Теория активированного комплекса или переходного состояния. Теория переходного состояния

Расчёты показывают, что для многих химических реакций, если они протекают по механизму непосредственного превращения молекул исходных веществ в продукты, энергии, сообщаемой молекулам при термической активации, недостаточно для преодоления энергетического барьера. Иными словами, при таком механизме энергия активации даже при очень высоких температурах настолько велика, что реакции не должны протекать с заметной скоростью. Тем не менее, химические реакции и в природе, и в промышленных и лабораторных установках идут и часто идут очень быстро. Следовательно, одной теории активных столкновений недостаточно для объяснения причин протекания и механизмов реакций.

В 1930-х г.г. Э.Вигнером, М.Поляни, Г.Эйрингом и М.Эвансом была создана теория, позволяющая объяснить протекание реакций при малых тепловых скоростях молекул. Она носит название теории переходного состояния (или теории абсолютных скоростей реакций). Основные положения этой теории:

1) Взаимодействие молекул не сразу приводит к образованию молекул продуктов. Вначале образуется т. н. “переходное состояние” или активированный комплекс.

2) Активированный комплекс представляет собой неустойчивое образование, в которое входят все атомы столкнувшихся и вступивших во взаимодействие молекул. Время жизни активированного комплекса очень мало; оно измеряется малыми (миллионными, десятимиллионными и т. д.) долями секунды. Расстояния между атомами в активированном ком­плек­се несколько больше, чем в обычных молекулах, поэтому для его образования требуется дополнительная энергия.

3) Энергия активации в связи с этим рассматривается как энергия, необходимая для образования активированного комплекса.

4) Через какое-то время после возникновения активированный комплекс распадается с образованием молекул продуктов; при этом выделяется энергия.

5) Выделяющаяся при распаде активированного комплекса энергия может полностью или частично затрачиваться на активацию других молекул исходных веществ.

Наглядное представление о протекании реакции во времени в соответствии с теорией переходного состояния может дать энергетический про­филь реакции, например, экзотермической(рис. 12.6).

По оси ординат откладывается энергия системы Е , а ось абсцисс - это так называемая координата реакции. Среднему запасу энергии теплового движения молекул исходных веществ соответствует уровень Е исх, энергии, запасаемой в активированном комплексе - уровень Е АК. Тогда разность Е АК - Е исх равна величине энергетического барьера, который должны преодолеть молекулы для того, чтобы вступить во взаимодействие энергия активации. Наглядное представление о нём даёт кривая, соединяющая уровни Е исх и Е АК. Высота энергетического барьера зависит от природы реагирующих веществ, энергии, необходимой для образования активированного комплекса (энергии активации), а также от средней энергии теплового движения молекул Е исх.



При повышении температуры уровень Е исх поднимается, величина энергетического барьера становится меньше и во взаимодействие может вступить большее число молекул. Это и служит причиной ускорения реакции с повышением температуры. При понижении температуры, наоборот, уровень Е исх опускается и величина энергетического барьера возрастает, что приводит к уменьшению скорости реакции.

При распаде активированного комплекса с образованием молекул продуктов выделяется энергия, которой соответствует разность Е АК - Е прод, где Е прод - средний запас энергии молекул продуктов. Часть этой выделяющейся энергии, равная разности Е АК - Е исх, пойдёт на активацию новых молекул исходных веществ, а избыток Е исх - Е прод выделится в окружающую среду в виде экзотермического теплового эффекта реакции DН r .

Для эндотермических реакцийэнергетический профиль выглядит несколько иначе (рис. 12.7). Видно, что в этом случае энергетический уровень Е исх ниже, чем уровень Е прод. В результате этого энергии Е АК - Е прод, выделяющейся при распаде активированного комплекса, недостаточно для того,

чтобы вызвать активацию новых молекул реагирующих веществ. Поэтому для продолжения реакции необходим подвод энергии извне, в виде эндотермического теплового эффекта.

Существование активированного комплекса подтверждается экспериментальными данными. Так, например, для одной из несложных модельных реакций взаимодействия атома водорода с молекулой водорода

Н 2 + Н ® Н + Н 2 ,

значение энергии активации близко к 36,8 кДж/моль. Если бы реакция шла через стадию полной диссоциации молекул Н 2 , а не через стадию образования активированного комплекса Н 2 ·Н, то потребовалась бы энергия активации 435,1 кДж/моль.


