Константа скорости реакции равна. Константа скорости химической реакции

Скорость гомогенной (однофазной) реакции зависит от природы реагирующих веществ, их концентрации и температуры. Скорость гетерогенных (многофазных) процессов зависит от размеров и состояния поверхности раздела фаз. Примечание. Гетерогенные – процессы, происходящие на поверхности раздела соприкасающихся фаз. (горение топлива, окисление металлов кислородом воздуха). Закон действующих масс. Справедлив для гомогенных реакций. Формулировка: при постоянной температуре скорость химической реакции пропорциональна произведению концентраций реагирующих веществ. Константа скорости обозначается как Пример. в квадратных скобках концентрации веществ.A+2B=3D «k» не зависит от концентрации в каждый момент времени. Физический смысл константы скорости реакции k следует из уравнения закона действующих масс: k численно равна скорости реакции при концентрации каждого из реагирующих веществ равной 1 моль/л.

28.Молекулярность и порядок реакции. Молекулярность элементарной реакции - число частиц, которые, согласно экспериментально установленному механизму реакции, участвуют в элементарном акте химического взаимодействия.Мономолекулярные реакции - реакции, в которых происходит химическое превращение одной молекулы (изомеризация, диссоциация и т. д.):H 2 S → H 2 + SБимолекулярные реакции - реакции, элементарный акт которых осуществляется при столкновении двух частиц (одинаковых или различных):СН 3 Вr + КОН → СН 3 ОН + КВrТримолекулярные реакции - реакции, элементарный акт которых осуществляется при столкновении трех частиц:О 2 + NО + NО → 2NО 2 Реакции с молекулярностью более трёх неизвестны.Для элементарных реакций, проводимых при близких концентрациях исходных веществ, величины молекулярности и порядка реакции совпадают. Чётко определенной взаимосвязи между понятиями молекулярности и порядка реакции нет, так как порядок реакции характеризует кинетическое уравнение реакции, а молекулярность - механизм реакции. Порядок реакции по данному веществу - показатель степени при концентрации этого вещества в кинетическом уравнении реакции.Реакция нулевого порядка Кинетическое уравнение имеет следующий вид: Скорость реакции нулевого порядка постоянна во времени и не зависит от концентраций реагирующих веществ. Нулевой порядок характерен, например, для гетерогенных реакций в том случае, если скорость диффузии реагентов к поверхности раздела фаз меньше скорости их химического превращения.Реакция первого порядка Кинетическое уравнение реакции первого порядка: Приведение уравнения к линейному виду даёт уравнение: Константа скорости реакции вычисляется как тангенс угла наклона прямой к оси времени: Период полупревращения: Реакция второго порядка Для реакций второго порядка кинетическое уравнение имеет следующий вид: илиВ первом случае скорость реакции определяется уравнениемЛинейная форма уравнения:Константа скорости реакции равна тангенсу угла наклона прямой к оси времени: Во втором случае выражение для константы скорости реакции будет выглядеть так: Период полупревращения (для случая равных начальных концентраций!):

29.Кинетическая классификация по степени сложности. Обратимые и необратимые реакции. По степени сложности реакции подразделяются на изолированные, параллельные, сопряженные, последовательные (многоступенчатые), обратимые и необратимые. Изолированные – при их протекании образуются продукты только одного типа. Параллельные – в ходе них взятые вещества одновременно реагируют в двух или более направлениях (образуются разные продукты).Пример. Разложение бертолетовой солиСкорость реакции:Сопряженные – совместные реакции типа: Вторая реакция протекает лишь совместно с первой. А – актор реакции,B – индуктор реакции, С – акцептор. Последовательные . В – промежуточный продукт. Обратимые и необратимые. Подавляющее большинство химических реакций являются обратимыми, т.е. могут протекать в двух направлениях. Скорость реакции:v=v1-v2Различают практически необратимые и совершенно необратимые реакции. Практически необратимые – реакции, в результате которых образуется осадок. Совершенно необратимые – протекают только в одном направлении. Пример.

