и явлений - генеральный инициатор и регулятор на Земле развития и циклов всех фундаментальных процессов природы и социума. Вариации его космофизических влияний отражают стратегию планетарной жизни в контексте динамики природы, места и особенностей объектов и субъектов земного развития.

Будучи настроенными на различные ритмы космических и земных пульсаций, все объекты и субъекты нашей планетарной жизни имеют индивидуальные энерго-информационные коды своего спиралеобразного развития.

В них заданы: место и роль каждого элемента в энерго-информационном балансе и в спирали всей планетарной жизни; базовые частоты, амплитуды и особенности циклического функционирования элемента; природа и ритмы его определяющих космических и земных излучений; время, иерархии и особенности его "плановых" подъемов и кризисов; закономерности их "плановых" пересечений с ритмами и спиралями иных форм, сфер, объектов, субъектов и процессов земного и космического развития.

Галактические времена года

Путешествуя по Галактике, Солнечная система двигаясь по слабо эллиптической орбите трижды за оборот (~220 млн. лет) пересекает рукава Галактики, где плотность газопылевых облаков и звездного "населения" значительно выше.

Солнечная система совершает также вертикальные колебания относительно галактической плоскости, пересекая её каждые 30-35 миллионов лет и оказываясь то в северном, то в южном галактическом полушарии.

В целом, во Вселенной все подчинено вибрациям и циклам. Есть времена, требующееся галактикам для совершения одного оборота вокруг центрального управляющего ядра Вселенной, - по некоторым заявлениям, приблизительно 10,8 миллиарда лет - его называют универсальным циклом. Универсальный цикл – это разворачивающаяся вовне спираль, а не просто обороты галактик вокруг Великого Центрального Солнца.



Наша галактика - Млечный путь


В настоящее время Солнце находится вблизи перигалактия, на расстоянии ~8.2 кпс от центра Галактики и имеет скорость движения 240 км/с, на 19,5 км выше средней (круговой) скорости окружающих звезд. В афелии Солнце будет отстоять на ~9.2 кпс от центра и иметь скорость около 200 км/с.

По оценкам астрономов мы живем в осеннем периоде галактического года.

Что же происходит, когда начинается галактическая зима? Моменты пересечения Солнца с рукавами Галактики совпадают с глобальными катаклизмами и сменой эволюционных периодов биосферы Земли, повторяющимися в среднем через 72 млн. лет (рис. 12). Это естественно, так как в момент прохождения рукава резко увеличивается аккреция газа, пыли, комет, рождающихся и в массе сосредоточенных в газовых облаках.

При вхождении Солнечной системы в галактический рукав (в моменты вхождения в плотные газопылевые облака) происходит увеличение запыленности околоземного космического пространства, и температура на Земле резко падает. Начинается период глобального оледенения. Например, следы ископаемого оледенения 283 млн. летней давности были найдены в Индии.

Затем, из-за этой же запыленности происходит увеличение аккреционной светимости Солнца. Экваториальная зона Земли перегревается настолько, что становится непригодной для жизни большинства видов животных и растений, а климат в полярных зонах становится тропическим. Не это ли причина обнаружения ископаемых крокодилов в Антарктиде и массового образования эвапоритов, - солевых отложений, формирующихся при температуре воды 56°C? .

В период прохождения Солнечной системой рукавов резко увеличивается частота падения кометных тел на Землю, что приводит к катастрофическим последствиям на Земле.

Только периоды движения Солнца в межрукавной зоне характеризуются ровным, устойчивым климатом.

Последняя смена эр произошла 65 - 67 млн. лет назад, и сегодня мы входим в следующую смену эр, максимум катаклизмов которой будет через 5-7 млн. лет, то есть через 1.3-1.5 кпс пути. Однако процесс вхождения в галактический рукав начался уже 2 млн. лет назад, обозначенный новыми, все учащающимися ледниковыми периодами (это так называемый четвертичный период), гибелью многих видов крупных млекопитающих (мамонты, пещерные медведи, саблезубые тигры:).

Таблица 5. Палеонтологические периоды фанерозоя и моменты пересечения галактических рукавов

Период

Начало
млн. лет

Конец млн. лет

Межпериодные катастрофы

Кайнозой

Гибель крупных млекопитающих

Мел

Гигантская комета, гибель динозавров

Юра

Гибель крупных летающих ящеров и птиц

Пермь-Триас

Гибель крупных земноводных

Карбон

Гибель крупных членистоногих, хвощей, плаунов

Силур-Девон

Гибель древних рыб, папоротниковых

Ордовик

Гибель трилобитов

Кембрий

Гибель донной флоры и фауны


Рис. 12. Траектория движения Солнце в Галактике по карте излучения нейтрального водорода 21 см (построено на карте Лейденского обзора)
(красные спирали - фронты рукавов, голубой эллипс - орбита Солнца, желтые отрезки - места вхождения Солнечной системы в галактические рукава)


Из трех галактических рукавов - трех катастрофических барьеров: Perseus, Scutum, Sagittarius, самым пыльным для Солнечной системы является Scutum. Его Солнце проходит один раз за галактический год, и именно в это время возникают глобальные оледенения (табл. 6).