Теория Активированного Комплекса (ТАК).

Теория Активированного Комплекса –Теория Переходного Состояния - Теория Абсолютных Скоростей химических реакций... Всё это наименования одной и той же теории, в которую ещё в 30-е годы оформились попытки представить процесс активации с помощью и достаточно детальных, и вместе с тем всё же достаточно общих, моделей, построенных на базе статистической механики и квантовой химии (квантовой механики), комбинируя их и создавая иллюзию индивидуального анализа конкретного химического превращения уже на стадии перестройки электронно-ядерной структуры реагентов.

Сама задача кажется очень сложной, и поэтому в ТАК неизбежно образовалось довольно много логических неясностей... Всё же это наиболее общая и плодотворная из теоретических концепций, посредством которых в настоящее время описывают элементарные процессы, и её возможности не ограничены рамками лишь химического элементарного акта. С нею оказалось тесно связано развитие современной химической кинетики. К ней привязаны новейшие алгоритмы и графические приёмы компьютерной химии, и на её основе быстро развивается орбитальная теория химической реакционной способности...

И это далеко не всё! На основе ТАК оказалось возможно единообразно проанализировать множество физико-химических явлений и многих макроскопических свойств веществ, что, на первый взгляд, выглядят уделом лишь научной эмпирики, казалось бы безнадёжно недоступной для теоретического осмысления. Ряд таких ситуаций читатель найдёт в великолепной, хотя и давней, книге Глесстона, Эйринга и Лейдлера “Теория абсолютных скоростей”, написанной творцами этой теории...

В качестве элементарных реакций в газовой фазе тримолекулярные соударения не являются распространёнными, поскольку даже в хаотических броуновских движениях очень мала вероятность одновременных столкновений трёх частиц. Вероятность тримолекулярной стадии резко возрастает, если она протекает на границе раздела фаз, и фрагменты поверхности конденсированной фазы оказываются её участниками. За счёт подобных реакций часто создаётся основной канал изъятия у активных частиц избыточной энергии и их исчезновения в сложных превращениях.

Рассмотрим тримолекулярное превращение вида:

Из-за малой вероятности тримолекулярных соударений целесообразно ввести более реалистичную схему, использующую симметризованный набор бимолекулярных актов. (см. Эмануэль и Кнорре, стр. 88-89.)

4.1. Качественная модель последовательных бимолекулярных соударений:

Основное допущение основано на детальном равновесии на первой стадии:

Квазиравновесный режим образования бимолекулярных комплексов

Результирующая константа скорости должна принять вид:

Рассмотрим элементарные положения теории активированного комплекса, включая:

- кинетическую схему активации через промежуточное переходное состояние,

- квазитермодинамику активации через образование активированного комплекса,

- размерность константы скорости реакции второго порядка в ТАК.

    Простейшая кинетическая модель активации в ТАК:

(6.1)

Первая стадия механизма активации бимолекулярная. Она обратимая, на ней образуется активированный комплекс, а он далее распадается по двум маршрутам: а) обратно в реагенты, с которыми он находится в равновесии, и для этого процесса следует ввести константу равновесия, б) в продукты реакции и этот финальный процесс характеризуется некоторой механической частотой распада. Сочетая эти стадии, несложно рассчитать константу скорости реакции. Удобно рассматривать превращение в газовой фазе.

Константа равновесия обратимой стадии может быть выражена следующим способом.

Если стандартные состояния в газовой фазе выбраны согласно обычному термодинамическому правилу, и стандартизованы парциальные давления газообразных участников реакции, то это означает:

Внимание! Отсюда следует выражение для константы скорости бимолекулярной реакции в ТАК, не вызывающее сомнений в размерности констант скоростей бимолекулярных реакций:

В учебниках чаще всего приводится не столь прозрачное выражение, построенное на иной стандартизации состояний - стандартизуют концентрацию, и в итоге возникает размерность константы скорости, внешне соответствующая моно-, а не би молекулярной реакции. Размерности концентраций оказываются как бы скрыты. У Эйринга, Глесстона и Лейдлера - самих творцов ТАК в книге «Теория абсолютных скоростей реакций» есть анализ, где учтена стандартизация состояний по давлениям. Если стандартным считать состояние с единичными концентрациями реагентов и продуктов, то формулы слегка упростятся, а именно:

Отсюда следует обычно представленное в учебниках выражение для константы скорости согласно ТАК:
(6.3)

Если не выделить роль стандартного состояния, то теоретическая константа скорости бимолекулярного превращения может обрести чужую размерность, обратную времени, которая будет отвечать мономолекулярной стадии распада активированного комплекса. Активационные величиныS#0 и H#0 нельзя считать обычными термодинамическими функциями состояния. Они не сопоставимы с обычными характеристиками пробега реакции уже потому, что методов их прямого термохимического измерения просто не существует... По этой причине их можно назвать квазитермодинамическими характеристиками процесса активации.