30.Зависимость скорости реакции от температуры. Правило Вант-Гоффа. Уравнение Аррениуса. Энергия активации химической реакции. Аналитический и графический метод расчета. Правило Вант-Гоффа - эмпирическое правило, позволяющее в первом приближении оценить влияние температуры на скорость химической реакции в небольшом температурном интервале (обычно от 0 °C до 100 °C). Я. Х. Вант-Гоффна основании множества экспериментовсформулировал следующее правило : При повышении температуры на каждые 10 градусов константа скорости гомогенной элементарной реакции увеличивается в два-четыре раза.Уравнение, которое описывает это правило, следующее: Из уравнения Вант-Гоффа температурный коэффициент вычисляется по формуле: Уравне́ние Арре́ниуса устанавливает зависимость константы скоростиk химической реакцииоттемпературыT.Согласно простой модели столкновений, химическая реакция между двумя исходными веществами может происходить только в результате столкновения молекулэтих веществ. Но не каждое столкновение ведёт к химической реакции. Необходимо преодолеть определённыйэнергетический барьер, чтобы молекулы начали друг с другом реагировать. То есть молекулы должны обладать некой минимальной энергией (энергия активации), чтобы этот барьер преодолеть. Израспределения Больцманадля кинетической энергии молекул известно, что число молекул, обладающих энергией, пропорционально. В результате скорость химической реакции представляется уравнением, которое было получено шведским химикомСванте Аррениусомизтермодинамическихсоображений:ЗдесьA характеризует частоту столкновений реагирующих молекул, R - универсальная газовая постоянная. В рамках теории активных соударенийA зависит от температуры, но эта зависимость достаточно медленная:Оценки этого параметра показывают, что изменение температуры в диапазоне от 200 °C до 300 °C приводит к изменению частоты столкновений на 10 %.Энергия активации - минимальное количество энергии, которое требуется сообщить системе (в химии выражается в джоулях на моль), чтобы произошла реакция. Типичное обозначение энергии реакции - E a .Уравнение Аррениуса устанавливает связь между энергией активации и скоростью протекания реакции:. С повышением температуры растёт вероятность преодоления энергетического барьера.Уравнение Аррениуса часто представляют в логарифмической форме: lnk = lnА – Еа\RT удобной для графического определения энергии. Необходимо иметь несколько значений k при разных T, чтобы построить график ln k = f(T).

Здесь tg  =
.

Аналитический метод определения энергии активации применим, если есть возможность определить две константы скорости при двух температурах.
;

;

Согласно закону действия масс скорость простой реакции равна

Константа скорости реакции k - коэффициент пропорциональности между скоростью химической реакции и произведением концентраций реагирующих веществ:
. Константа скорости численно равна скорости химической реакции, когда концентрации всех реагентов равны единице: W=k при C A =C B =1. Если реакция А с В по своему механизму сложная (в ней участвуют активные промежуточные продукты, катализатор и т. д.), подчиняется уравнению
, то k называют эффективной константой скорости реакции; IUPAC рекомендует называть k в этом случае коэффициентом скорости реакции. Нередко скорость сложной реакции не подчиняется степенному уравнению, а выражается иной зависимостью, например v=k 1 C 1 C 2 (1+k 2 C 2) –1 . Тогда k 1 и k 2 называют коэффициентами в уравнении для скорости реакции.

Часто реакцию проводят в условиях, когда концентрации всех реагентов, кроме одного, взяты в избытке и в ходе опыта практически не меняются. В этом случае

,

а коэффициент k набл = k
называют эффективной или наблюдаемой константой скорости реакции при С B >>С A . Для случая n A =1 такой коэффициент часто называют коэффициентом скорости реакции псевдопервого порядка. Константа скорости реакции порядка n имеет размерность: (время) –1 (концентрация) –(n –1) . Численное значение зависит от единиц, выбранных для измерения времени и концентрации.

При вычислении константы скорости простой реакции необходимо учитывать два обстоятельства: помнить, по какому реагенту измеряется скорость реакции и чему равен стехиометрический коэффициент и порядок реакции по этому реагенту. Например, реакция 2,4,6-триалкилфеноксильного радикала с гидропероксидом протекает в две последовательные стадии:

PhО +ROOH→PhOH+RO 2

PhO +RO 2 →ROOPhO

Стехиометрическое уравнение – 2PhО +RООН=РhОН+ROОPhО, но поскольку первая стадия определяет скорость реакции, W ROOH =k и W PhO =2k.

Таким образом, здесь не совпадают коэффициенты в кинетическом и стехиометрическом уравнениях для феноксильного радикала: порядок реакции по PhO равен 1, а стехиометрический коэффициент для PhO равен 2.

Методы вычисления константы скорости химической реакции . По кинетической кривой. Если n= 1, то k=t –1 ln 10 lg (C Ao /C A). Если суммарный порядок реакции ‑ n, а порядок реакции по данному компоненту равен 1, и все реагенты, кроме А, взяты в избытке, то

.

Для реакции А+В→продукты k находят из уравнения

При вычислении константы скорости по интегральной кинетической кривой в общем виде ставится задача по определению k в уравнении f(x)= –k`t (x ‑ относительная концентрация реагента).