Таблица 6. Глобальные и континентальные оледенения в истории Земли

Название

Возраст млн. лет

Рукав

Юрское глобальное оледенение

Scutum

Каменноугольное глобальное оледенение

Saggitarius

Вендское глобальное оледенение

Scutum

Неопротерозойское оледенение

Scutum

Гуронское оледенение

1000

Scutum

Тимискаминское оледенение

1200

Scutum

Палеопротерозойское оледенение

1650

Scutum

Риасское оледенение

2000

Saggitarius

Неоархейское оледенение

2650

Saggitarius


Пояс Гулда

Это группа молодых массивных звёзд, возрастом 10-30 млн лет, формирующая диск диаметром 500-1000 пк, центр которого находится на расстоянии 150-250 пк от Солнца в направлении антицентра Галактики. Назван в честь Бенджамина Гулда (Benjamin Gould), впервые обратившего в 1879 году внимание на то, что яркие звёзды на небе образуют пояс, наклонённый к плоскости Млечного Пути.

За полтора века ученые узнали об этом поясе гораздо больше Гершеля и Гулда. Он наклонен к плоскости Галактики под углом около 15−20 градусов, имеет массу около 1 млн солнечных масс, размер 2−3 тыс. световых лет, немножко вытянут в одну сторону, вращается как единое целое и медленно расширяется. Солнце находится недалеко от центра этого сплюснутого кольца, который расположен в 400−500 световых годах от нас где-то в направлении созвездия Персея. Именно это удачное расположение внутри пояса и позволяет нам любоваться кольцом ярких звезд на небе.

Наше Солнце и скопление звезд местной группы обходят пояс Гулда за ~18 млн лет (рис.1).

Звездные соседи
Наша галактика Млечный Путь имеет 5 спиральных рукавов: Рукав Лебедя, Рукав Ориона, Рукав Персея, Рукав Стрельца и Рукав Центавра. Их названия обусловлены местоположением основных массивов рукавов в соответствующих созвездиях. Солнечная система находится в небольшом Местном рукаве, или Рукаве Ориона, толщиной приблизительно в 3 500 световых лет и приблизительно 10 000 световых лет в длину. Рукав Ориона соединён с двумя более крупными - внутренним рукавом Стрельца и внешним Рукавом Персея.


Туманность Ориона

Самые крупные наши соседки: α Центавра, Сириус и Процион. Ещё одна яркая близкая звезда - Альтаир - находится на расстоянии 5,14 пк от Солнца (примерно 16,8 св. года).

Установлено, что Солнце движется по отношению к ближайшим звездам со скоростью 20 км/с в направлении апекса - точки на небесной сфере с координатами AR = 18 h 00 m , Decl = + 30° . По отношению к другим, более далеким звездам Солнце движется немного быстрее и изменяет направление в сторону больших AR. Все звезды в Галактике кроме общего переносного движения обладают еще индивидуальным, так называемым пекулярным движением. Движение Солнца в направлении созвездия Herculis есть пекулярное движение, а движение в направлении Cygni - переносное, общее с другими ближайшими звездами, обращающимися около ядра Галактики.

Солнечная система обращается вокруг центра местной группы звезд с периодичность 371 тыс лет.

В солнечной системе облачно

Солнечная система вошла в Местное межзвёздное облако (размером примерно в 30 световых лет) где-то между 44 и 150 тыс. лет назад и как ожидается, останется в его пределах ещё в течение 10-20 тыс. лет. Температура облака равна приблизительно 6000 °C, почти как температура поверхности Солнца. Оно очень разреженное (0,1 атом на кубический сантиметр); с приблизительно одной пятой плотности галактической межзвёздной среды (0,5 атом/см 3 ) и с двойной плотностью газа Местного пузыря (0,05 атом/см 3 ), ММО является областью низкой плотности в межзвёздной среде, но небольшим более плотным участком внутри Местного пузыря. Для сравнения, атмосфера Земли при н. у. содержит 2,7x10 19 молекул на кубический сантиметр.



Облако движется практически перпендикулярно направлению движения Солнца из ассоциации Скорпион-Центавр; звёздной ассоциации, являющейся регионом формирования звёзд.

В настоящее время аппараты Voyager приблизились к дальним границам Солнечной системы, находясь во внешних слоях гелиосферы – колоссального «пузыря», протянувшегося примерно на 10 млрд км. Создается гелиосфера давлением солнечного ветра и магнитным полем звезды, она эффективно защищает нас от космического излучения, газопылевых облаков и других «неприятностей» дальнего космоса. Voyager в настоящий момент находится как раз в тех областях, где давление солнечного ветра, ослабев, понемногу уступает внешнему давлению межзвездной среды. Именно этот момент и стал ключевым для того, чтобы изучить межзвездное облако.



Солнечная система проходящая межзвездное облако

2-тысячелетние циклы или большой космический месяц

Вернемся к циклам и обратимся к периодам покороче. Современный этап жизни планеты и цивилизации характерен тем, что на рубеже 2-го и 3-го тысячелетий Земля проходит через почти одновременное окончание сразу нескольких витков частных эволюционных спиралей галактического "соленоида”. Среди них - его циклические витки длительностью около 2 тыс. лет, 12 тыс. лет и 370 тыс. лет.

Охватывая период около 2 тыс. лет, данный цикл проявляет внутреннюю ритмику прецессионного оборота земной оси (рис. 2, 3).