При образовании частицы активированного комплекса из двух исходных частиц имеет место
, и в результате получается

Размерность константы скорости обычная для реакции второго порядка:

Эмпирическая энергия активации по Аррениусу и её сравнение с близкими

аналогичными активационными параметрами (энергиями) ТАС и ТАК:

Основа - уравнение Аррениуса в дифференциальной форме:

1) в ТАС получаем:

2.1) ТАК. Случай 1. (Общий подход при условии стандартизации концентраций)

подстановка в уравнение Аррениуса даёт

2.2) ТАК. Случай 2. (Частный случай бимолекулярной стадии активации
).

Энергия активации по Аррениусу для бимолекулярной реакции:

Внимание!!! Полагаем чаще всего

2.2) Исходя из стандартизации давления, получаем энергию активации:



(6.7)

2.3) Это же получается для бимолекулярной реакции и при стандартизации концентрации:

в бимолекулярном акте активации n#= -1, и
(6.10)

Результат: Формула, связывающая энергию активации Аррениуса с квазитермодинамическими функциями активации теории переходного состояния, не зависит от выбора стандартного состояния.

3. Адиабатические потенциалы и потенциальные поверхности.

Пример. Реакция обмена одного из атомов в молекуле водорода на дейтерий

(Это простейший из любых возможных примеров)

По мере сближения атома дейтерия с молекулой водорода наблюдается разрыхление старой двухцентровой химической связи H-H и постепенное оформление новой связи H-D, так что энергетическая модель реакции дейтерообмена в молекуле водорода может быть построена как постепенное перемещение исходной трёхатомной системы к конечной согласно схеме:

Потенциальная поверхность простейшей реакции - адиабатический потенциал реагирующей системы, сечения и особые точки.

Поверхность потенциальной энергии (потенциальная поверхность) представляет собой графическое изображение функции, называемой адиабатическим потенциалом.

Адиабатический потенциал это полная энергия системы, включающая энергию электронов (кинетическую энергию и потенциальную энергию их притяжения к ядрам и взаимного отталкивания), а также потенциальную энергию взаимного отталкивания ядер. В адиабатический потенциал не включается кинетическая энергия ядер.

Это достигается тем, что в каждой геометрической конфигурации ядерного остова ядра считаются покоящимися, и их электрическое поле расматривается как статическое. В таком электростатическом поле системы ядер рассчитываются характеристики основного электронного терма. Изменяя взаимное расположение ядер (геометрию ядерного остова), для каждого их взаимного положения вновь производят расчёт и так получают поверхность потенциальной энергии (ППЭ), график которой представлен на рисунке.

Фигуративная точка отображает состоящую из трёх атомов HHD реагирующую систему и перемещается по потенциальной поверхности в согласии с принципом минимума энергии вдоль линии abc, которая является наиболее вероятной энергетической траекторией. Каждая лежащая в горизонтальной координатной плоскости точка, соответствует одной из возможных комбинаций двух межъядерных расстояний
, функцией которых является полная энергия реагирующей системы. Проекция энергетической траектории abc на координатную плоскость называется координатой реакции. Это линия a’b’c’ (не следует её смешивать с термодинамической координатой реакции).

Совокупность горизонтальных сечений потенциальной поверхности образует карту потенциальной поверхности. На ней легко проследить координату реакции в виде кривой, соединяющей точки максимальной кривизны горизонтальных сечений графика адиабатического потенциала (ППЭ).