Для реакции 1-го порядка f(x)=ln x, k`=k; для реакции 2-го порядка f(x)=x –1 –1, k=C o k и т.д. Из эксперимента получаем ряд значений (t 1 , x 1), (t 2 , x 2), …, (t n , x n). Прямая, проведенная в координатах f(x)–t, должна удовлетворять условию  i =f(x i)+kt i , Σ i =0. Отсюда следует, что k= Σf(x i)/Σt i .

По периоду полупревращения. Период полупревращения однозначно связан с константой скорости и исходной концентрацией реагента, что позволяет вычислить k. Так, для реакции первого порядка k=ln 2/τ 1/2 , для реакции второго порядка k=C o –1 τ 1/2 и т.д.

По начальной скорости реакции . Поскольку в начальный момент времени расходование реагентов незначительно,

и

По изменению скорости реакции во времени. Измерив концентрации реагентов в момент времени t` и t`` (С` и С``), можно вычислить среднюю скорость реакции и найти k, при ν=1 имеем

,
,
.

Специальные методы обработки кинетических кривых. Если кинетика реакции регистрируется по изменению какого-либо физического свойства системы x (оптическая плотность, электрическая проводимость и т.д.), связанного с концентрацией реагирующего вещества С так, что при C=C o , x=x o , а при С=0, х=x ∞ , то k можно определить из кинетической кривой x(t) следующими методами:

Метод Гуггенгейма (для реакций первого порядка). Измеряют x i в момент t i и x 1 ` в момент t i + и т.д. Из графика lg (х i –х i `)–t i находят k:

lg (x i –x i `)=lg[(x o –x ∞)(1–e – k )]–0,43kt i .

Метод Мангельсдорфа (для реакций первого порядка). Измерения проводят как в методе Гуггенгейма, но график строят в координатах x i ` – x i:

x i `=x i e –k  +x ∞ (1–e –k ),

наклон прямой равен e – k  , отсечение на оси ординат равно х ∞ (1–e – k ).

Метод Розвери (для реакций второго порядка). Параметр х измеряют в моменты времени t 1 , t 2 , t 3 разделенные постоянным интервалом времени . Константу скорости находят из уравнения:

.

Вопрос№3

От каких факторов зависит константа скорости химической реакции?

Константа скорости реакции (удельная скорость реакции ) - коэффициент пропорциональности в кинетическом уравнении.

Физический смысл константы скорости реакции k следует из уравнения закона действующих масс: k численно равна скорости реакции при концентрации каждого из реагирующих веществ равной 1 моль /л.

Константа скорости реакции зависит от температуры, от природы реагирующих веществ, от присутствия в системе катализатора, но не зависит от их концентрации.

1. Температура. При повышении температуры на каждые 10°C скорость реакции возрастает в 2-4 раза (Правило Вант-Гоффа) . При увеличении температуры от t1 до t2 изменение скорости реакции можно рассчитать по формуле: (t2 - t1) / 10 Vt2 / Vt1 = g (где Vt2 и Vt1 - скорости реакции при температурах t2 и t1 соответственно; g- температурный коэффициент данной реакции) . Правило Вант-Гоффа применимо только в узком интервале температур. Более точным является уравнение Аррениуса: k = A e –Ea/RT где A - постоянная, зависящая от природы реагирующих веществ; R - универсальная газовая постоянная ; Ea - энергия активации, т. е. энергия, которой должны обладать сталкивающиеся молекулы, чтобы столкновение привело к химическому превращению. Энергетическая диаграмма химической реакции. Экзотермическая реакция Эндотермическая реакция А - реагенты, В - активированный комплекс (переходное состояние) , С - продукты. Чем больше энергия активации Ea, тем сильнее возрастает скорость реакции при увеличении температуры. 2. Поверхность соприкосновения реагирующих веществ. Для гетерогенных систем (когда вещества находятся в разных агрегатных состояниях) , чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ - путем их растворения. 3. Катализ. Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными, называются катализаторами. Механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений. При гомогенном катализе реагенты и катализатор составляют одну фазу (находятся в одном агрегатном состоянии) , при гетерогенном катализе - разные фазы (находятся в различных агрегатных состояниях) . Резко замедлить протекание нежелательных химических процессов в ряде случаев можно добавляя в реакционную среду ингибиторы (явление "отрицательного катализа").