Период полного прецессионного цикла (большого космического года) составляет около 23 тысяч лет. В популярных публикациях часто упоминается, что длительность полного прецессионного оборота составляет 25920 лет, а его 1/12 части - 2160 лет. Основание - показания таймеров, фиксирующих ежегодные "отставания" Земли примерно на 50". Однако последние отечественные (в ИРЭ РАН, НГУ, ННИПИ "Квант" и др.) и зарубежные исследования с использованием новейших {физико-математических, астрофизических, радиоизотопных и др.) технологий уточнили эти параметры до указанных выше значений (свыше 23 тыс. и 1,9 тыс. лет; 45"). Источник устраненной погрешности - неучет таймерами обращения Солнца (и его планетарной системы) вокруг Центра Местной Группы звезд. В идущем цикле оно противоходно орбитальному вращению Земли и сжимает {по Н. Козыреву) реальные параметры ее времени. Эти выводы не снижают значимости цикла в 2,2 тыс. лет, который традиционно фиксировался в солнечной динамике, но упрощенно трактовался как прецессионный, затеняя истинные параметры последнего. Являясь другой производной (п=13) базового солнечно-земного цикла (371 тыс. лет) период в 2,2 тыс. лет отражает (по А. Шабельникову) главный цикл пульсаций всей Солнечной Системы, играя важную, но иную роль в жизни Земли.

Отражая действие различных возмущающих сил, прецессия земной оси (т. е. ее медленное обращение по перевернутому эллиптическому конусу) происходит совместно с двумя другими вращениями Земли - суточным угловым {вокруг этой же оси) и годовым орбитальным {вокруг Солнца). При орбитальном обращении особую роль играют дни весеннего и осеннего равноденствий - 21 марта и 23 сентября, когда оба полюса Земли равноудалены от Солнца, лучи которого падают на околоэкваториальную поверхность Земли отвесно, уравновешивая световую длительность дня и ночи. В эти моменты прецессирующая земная ось перпендикулярна лучу "Солнце-Земля”. Однако из-за своего конусообразного дрейфа она каждый год попадает в эти дни (перпендикуляры к Солнцу) с некоторым систематическим запаздыванием. Согласно новейшим экспериментам и расчетам такое ежегодное весеннее запаздывание Земли составляет около 45". Из-за него Земля попадает в свою исходную "весеннюю точку” примерно через 23 188 лет (так называемый "большой космический год”). 1/12 часть этого полного прецессионного оборота ("большой космический месяц”) составляет примерно 2000 лет. Эта градация в определенной мере условна: динамика межзодиакальных переходов и соответствующих космогеофизических нагрузок неравномерна из-за различий расстояний между зодиакальными созвездиями и комплексами влияющих сил. Вместе с тем, по прошествии "космического месяца” небесная сфера как бы сдвигается по отношению к Земле на 30° и постепенно выдвигает на небосклон то новое созвездие Зодиака, на фоне которого с Земли каждый год (в дни весеннего равноденствия наступившего двухтысячелетия) наблюдается восход Солнца. С конца 90-х - начала 2000-х годов - это созвездие Водолея.

Значимость и цикличность физического влияния космических факторов на развитие планеты, цивилизации и ее субъектов, кризисов и конфликтов были активно проявлены в трудах К. Циолковского, А. Чижевского, В. Вернадского, Л. Гумилева, однако эти закономерности до настоящего времени не получили адекватного научного углубления и отражения в общей и военной стратегии Отечества.

История планетарной жизни свидетельствует: такие двухтысячелетние циклы чрезвычайно влияют на структуру и динамику ее гравитационных основ и всех надстроечных (биологических, психологических, общественно-политических и др.) форм.

В первой половине каждого такого цикла планета осуществляют как бы "ВДОХ” природной энергии и духовной культуры (где "культ ура” - "служение свету”). Он дает в вершине цикла мощный импульс развитию базовых религий, всевозможных искусств, философских и этических воззрений, генератором которых выступают ведущие (на тот период) субъекты цивилизации.

В каждом втором тысячелетии таких циклов осуществляется материализация набранного духовно-энергетического потенциала, который реализуется в интенсивном развитии рационалистических воззрений, точных наук и технологий, материального производства и др. Однако окончания данных периодов и межциклические фазы проходят в условиях сильного влияния комплекса гео-, гелио- и космофизических факторов. Они осуществляют структурную перестройку всей планетарной системы вместе с ее вступлением в новый цикл бытия, одновременно вскрывая аномальные неоднородности и мешающие противоречия.

Это сопровождается наращиванием колебаний магнитосферы, сейсмоактивности, стихийных бедствий, деформаций озонового покрова и механизмов климатообразования, которые резко интенсифицируются в периоды всплесков солнечной активности. В условиях неготовности человечества к поддержанию устойчивого духовного развития такие циклозавершающие и промежуточные периоды проходят в социальной сфере под знаком биологизации и примитивизации массового сознания, так как нарастающее гравитационное давление опускает фокусы пульсационно-волновых контуров большинства людей на уровне нижних (биологических) энергоцентров (чакр). В результате происходят: упадок абстрактного, целостного и гармоничного мышления, мудрости, готовности социума "служить свету”, творческой мотивации, этики и эстетики. Обостряется кризис культуры, идеалов, морали и гуманизма; идет эскалация гедонизма, эгоцентризма, нетерпимости, вандализма, насилия, массовых заболеваний, конфликтности. В эти же периоды происходит и интенсивный распад этногосударственных образований, особенно накопивших множественные противоречия и находящиеся в кризисных фазах своего индивидуального циклического развития. Эта тенденция дифференцированно проявляется у разных субъектов цивилизации, однако носит общепланетарный характер. Вместе с тем, в недрах переходной фазы зарождаются и ростки принципиально новых природных и социальных процессов, которые сначала не вписываются в логику инерционных умонастроений и деструкции, однако с началом нового цикла постепенно приобретают роль движителей прогресса.


Закономерности 12-тысячелетних циклов

Синтез множественных фактов и исследований свидетельствует: планетарная система в ходе естественной эволюции - за миллиарды лет - периодически проходит через динамичные, в т.ч. резкие и глобальные, изменения всего комплекса определяющих космогеофизических условий и своих орбитальных параметров, что объективно необходимо для циклических смен и перенастроек механизмов, форм и задач земной жизни в контексте целей и законов целостного галактического развития.