Рис. 12-14. Потенциальная поверхность, её энергетическая «карта» и её «профильное» сечение вдоль координаты реакции H3 + D  HD + H

Разворачивая на плоскости фрагмент цилиндрической поверхности abcb’c’a’, образованной вертикалями, восставленными между координатной плоскостью и ППЭ, получаем энергетический профиль реакции. Отметим, что достаточно симметричный вид потенциальной поверхности и соответственно энергетического профиля реакции является особенностью данной конкретной реакции, в которой энергетические электронные характеристики частиц реагентов и частиц продуктов почти не отличаются. Если же совокупности вступающих в реакцию и образующихся частиц различаются, то и поверхность потенциальной энергии, и энергетический профиль реакции утрачивают симметрию.

Метод потенциальных поверхностей в настоящее время является одним из распространённых приёмов теоретического исследования энергетики элементарных процессов, протекающих не только в ходе химических реакций, но и во внутримолекулярных динамических процессах. Способ особенно привлекателен, если у системы невелико число исследуемых механических степеней свободы. Такой подход удобен при изучении внутренних молекулярных активированных движений с помощью приёмов химической кинетики. В качестве примера можно привести построенный на основании квантово-химических расчётов МО ЛКАО в приближении MNDO адиабатический потенциал внутренних вращений в анион-радикале , который яв-

ляется периодической функцией двух угловых переменных. Повторяющийся фрагмент ППЭ показан на рисунке 15. Переменная отвечает поворотам фенильного кольца отноcительно связи C(цикл)-S, а переменная - поворотам CF3 – группы относительно связи S-CF3 . Даже беглого взгляда на потенциальную поверхность достаточно, чтобы увидеть, что энергетический барьер вращения группы CF3 относительно сульфонильного фрагмента значительно ниже, чем барьер поворота фенильного цикла относительно SO2 -группы.

Учебное пособие >> Химия

Расчета скоростей реакций в различных условиях. В теории активированного комплекса для любой элементарной реакции предполагается... на поверхности катализатора адсорбированного комплекса этих веществ. Такой комплекс разрыхляет связи компонентов и делает...

  • Элементарные стадии химических реакций (основы теории )

    Реферат >> Химия

    2·сек–2, соответственно. В рамках теории переходного состояния (или активированного комплекса ) константа скорости ЭС (9) , (19 ... соединения Х (21) допустимой концентрацией Х является такая , которая обеспечит положительное сродство (А > 0, 

  • Химические закономерности

    Закон >> Биология

    Скорость реакции. Теория активированного комплекса . Развитие квантовой механики привело к созданию теории активирован - ного комплекса (переходного... вещества, называются необратимыми. Обратимыми называются такие реакции, которые одновременно протекают в...

  • Ф-ция потенциальной энергии атомных ядер U от их внутр. координат, или степеней свободы. В системе из п ядер число внутр. степеней свободы N = 3n - 6 (или 3n - - 5, если все ядра расположены на одной прямой линии). Простейшая двухмерная (N = 2) ППЭ показана на рис. 1. Реагентам и продуктам р-ции на ней соответствуют области относительно небольшой потенциальной энергии (долины), разделенные областью повыш. энергии-потенциальным барьером. Кривая линия, проходящая по дну долин через барьер,-координата реакции . Часто используют одномерные схемы, изображающие сечение ППЭ , развернутое вдоль координаты р-ции (см. рис. 2). На этих схемах вершине потенциального барьера соответствует седло-вая точка, или точка перевала. Эти же понятия переносят на многомерные ППЭ с N > 2. Состояния реагентов и продуктов устойчивы, им соответствуют конфигурации (т.е. фиксированные значения координат ф), к-рые являются минимумами (или долинами) на многомерной ППЭ . Хим. р-ция рассматривается как переход из конфигурации реагентов в конфигурацию продуктов через конфигурацию седловой точки вдоль координаты р-ции. Конфигурации как минимумов, так и седловых точек-стационарные точки ППЭ , т.е. в нихU/q i = 0.

    Совр. вывод ур-ния (2), химически менее наглядный, основан на столкновений теории . Скорость р-ции отождествляется со скоростью перехода реагирующих хим. систем через (N - 1)-мерную пов-сть в пространстве конфигураций, разделяющую области реагентов и продуктов. В теории столкновений эта скорость наз. потоком через критич. пов-сть. Ур-ние в форме (2) получается, если провести критич. пов-сть через седловую точку ортогонально координате р-ции и принять, что на критич. пов-сти энергетич. распределение реагентов равновесно. Соответствующая область пространства координат и импульсов (фазового пространства) характеризуется той же статистич. суммой . Это позволяет рассматривать критич. пов-сть как множество конфигураций АК. Т. обр., АК сразу определяется как объект с (N - 1) внутр. степенями свободы и не нужно вводить его протяженность вдоль координаты р-ции.