Вопрос№4

Сформулируйте и запишите закон действующих масс для реакции:

2 NO+O2=2NO2

ЗАКОН ДЕЙСТВУЮЩИХ МАСС: скорость химической реакции пропорциональна произведению концентраций реагирующих веществ. для реакции 2NO + O2 2NO2, закон действующих масс запишется так: v=kС2(NO)·С (O2), где k – константа скорости, зависящая от природы реагирующих веществ и температуры. Скорость в реакциях с участием твердых веществ определяется только концентрацией газов или растворенных веществ: С+О2=СО2, v =kCO2

Рис. 40. Зависимость величины обратной концентрации реагента от времени для реакции второго порядка

Рис. 39. Зависимость логарифма концентрации реагента от времени протекания для реакции первого порядка

Рис. 38. Изменение концентрации исходного вещества от времени в реакции первого порядка

Рис. 37. Изменение концентрации исходного вещества от времени в реакции нулевого порядка

Математически данная линейная зависимость запишется следующим образом

где k - константа скорости, С 0 - начальная молярная концентрация реагента, С - концентрация в момент времени t.

Из неё можно вывести формулу для расчёта константы скорости химической реакции нулевого порядка.

Константа скорости нулевого порядка измеряется в моль/л? с (моль · л -1 · с -1).

Время полупревращения для реакции нулевого порядка пропорционально концентрации исходного вещества

Для реакций первого порядка кинетическая кривая в координатах С,t носит экспоненциальный характер и выглядит следующим образом (рис. 38) Математически данная кривая описывается следующим уравнением

С = С 0 e - kt

На практике для реакций первого порядка кинетическую кривую чаще всего строят в координатах lnC, t. В этом случае наблюдается линейная зависимость lnС от времени (рис. 39)

ln С = lnС 0 - kt

ln С

Соответственно, величину константы скорости и время полупревращения можно рассчитать по следующим формулам

k = ln или k = 2,303lg

(при переходе от десятичного логарифма к натуральному).

Константа скорости реакции первого порядка имеет размерность t -1 , т.е. 1/с и не зависит от единиц измерения концентрации. Она показывает долю, которую составляют молекулы, вступившие в реакцию за единицу времени, от общего числа молекул реагента в системе. Таким образом, в реакциях первого порядка за одинаковые промежутки времени расходуются одинаковы доли взятого количества исходного вещества.

Второй отличительной особенностью реакций первого порядка является то, что t ½ для них не зависит от начальной концентрации реагента, а определяется только константой скорости.

Вид уравнения зависимости концентрации от времени для реакций второго порядка рассмотрим только для простейшего случая, когда в элементарном акте участвуют 2 одинаковые молекулы, или молекулы разных веществ, но начальные концентрации их (С 0) равны. При этом линейная зависимость наблюдается в координатах 1/С, t (рис. 40). Математическое уравнение этой зависимости запишется следующим образом

и измеряется в л?с -1 ?моль -1 , т.е. ее численное значение зависит от того, в каких единицах измеряется концентрация вещества.


Период полупревращения реакций второго порядка обратно пропорционален начальной концентрации реагента

Это связано с тем, что скорость реакций второго порядка в сильной мере зависит от числа столкновений между молекулами реагирующих веществ в единицу времени, которое, в свою очередь, пропорционально числу молекул в единице объема, т.е. концентрации вещества. Таким образом, чем больше концентрация вещества в системе, тем чаще сталкиваются молекулы между собой и тем за меньший промежуток времени половина их успеет прореагировать.

Реакции третьего порядка, как уже было сказано ранее, встречаются крайне редко и не представляют практического интереса. Поэтому в связи с этим мы их не будем рассматривать.

Механизмы протекания химических превращений и их скорости изучает химическая кинетика. Химические процессы протекают во времени с различными скоростями. Какие-то происходят быстро, почти мгновенно, для протекания других требуется весьма продолжительное время.

Вконтакте

Скорость реакции - скорость с которой расходуются реагенты (их концентрация уменьшается) или образуются продукты реакции в единице объёма.

Факторы, способные влиять на скорость химической реакции

На то, насколько быстро будет происходить химическое взаимодействие, могут повлиять следующие факторы:

  • концентрация веществ;
  • природа реагентов;
  • температура;
  • присутствие катализатора;
  • давление (для реакций в газовой среде).

Таким образом, изменяя определённые условия протекания химического процесса, можно повлиять на то, насколько быстро будет протекать процесс.

В процессе химического взаимодействия частицы реагирующих веществ сталкиваются друг с другом. Количество таких совпадений пропорционально числу частиц веществ в объёме реагирующей смеси, а значит и пропорционально молярным концентрациям реагентов.

Закон действующих масс описывает зависимость скорости реакции от молярных концентраций веществ, вступающих во взаимодействие.