В рамках этих закономерностей:

Внешними инициаторами перестроенных процессов выступают, согласно новейшим астрофизическим исследованиям, гравидинамические резонансы, которые возникают во взаимоотношениях планет Солнечной системы, вызывая выраженные изменения всего комплекса орбитальных параметров земли (в т.ч. радиуса орбиты, положения магнитных и географических полюсов, угла наклона оси, скоростей орбитального и углового вращения планеты и др.),

Предыдущая циклическая макроперестройка планетарной системы произошла около 12 тыс. лет тому назад в катастрофической форме: импульсы интенсивной фазы привели к глобальным бедствиям (гигантским затоплениям, массовым сейсмо-вулканическим взрывам, оползням, метеокатаклизмам и др.), нарушившим эволюцию предшествующей цивилизации;

На рубеже 2 и 3-го тысячелетий н.э., по прошествии очередных шести двухтысячелетних циклов (или половины полного прецессионного оборота земной оси), планетарная система вновь вступила в период своей циклической перестройки, которая обусловлена переходом земной оси через противоположную вершину спирально-эллиптической траектории ее прецессии и соответствующим усилением комплекса космофизических нагрузок (см. рис. 3).

Угрозы переходного периода

Трансформация планетарной системы, идущая на рубеже 2 и 3 тыс. н.э., развивается в рамках наблюдаемых сегодня событий и процессов: увеличение вибрации Земли (волны Шумана), уменьшения орбитальной скорости планеты, инверсия магнитного полюса Солнца, ослабление магнитного поля Земли, увеличение скорости и дрейфа Северного полюса в сторону гравиэпицентра Сибирской платформы, медленного смещением георасположения центров циклонов и антициклонов и общим потеплением Земли, резкая деконцентрация атмосферного озона, общепланетарная эскалации стихийных и катастрофических бедствий, эскалации межэтнических противоречий, локальных кризисов и конфликтов, а также эскалация иных социо и психодиcфункций, масштабные экологические поражения, вспышки эпидемий, гипернарастание общего иммуннодефицита населения планеты и неизвестных заболеваний и смертности, множество других природных и социальных процессов.

Особую опасность представляет расположение многих городов в зонах потенциально высоких планетарных деструкций и неучет влияния геофизических аномалий при строительстве.

В числе этих городов - Москва, находящаяся в месте:

Крестообразного пересечения двух мощных глубинных разломов;


Московский Крест - пересечение глубинных разломов

Возможно самой высокой на планете глубинной концентрации гелия (согласно всем известным нам отечественным и зарубежным гелеоисследованиям);

Сложного холмистого рельефа, с обилием подземных рек, полостей, озер, болот, торфяников, плывунов и др.;

Обширной системы подземных (от древних до новейших) и высотных сооружений, создаваемых без учета системы гео- и космофизических связей и балансов;

Концентрации аномальных техногенных (в т.ч. ядерных) излучений и др.

Наибольшую угрозу жизни людей представляют области глобальных и сверхсейсмических планетарных разломов, активность которых в интенсивной фазе геодинамики неминуемо приобретет катастрофические масштабы.


Русская платформа (Евразийская плита) в таком сбалансированном и низколежащем сегменте планетарного каркаса, который в ходе интенсивного планетарного перехода обладает наибольшей устойчивостью и безопасностью своей тектонической динамики, по сравнению со многими другими секторами литосферы.


Прогнозируемые процессы до 2030 года

Ослабление амплитуды и масштабов переходных колебательных процессов;

Значительное потепление климата планеты;

Интенсивные перестройка и прогресс науки и всей практики человечества под влиянием жесткой природной необходимости и активного расширения энергоинформационных (интуитивных, сенсорных и др.) возможностей масс (кто сохранит свою резонансную включенность в Природу) в результате структурных (ныне идущих и проявляемых) изменений их физиологии и психики под влиянием новых космо- и геофизических условий планетарного развития;

Крупномасштабное освоение принципиально новых источников энергии и энергоемких технологий, внедрение которых будут инициировать с начала XXI в. нарастающие стихийно-катастрофические разрушения шахт, скважин, трубопроводов, рудников и пр., а также научное и мировоззренческое осмысление сверхопасности дальнейшей геологической разбалансировки недр, внутренних механизмов и конкретных рудоносных зон, через которые планета осуществляет свои резонансно-волновые взаимоотношения с другими планетами и телами космоса;

Начало активного освоения лидерами цивилизации прогрессивных форм общественного строительства, основанных на принципиально новых научных, духовных и прикладных отношениях с Природой, способах материального и духовного производства, средствах контроля законности и разрешения различных противоречий;

Начало возрождения России и всего геопространства Евразии с активным расширением духовного мировключения, относительных возможностей, свобод и взаимообогащающих связей всех субъектов его развития.

по материалам статьи доктора военных наук Смотрина Е.Г Фонд ГЕОСТ-XXI и других источников

Наука

У каждого человека свое представление о том, что же такое дом. Для некоторых это крыша над головой, для других дом - это планета Земля , каменистый шарик, который бороздит космическое пространство по своему замкнутому пути вокруг Солнца.

Какой бы большой не казалась нам наша планета, она - всего лишь песчинка в гигантской звездной системе, размеры которой сложно себе представить. Эта звездная система - галактика Млечный путь, которую также по праву можно назвать нашим родным домом.

Рукава галактики

Млечный путь - спиральная галактика с перемычкой, которая проходит по центру спирали. Примерно две трети всех известных галактик - спиральные, а две трети из них имеют перемычку. То есть Млечный путь входит в список самых распространенных галактик .