    Применение теории. Согласно теории, механизм р-ции вполне определен конфигурациями реагентов и продуктов (минимумы, или долины, на ППЭ) и соответствующих АК (седловые точки). Теоретич. расчет этих конфигураций методами квантовой химии дал бы исчерпывающую информацию о направлениях и скоростях хим. р-ций. Такие расчеты интенсивно развиваются; для простых хим. систем, содержащих 10-15 атомов , к-рые принадлежат к элементам первых двух периодов таблицы Менделеева, они практически реализуемы и достаточно надежны. Последоват. расчет абс. скорости р-ции по ур-нию (2) заключается в определении геом. конфигураций реагентов и АК (на этом этапе также определяется высота потенциального барьера) и вычислении для этих конфигураций моментов инерции и колебат. частот, к-рые необходимы для расчета статистич. сумм и окончат. определения. В применении к сложным р-циям, представляющим практич. интерес, полная и надежная реализация такой программы трудоемка и зачастую неосуществима. Поэтому молекулярные постоянные, необходимые для вычислений по ур-ниям (2) и (3), часто находят эмпирич. методами. Для устойчивых конфигураций реагентов моменты инерции и колебат. частоты обычно известны из спектроскопич. данных, однако для АК эксперим. определение их невозможно ввиду малого впемени его жизни. Если последоват. квантовохим. расчети недоступен, для оценки этих величин применяют интерполяционные расчетные схемы.

    Ограниченность теории и попытки ее совершенствования. Активированного комплекса теория основана на двух предположениях. Первое-гипотеза о термодинамич. равновесии между реагентами и АК. Согласно второму, скорость р-ции отождествляется со скоростью распада АК. Оба предположения нельзя строго обосновать. Это обнаруживается, если рассматривать движение хим. системы вдоль координаты р-ции на всем пути от реагентов к продуктам, а не только вблизи вершины потенциального барьера. Координату р-ции лишь в редких случаях правильно считать прямой линией, как на рис. 2. Обычно же она-кривая в многомерном пространстве внутр. переменных и является сложной комбинацией элементарных движений, к-рая неодинакова на разл. своих участках. Напр., на рис. 1 координата р-ции-это непрерывно изменяющаяся комбинация двух валентных колебаний.

    Равновесное распределение энергии в реагентах для термич. р-ций обеспечено практически всегда; оно нарушается только в чрезвычайно быстрых процессах. Проблема в том, сохранится ли оно в АК. Из-за криволинейности координату р-ции нельзя считать независимой степенью свободы. Ее взаимод. с другими, поперечными движениями приводит к обмену энергией между ними. В результате, во-первых, может нарушиться первоначально равновесное распределение энергии по поперечным степеням свободы и, во-вторых, система может вернуться в область реагентов даже после того, как она уже прошла через конфигурацию АК в направлении продуктов. Наконец, необходимо иметь в виду, что, согласно ур-ниям (2), (3) и (5), хим. р-ция рассматривается как классич. переход; игнорируются квантовые особенности, напр. электронно-неадиабатич. процессы и туннельный эффект . В ранних формулировках теории в ур-ния (2), (3) и (5) добавляли т. наз. трансмиссионный множительПредполагалось, что в нем собрано влияние перечисленных выше факторов, не учтенных при выводе этих ур-ний. Т. обр., определение х выходит за рамки активированного комплекса теории; более того, для р-ций, в к-рых х значительно отличается от единицы, теория теряет смысл. Однако для сложных р-ций предположение не противоречит экспе-рим. данным, и именно этим объясняется популярность активированного комплекса теории.

    Последоват. неформальное рассмотрение всех указанных эффектов возможно лишь в рамках динамич. расчета (см. Динамика элементарного акта). Предпринимались попытки учесть их по отдельности. Напр., был предложен метод си-стематич. уточнения конфигурации АК, поскольку выбор в кач-ве таковой именно седловой точки основан на интуитивных представлениях и, вообще говоря, не обязателен. Могут существовать и др. конфигурации, для к-рых погрешность вычислений по ф-лам (2) и (3), обусловленная возвращением системы в область реагентов после прохождения этих конфигураций, меньше, чем для конфигурации седловой точки. Используя формулировку активированного комплекса теории в терминах теории столкновений (см. выше), можно утверждать, что обратному потоку (от продуктов к реагентам) через критич. пов-сть соответствует порождающая его и равная ему часть полного прямого потока (от реагентов к продуктам). Чем меньше эта часть, тем точнее вычисление скорости р-ции по активированного комплекса теории. Эти соображения легли в основу т. наз. вариационного определения АК, согласно к-рому критической считается пов-сть, минимизирующая прямой поток. Для нее скорость р-ции, вычисляемая по ур-ниям (2) и (3), минимальна. Как правило, нулевые энергии поперечных колебаний изменяются вдоль координаты р-ции. Это еще одна причина смещения конфигурации АК из седловой точки ППЭ ; она также учитывается вариационной теорией.

    Значит. внимание уделялось разработке методов определения вероятностей квантового туннелирования в хим. р-циях. Наконец, стали возможны оценки трансмиссионного множителя в рамках модельных динамич. вычислений. При этом предполагается, что с постулат. движением системы вдоль координаты р-ции взаимодействуют не все, а лишь нек-рые из поперечных степеней свободы. Они и учитываются в квантовом динамич. расчете; остальные степени свободы обрабатываются в рамках равновесной теории. При таких вычислениях автоматически определяются также и поправки на квантовое туннелирование.

    Упомянутые усовершенствованные методы расчета абс. скоростей хим. р-ций требуют серьезных вычислит. усилий и лишены универсальности активированного комплекса теории.

    ===
    Исп. литература для статьи «АКТИВИРОВАННОГО КОМПЛЕКСА ТЕОРИЯ» : Глесстон С, Лейдлер К., Эйринг Г., Теория абсолютных скоростей реакций , пер. с англ., М., 1948; Лейдлер К., Кинетика органических реакций , пер. с англ., М., 1966: Термические бимолекулярные реакции в газах , М., 1976. М. В. Базилевский.

    Теория столкновений непригодна для сложных молекул потому, что она предполагает существование молекул в виде идеальных упругих сферических частиц. Однако для сложных молекул, помимо поступательной энергии, должны быть учтены другие виды молекулярной энергии, например, вращательная и колебательная. По теории столкновений невозможно существование реакций, в которых должны столкнуться три и более молекулы. Кроме того, реакции разложения типа АВ = А + В трудно объяснить этой теорией.

    Для преодоления указанных затруднений Х. Эйринг в 1935г. предложил теорию активированного комплекса. Всякая химическая реакция или любой другой молекулярный процесс, протекающий во времени(диффузия, вязкое течение и т.д.), состоит в непрерывном изменении расстояний между ядрами атомов. При этом конфигурация ядер, отвечающая начальному состоянию, через некоторую промежуточную конфигурацию – активированный комплекс или переходное состояние – превращается в конечную конфигурацию. Предполагается, что активированный комплекс образуется как промежуточное состояние во всех химических реакциях . Он рассматривается, как молекула, которая существует лишь временно и разрушается при определенной скорости. Этот комплекс образуется из таких взаимодействующих молекул, энергия которых достаточна для того, чтобы они смогли близко подойти друг к другу по схеме: реагентыактивированный комплекспродукты. Активированный комплекс имеет промежуточную структуру между реагентами и продуктами.Энергия активации реакции есть дополнительная энергия, которую должны приобрести реагирующие молекулы, чтобы образовать активированный комплекс, необходимый для протекания реакции.

    Энергия активации всегда представляет поглощенную энергию, независимо от того, является ли общее изменение ее для реакции положительным (эндотермическая реакция) или отрицательным (экзотермическая реакция). Это схематично показано на рис. 6.

    активация

    превращение

    Ход реакции

    Рисунок 6. Энергетическая схема образования активированного комплекса.

    Активация – сообщение молекулам такого количества энергии, что при их эффективном превращении происходит образование веществ в активированном состоянии.

    Превращение – образование из веществ, находящихся в активированном состоянии, продуктов реакции.

    Если система не может перейти через этот энергетический барьер в ней не могут произойти химические превращения. Значит эта система химически неактивна и нуждается в некоторой дополнительной энергии для активации. Количество этой дополнительной энергии зависит от того, какой энергией уже обладает система.