Спиральные галактики имеют рукава, которые простираются из центра, как колесные спицы, которые скручиваются по спирали. Наша Солнечная система расположена в центральной части одного из рукавов, который называется рукав Ориона .

Рукав Ориона когда-то считался небольшим "отростком" более крупных рукавов, таких как рукав Персея или рукав Щита-Центавра . Не так давно появилось предположение, что рукав Ориона действительно является ответвлением рукава Персея и не выходит из центра галактики.

Проблема заключается в том, что мы не можем увидеть нашу галактику со стороны. Мы можем наблюдать только те вещи, которые находятся вокруг нас, и судить о том, какую же форму имеет галактика, находясь как бы внутри нее. Однако ученым удалось вычислить, что этот рукав имеет длину примерно 11 тысяч световых лет и толщину 3500 световых лет .


Сверхмассивная черная дыра

Самые маленькие сверхмассивные черные дыры, которые ученым удалось открыть, примерно в 200 тысяч раз тяжелее Солнца. Для сравнения: обычные черные дыры имеют массу всего в 10 раз превышающую массу Солнца. В центре Млечного пути находится невероятно массивная черная дыра, массу которой сложно себе вообразить.



Последние 10 лет астрономы следили за активностью звезд на орбите вокруг звезды Стрелец А , плотном регионе в центре спирали нашей галактики. Основываясь на движении этих звезд, было определено, что в центре Стрельца A*, который скрыт за плотным облаком пыли и газа, находится сверхмассивная черная дыра, масса которой в 4,1 миллионов раз больше массы Солнца!

Анимация, представленная ниже, демонстрирует реальное движение звезд вокруг черной дыры с 1997 по 2011 годы в районе одного кубического парсека в центре нашей галактики. Когда звезды приближаются к черной дыре, они делают петлю вокруг нее на невероятной скорости. Например, одна из этих звезд, S 0-2 движется со скоростью 18 миллионов километров в час: черная дыра вначале притягивает ее, а затем резко отталкивает .

Совсем недавно ученые наблюдали, как облако газа приблизилось к черной дыре и было разорвано на куски ее массивным гравитационным полем. Части этого облака были поглощены дырой, а оставшиеся части стали напоминать длинные тонкие макаронины длиной более 160 миллиардов километров.

Магнитные частицы

Кроме наличия сверхмассивной всепоглощающей черной дыры, центр нашей галактики может похвастаться невероятной активностью : старые звезды умирают, а новые появляются на свет с завидным постоянством.

Не так давно ученые заметили кое-что еще в галактическом центре - поток высокоэнергичных частиц, которые простираются на расстояние 15 тысяч парсек через галактику. Это расстояние равно примерно половине диаметра Млечного пути.

Частицы невидимы невооруженным глазом, однако с помощью магнитного изображения можно заметить, что гейзеры из частиц занимают около двух третей видимой части неба :

Что же стоит за этим феноменом? Один миллион лет звезды появлялись и исчезали, питая никогда не останавливающийся поток , направленный к внешним рукавам галактики. Общий объем энергии гейзера в миллион раз превышает энергию сверхновой.

Частицы движутся с невероятной скоростью. На основе структуры потока частиц астрономы построили модель магнитного поля , которое господствует в нашей галактике.

Новые звезды

Как часто в нашей галактике образуются новые звезды? Этим вопросом исследователи задавались долгие годы. Удалось нанести на карту районы нашей галактики, где присутствует алюминий-26 , изотоп алюминия, который появляется в том месте, где рождаются или умирают звезды. Таким образом, удалось выяснить, что ежегодно в галактике Млечный путь рождается 7 новых звезд и примерно два раза за сто лет крупная звезда взрывается, образуя сверхновую.

Галактика Млечный путь не является производителем самого большого количества звезд. Когда звезда умирает, она выделяет в космос такое сырье, как водород и гелий . Через сотни тысяч лет эти частицы соединяются в молекулярные облака, которые в конечном итоге становятся настолько плотными, что их центр разрушается под их собственной гравитацией, образуя таким образом новую звезду.


Это похоже на своеобразную эко-систему: смерть питает новую жизнь . Частицы какой-то определенной звезды в будущем будут частью миллиарда новых звезд. В нашей галактике дела обстоят именно так, поэтому она эволюционирует. Это ведет к образованию новых условий, при которых повышается вероятность возникновения планет, похожих на Землю.

Планеты галактики Млечный путь

Несмотря на постоянную смерть и рождение новых звезд в нашей галактике, их количество подсчитано: Млечный путь является домом примерно для 100 миллиардов звезд . Основываясь на новых исследованиях, ученые предполагают, что вокруг каждой звезды вращается, по крайней мере, одна планета или более. То есть всего в нашем уголке Вселенной имеется от 100 до 200 миллиардов планет.

Ученые, которые пришли к такому выводу, изучали звезды типа красные карлики спектрального класса М . Эти звезды меньше нашего Солнца. Они составляют 75 процентов из всех звезд Млечного пути. В частности, исследователи обратили внимание на звезду Kepler -32, которая приютила пять планет .

Как астрономы открывают новые планеты?

Планеты, в отличие от звезд, трудно обнаружить, так как они не излучают свой собственный свет. Мы можем с уверенностью сказать, что вокруг звезды имеется планета, только тогда, когда она становится перед своей звездой и заслоняет ее свет.


Планеты звезды Kepler -32 ведут себя точно так же, как экзопланеты, вращающиеся вокруг других карликовых звезд M . Они расположены примерно на одном расстоянии и имеют похожие размеры. То есть система Kepler -32 является типичной системой для нашей галактики .

Если в нашей галактике имеется более 100 миллиардов планет, сколько же из них планет, похожих на Землю ? Оказывается, не так уж и много. Существуют десятки различных типов планет: газовые гиганты, планеты-пульсары, бурые карлики и планеты, на которых с неба падает дождь из расплавленного металла. Те планеты, которые состоят из каменных пород, могут располагаться слишком далеко или слишком близко к звезде, поэтому на Землю они вряд ли похожи.


Результаты последних исследований показали, что в нашей галактике, оказывается, больше планет земного типа, чем предполагалось раннее, а именно: от 11 до 40 миллиардов . Ученые взяли в качестве примера 42 тысячи звезд , похожих на наше Солнце, и стали искать экзопланеты, которые могут вращаться вокруг них в зоне, где не слишком жарко и не слишком холодно. Было обнаружено 603 экзопланеты , средикоторых 10 соответствовали критериям поиска.


Анализируя данные о звездах, ученые доказали существование миллиардов похожих на Землю планет, которые им только предстоит официально открыть. Теоретически эти планеты способны поддерживать температуру для существования на них жидкой воды , которая, в свою очередь, позволит возникнуть жизни.

Столкновение галактик

Даже если в галактике Млечный путь будут постоянно образовываться новые звезды, она не сможет увеличиться в размерах, если не будет получать новый материал откуда-то еще . А Млечный путь действительно расширяется.

Ранее мы не были точно уверены, как именно галактике удается расти, но недавние открытия позволили предположить, что Млечный путь является галактикой-каннибалом , то есть в прошлом она поглощала другие галактики и, вероятно, будет делать это снова, по крайней мере, до тех пор, пока какая-нибудь более крупная галактика не поглотит ее.

Используя космический телескоп "Хаббл" и информацию, полученную благодаря сделанным на протяжении семи лет фото, ученые обнаружили звезды у внешнего края Млечного пути, которые движутся особым образом . Вместо того чтобы двигаться к центру или от центра галактики, как другие звезды, они как бы дрейфуют у края. Предполагается, что это звездноескопление - все, что осталось от другой галактики, которая была поглощена галактикой Млечный путь.


Это столкновение, по-видимому, произошло несколько миллиардов лет назад и, скорее всего, оно не последнее. Учитывая ту скорость, с которой мы движемся, наша галактика через 4,5 миллиарда лет столкнется с галактикой Андромеда.

Влияние галактик спутников

Хотя Млечный путь является спиральной галактикой, он представляет собой не совсем идеальную спираль. В его центре имеется своеобразная выпуклость , которая появилась в результате того, что молекулы газообразного водорода вырываются из плоского диска спирали.


В течение долгих лет астрономы ломали голову над тем, почему у галактики имеется такая выпуклость. Логично предположить, что газ втягивается в сам диск, а не вырывается наружу. Чем дольше они изучали этот вопрос, тем больше запутывались: молекулы выпуклости не только выталкиваются наружу, но и вибрируют на своей собственной частоте .

Что же может вызывать такой эффект? Сегодня ученые считают, что всему виной темная материя и галактики-спутники - Магеллановы Облака . Эти две галактики очень мелкие: вместе взятые они составляют всего 2 процента от общей массы Млечного пути. Этого не достаточно, чтобы иметь на него влияние.

Однако когда темная материя движется через Облака, она создает волны, которые, очевидно, влияют на гравитационное притяжение, усиливая его, а водород под действием этого притяжения улетучивается из центра галактики .


Магеллановы Облакавращаются вокруг Млечного пути. Спиральные рукава Млечного пути под влиянием этих галактик как бы колышутся в том месте, где они проплывают.

Галактики близнецы

Хотя галактику Млечный путь можно назвать уникальной по многим параметрам, она не является большой редкостью. Во Вселенной спиральные галактики преобладают. Учитывая то, что только в поле нашего зрения находятся около 170 миллиардов галактик , можно предположить, что где-то имеются галактики очень похожие на нашу.

А что если где-то существует галактика - точная копия Млечного пути? В 2012 году астрономы обнаружили такую галактику. У нее даже есть два небольших спутника, которые вращаются вокруг нее и точно соответствуют нашим Магеллановым Облакам. Кстати, всего 3 процента спиральных галактик имеют подобных компаньонов, век которых относительно недолог. Магеллановы Облака, скорее всего,растворятся через пару миллиардов лет .

Обнаружить настолько похожую галактику, имеющую спутники, супермассивную черную дыру в центре и такие же размеры - невероятная удача. Эта галактика получила название NGC 1073 и она настолько похожа на Млечный путь, что астрономы изучают ее, чтобы больше узнать о нашей собственной галактике. Например, мы можем увидеть ее со стороны и таким образом лучше представить себе, как выглядит Млечный путь.

Галактический год

На Земле год - это время, за которое Земля успевает сделать полный оборот вокруг Солнца . Каждые 365 дней мы возвращаемся в одну и ту же точку. Наша Солнечная система таким же образом вращается вокруг черной дыры, расположенной в центре галактики. Однако полный оборот она делает за 250 миллионов лет . То есть, с тех пор, как исчезли динозавры, мы сделали всего четверть полного оборота.


В описаниях Солнечной системы редко упоминается о том, что она движется в космическом пространстве, как и все в нашем мире. Относительно центра Млечного пути Солнечная система движется со скоростью 792 тысячи километров в час . Для сравнения: если бы вы двигались с такой же скоростью, то смогли бы совершить кругосветное путешествие за 3 минуты .