    Энергия исходной системы не может быть меньше ее нулевой энергии (т.е. при 0 0 К). Для активации любой системы достаточно сообщить ей дополнительную энергию. Эта энергия называется истинной энергией активации.

    Истинной энергией активации элементарного химического акта называется минимальная энергия, которой должна обладать исходная система сверх совей нулевой энергии (т.е. при 0 0 К), чтобы в ней могли произойти химические превращения. Разность истинной энергии активации обратной и прямой реакций равна тепловому эффекту реакции при абсолютном нуле.

    АКТИВИРОВАННОГО КОМПЛЕКСА ТЕОРИЯ (теория абсолютных скоростей реакций, теория переходного состояния), метод статистического расчёта скорости химической реакции. Исходит из представления, согласно которому при непрерывном изменении относительного расположения атомов, входящих в реагирующую систему молекул, система проходит через конфигурацию, отвечающую максимуму потенциальной энергии взаимодействия, то есть вершине потенциального барьера, разделяющего реагенты и продукты. Активированного комплекса теория была создана в 1930-х годах Э. Вигнером, М. Поляни, М. Эвансом, Г. Эйрингом.

    Потенциал взаимодействия между молекулами можно представить с помощью поверхности потенциальной энергии, и при непрерывном изменении конфигурации атомов от начального состояния (реагенты) до конечного (продукты) система преодолевает потенциальный барьер. Конфигурация атомов, отвечающая вершине потенциального барьера, называется активированным комплексом (переходным состоянием). Изменение потенциальной энергии в процессе типичного химического превращения показано на рисунке. Координата реакции характеризует путь перехода от реагентов к продуктам химической реакции через активированный комплекс. т. е. степень химической перестройки во время протекания реакции. В общем случае она не сводится к изменению расстояния между какими-то конкретными атомами в реагирующих молекулах. Высота потенциального барьера, разделяющего реагенты и продукты, называется энергией активации и представляет собой минимальную энергию, которой должны обладать реагенты для того, чтобы произошло химическое превращение.

    Активированный комплекс считается короткоживущей молекулой; однако вследствие очень малого времени жизни (порядка 10 -13 с) он не может рассматриваться как обычный компонент химически реагирующей системы и не может наблюдаться в обычных кинетических экспериментах в отличие от активных промежуточных частиц (например, радикалов). Важнейшее предположение активированного комплекса теории состоит в том, что существует термодинамическое равновесие между активированными комплексами и реагентами (но не продуктами). При этом скорость образования продуктов (скорость химической реакции) определяется равновесной концентрацией активированных комплексов и частотой их распада с образованием продуктов. Эти величины могут быть рассчитаны методами статистической термодинамики, если известны структуры реагентов и активированного комплекса. Более того, во многих случаях активированного комплекса теория позволяет провести простые качественные оценки, основывающиеся на имеющейся информации только о структуре реагентов. В этом состоит основное достоинство активированного комплекса теории, позволяющей избежать решения очень сложных уравнений, описывающих классическое или квантовое движение системы атомов в поле сил химического взаимодействия, и получить простую корреляцию между скоростью химической реакции и свойствами реагентов на основе таких термодинамических величин, как свободная энергия, энтропия и энтальпия. Поэтому активированного комплекса теория остаётся основным инструментом расчёта скоростей химических реакций в термически равновесных системах с участием сложных молекул и интерпретации соответствующих экспериментальных данных.

    Как любая простая приближённая теория, активированного комплекса теория имеет ограниченную область применимости. Она не может использоваться для расчёта констант скорости химических реакций в термически неравновесных системах (например, в рабочих средах газовых химических лазеров). Что касается термически равновесных систем, то активированного комплекса теория не может использоваться при очень низких температурах, где вследствие квантово-механического эффекта туннелирования неприменимо представление о независящей от температуры энергии активации.

    Лит.: Глесстон С., Лейдлер К., Эйринг Г. Теория абсолютных скоростей реакций. Кинетика химических реакций, вязкость, диффузия и электрохимические явления. М., 1948; Кондратьев В.Н., Никитин Е.Е. Кинетика и механизм газофазных реакций. М., 1974; Truhlar D.J., Garret В.С., Klippestein S.J. Current status of transition-state theory //Journal of Physical Chemistry. 1996. Vol. 100. № 31.