Период времени, за который Солнце успевает сделать полный оборот вокруг центра Млечного пути, называется галактический год. Подсчитано, что Солнце пока прожило всего 18 галактических лет.

Рис. 15. Галактика NGC 6814, сходная с нашей Галактикой, наблюдаемая в плане Галактики, подобные нашей, при наблюдении в плане выглядят как галактика NGC 6814, показанная на рисунке 15.

Из ядра галактики выходят спиральные ветви, рукава. Они огибают ядро и, постепенно расширяясь и разветвляясь, теряют яркость. На определенном расстоянии их след и вовсе пропадает.

Исследования показали, что спиральные ветви других галактик состоят из звезд - горячих гигантов и сверхгигантов, а также из пыли и газа (водорода). Если перечисленные объекты убрать из спиральных галактик, то их ветви-рукава исчезнут. Исчезнет их спиральная структура. Дело в том, что красные и желтые звезды, как карлики, так и гиганты, одинаково равномерно заполняют как области в спиральных ветвях, так и области между спиральными ветвями.

Если мы хотим изучить спиральную структуру нашей Галактики, мы должны проследить расположение в ней звезд - горячих гигантов, а также пыли и газа. Но сделать это непросто, поскольку мы вынуждены наблюдать спиральную структуру Галактики изнутри. При этом различные части спиральных ветвей проектируются друг на друга. Наша задача усложняется и тем, что мы не умеем точно определять расстояние до далеких звезд - горячих гигантов. Можно сказать, что измерять большие расстояния в Галактике вообще нельзя - прежде всего из-за пылевого вещества, которое поглощает свет звезд. Спиральные рукава располагаются в плоскости Галактики. Именно там больше всего пыли. Но пылевое вещество не только поглощает свет и затрудняет измерения расстояний. Оно делает практически невидимыми очень далекие звезды - горячие гиганты. Именно за ними мы должны следить, если хотим узнать расположение спиральных рукавов. Таким образом, методом наблюдения распределения в пространстве звезд - горячих гигантов или звездных ассоциаций изучить спиральные ветви нашей Галактики не удается.

Получить определенную информацию о спиральных рукавах можно с помощью использования излучения нейтрального водорода на длине волны 21 сантиметр. Мы уже говорили, что таким образом можно вывести закон вращения Галактики. Была измерена плотность нейтрального водорода в различных местах Галактики. Результаты этих измерений показаны на рисунке 16. Видно, что в двух небольших секторах наблюдения отсутствовали. Тем не менее просматривается расположение спиральных ветвей. Дело в том, что водород обычно соседствует со звездами - горячими гигантами. Именно они определяют форму спиральных рукавов. Поэтому места уплотнения водорода должны повторять рисунок спиральной структуры Галактики.

Как уже говорилось, излучение нейтрального водорода с длиной волны 21 сантиметр находится в радиодиапазоне. Пыль не оказывает на него никакого влияния. Поэтому оно доходит до нас от самых далеких областей Галактики.

На протяжении долгого времени астрономы спорят о том, сколько спиральных рукавов насчитывает Млечный путь: четыре (как у свастики) или все же два?

Получено новое подтверждение того, что у Млечного пути четыре спиральных рукава.

Спиральная структура нашей галактики изучена недостаточно хорошо. Большинство ученых считают, что Млечный путь имеет четыре спиральных рукава, однако сравнительно недавние наблюдения с помощью телескопа «Спитцер» агентства НАСА заставили исследователей усомниться в этом. Данные, полученные от телескопа, дали основания предположить, что у нашей галактики лишь два спиральных рукава. В 2013 году, когда астрономы наносили на карту области звездообразования, они обнаружили два затерянных спиральных рукава. Таким образом, исследователи вернулись к версии, согласно которой в нашей галактике насчитывается 4 рукава.

В недавнем времени в защиту этой версии было выдвинуто еще одно доказательство.

Команда бразильских астрономов изучала звездные скопления, чтобы проследить структуру галактики. «Полученные нами результаты выступают в поддержку теории, согласно которой наша галактика имеет четыре рукава. Последние включают в себя рукав Персея, рукав Стрельца и два внешних рукава» , - отмечают исследователи из федерального университета Рио-Гранде-ДУ-Сул.

«Несмотря на все наши усилия, направленные на то, чтобы лучше понять структуру галактики, все еще остается масса вопросов. У ученых нет единого мнения в отношении числа и формы спиральных рукавов галактики», - говорит ведущий автор исследования Д. Камарго (D. Camargo). Он также добавил, что расположение солнца на затененном диске галактики являлось основным фактором, препятствующим нашему пониманию более широкой структуры Млечного Пути. Иными словами, мы не можем изучить нашу галактику с высоты птичьего полета.

Команда исследователей отметила, что молодые внедренные кластеры позволяют отлично проследить структуру галактики. «Результаты последнего исследования показывают, что внедренные кластеры галактики преимущественно расположены в спиральных рукавах», - объясняют ученые. Они также отмечают, что звездообразование может происходить после распада и фрагментации гигантских молекулярных облаков, обнаруженных в спиральных рукавах. Молодые внедренные звездные скопления, что возникают впоследствии, позволяют изучить структуру галактики, так как они не перемещаются далеко от места своего рождения.

Чтобы выявить молодые внедренные кластеры команда исследователей использовала данные от инфракрасного телескопа WISE агентства НАСА. Так, ученым удалось обнаружить 7 новых внедренных кластеров, некоторые из которых могут быть частью более крупного скопления, находящегося в рукаве Персея. Они предположили, что гигантские молекулярные облака были сжаты спиральным рукавом, что могло стать причиной возникновения многочисленных звездных скоплений, схожих по возрасту.

Команда также использовала данные, полученные в ходе обзора неба в инфракрасном диапазоне 2MASS, для того чтобы определить расстояние до обнаруженных звездных скоплений. Исследование было нацелено на то, чтобы установить точные фундаментальные параметры кластера и в результате получить новые сведения о структуре галактики.

Ответственной за образование спиральных рукавов нашей галактики может быть карликовая эллиптическая галактика в созвездии Стрельца . К такому выводу пришли ученые из Университета Питтсбурга . Их работа опубликована в последнем номере журнала Nature .

Руководил группой Кристофер Персел . Их численное моделирование стало первым, предложившим такой сценарий образования спиральных рукавов. «Оно дает нам новый и довольно-таки неожиданный взгляд на причину того, что наша галактика выглядит так, как выглядит», - говорит Персел.

«Говоря космологически, наши расчеты показывают, что относительно небольшие столкновения вроде этого могут привести к серьезным последствиям в формировании галактик во всей Вселенной, - добавляет он. - Такая идея ранее высказывалась теоретически, но пока что не была реализована».

Большую часть группы ученых составляют сотрудники Университета Калифорнии в Ирвине, в котором расположен Астрокомьютерный центр. К сожалению, в области космологии численное моделирование при помощи суперкомпьютеров - единственный метод исследования. Изучаемые явления и объекты настолько велики и сложны, что нет смысла говорить не то что об аналитических, но даже о численных на обычных машинах методах. При помощи суперкомпьютеров астрономы имеют возможность воссоздать хотя бы в малом масштабе космологические явления, происходящие на протяжении миллиардов лет и изучить эти явления в ускоренном режиме их воспроизведения. На основе такого моделирования делаются предположения, которые затем проверяются при помощи настоящих наблюдений.

Кроме заключения о столкновении, численное моделирование Персела выявило интересную особенность звезд карликовой галактики. Все они оказались окружены темной материей , масса которой примерно равна массе всех звезд нашей галактики.

Давно известно, что реальная материя составляет менее 5% Вселенной, тогда как темная материя составляет примерно четверть. Ее существование обнаруживается только по гравитационному взаимодействию. Теперь можно утверждать, что все галактики, включая Млечный путь и карликовую галактику (до столкновения) окружены темной материей, и область пространства с ней в несколько раз больше галактики по размеру и массе.

«Когда вся эта темная материя ударилась в Млечный путь, от 80 до 90 процентов ее отразилось», - говорит Персел. Это первое столкновение, имевшее место около двух миллиардов лет назад, привело к неустойчивостям в структуре нашей галактики, которые затем были увеличены, что и привело, в конце концов, к спиральным рукавам и кольцеобразным формированиям.

Персел в своей диссертации сконцентрировался еще на одном вопросе: к чему привели повторные столкновения карликовой галактикой?

В течение последних нескольких десятков лет было принято считать, что Млечный путь не подвергался возмущениям на протяжении последних нескольких миллиардов лет. Спиральные рукава в этом свете представали как логичный результат изолированной эволюции галактики.

С того момента, когда в созвездии Стрельца была открыта карликовая эллиптическая галактика - спутник Млечного пути, астрономы начали исследование ее обломков. В 2003 году суперкомпьютерные расчеты траектории движения галактики показали, что она ранее сталкивалась с Млечным путем. Первый раз это случилось 1.9 миллиарда лет назад, второй раз - 0.9 миллиарда лет назад.

«Но что при этом произошло с Млечным путем, в моделировании не воспроизводилось, - говорит Персел. - Наш расчет был первым, в котором была предпринята такая попытка».

Ученые обнаружили, что столкновение приводит к неустойчивости - флуктуации в звездной плотности - в диске вращающегося Млечного пути. Внутренние области нашей галактики вращаются быстрее, чем внешние, эта неустойчивость была усилена, в результате чего образовались спиральные рукава.

Кроме того, при моделировании выяснилось, что благодаря столкновению на краях нашей галактики образовались кольцевые структуры.

Второе столкновение имело меньшие последствия. Из-за него также возникли волны, приводящие к образованию спиральных рукавов, но они были намного менее интенсивны, так как при первом столкновении карликовая галактика потеряла большую часть темной материи. Без темной материи, выступавшей в качестве контейнера для галактики, ее звезды начали рассыпаться в стороны под воздействием гравитационного поля Млечного пути.

«Галактики вроде Млечного пути находятся пол постоянной бомбардировкой карликовых галактик. Но до нашего исследования не предполагалось, насколько важными могут быть последствия таких столкновений, - говорит Персел. - Мы планируем найти и другие результаты столкновения, например, свечение во внешних областях диска нашей галактики. Мы ожидали увидеть изменения в Млечном пути в результате столкновения, но не ожидали, что оно привело к образованию спиральных рукавов. Этого мы не предвидели».

Это было настолько неожиданно, что ученые на несколько месяцев задержали публикацию своего открытия чтобы лишний раз все проверить. «Нам надо было убедить самих себя, что мы в здравом уме», - добавляет Персел.

В настоящее время потоки звезд, некогда принадлежавших карликовой галактике, кружатся около Млечного пути. Однако, она развалилась не полностью, и через несколько миллионов лет начнется новое столкновение. «Мы можем понять это, наблюдая за центром Млечного пути. На обратной от нас стороне звезды падают на диск галактики снизу. Мы можем измерить скорость этих звезд и можем сказать, что скоро карликовая галактика снова удариться в диск, всего через 10 миллионов лет».