Для элементарной реакции (А + В → …) данный закон выражается формулой:

υ = k ∙С A ∙С B,

где k - константа скорости; С A и С B - молярные концентрации реагентов, А и В.

Если одно из реагирующих веществ находится в твёрдом состоянии, то взаимодействие происходит на поверхности раздела фаз, в связи с этим концентрация твёрдого вещества не включается в уравнение кинетического закона действующих масс. Для понимания физического смысла константы скорости, необходимо принять С, А и С В равными 1. Тогда становится понятно, что константа скорости равна скорости реакции при концентрациях реагентов, равных единице.

Природа реагентов

Так как в процессе взаимодействия разрушаются химические связи реагирующих веществ и образуются новые связи продуктов реакции, то большую роль будет играть характер связей, участвующих в реакции соединений и строение молекул реагирующих веществ.

Площадь поверхности соприкосновения реагентов

Такая характеристика, как площадь поверхности соприкосновения твёрдых реагентов, на протекание реакции влияет, порой, довольно значительно. Измельчение твёрдого вещества позволяет увеличить площадь поверхности соприкосновения реагентов, а значит и ускорить протекание процесса. Площадь соприкосновения растворимых веществ легко увеличивается растворением вещества.

Температура реакции

При увеличении температуры энергия сталкивающихся частиц возрастёт, очевидно, что с ростом температуры и сам химический процесс будет ускоряться. Наглядным примером того, как увеличение температуры влияет на процесс взаимодействия веществ, можно считать приведённые в таблице данные.

Таблица 1. Влияние изменения температуры на скорость образования воды (О 2 +2Н 2 →2Н 2 О)

Для количественного описания того, как температура может влиять на скорость взаимодействия веществ используют правило Вант-Гоффа. Правило Вант-Гоффа состоит в том, что при повышении температуры на 10 градусов, происходит ускорение в 2−4 раза.

Математическая формула, описывающая правило Вант-Гоффа, выглядит следующим образом:

Где γ — температурный коэффициент скорости химической реакции (γ = 2−4).

Но гораздо более точно описывает температурную зависимость константы скорости уравнение Аррениуса:

Где R - универсальная газовая постоянная, А - множитель, определяемый видом реакции, Е, А - энергия активации.

Энергией активации называют такую энергию, которую должна приобрести молекула, чтобы произошло химическое превращение. То есть она является неким энергетическим барьером, который необходимо будет преодолеть сталкивающимся в реакционном объёме молекулам для перераспределения связей.

Энергия активации не зависит от внешних факторов, а зависит от природы вещества. Значение энергии активации до 40 - 50 кДж/моль позволяет веществам реагировать друг с другом довольно активно. Если же энергия активации превышает 120 кДж/моль , то вещества (при обычных температурах) будут реагировать очень медленно. Изменение температуры приводит к изменению количества активных молекул, то есть молекул, достигших энергии большей, чем энергия активации, а значит способных к химическим превращениям.

Действие катализатора

Катализатором называют вещество, способное ускорять процесс, но не входящее в состав его продуктов. Катализ (ускорение протекания химического превращения) разделяют на · гомогенный, · гетерогенный. Если реагенты и катализатор находятся в одинаковых агрегатных состояниях, то катализ называют гомогенным, если в различных, то гетерогенным. Механизмы действия катализаторов разнообразны и достаточно сложны. Кроме того, стоит отметить, что для катализаторов характерна избирательность действия. То есть один и тот же катализатор, ускоряя одну реакцию, может никак не изменять скорость другой.

Давление

Если в превращении участвуют газообразные вещества, то на скорость протекания процесса будет влиять изменение давления в системе. Это происходит потому , что для газообразных реагентов изменение давления приводит к изменению концентрации.

Экспериментальное определение скорости химической реакции

Определить быстроту протекания химического превращения экспериментально можно, получив данные о том, как в единицу времени меняется концентрация веществ, вступающих в реакцию, или продуктов. Методы получения таких данных делят на

  • химические,
  • физико-химические.

Химические методы достаточно просты, доступны и точны. С их помощью скорость определяют, непосредственно замеряя концентрацию или количество вещества реагентов или продуктов. В случае медленной реакции, для контроля за тем, как расходуется реагент отбирают пробы. После чего определяют содержание в пробе реагента. Осуществляя отбор проб через равные промежутки времени, можно получить данные об изменении количества вещества в процессе взаимодействия. Чаще всего используют такие виды анализа, как титриметрия и гравиметрия.

Если реакция протекает быстро, то чтобы отобрать пробу, её приходится останавливать. Это можно сделать с помощью охлаждения, резкого удаления катализатора , также можно произвести разбавление либо перевести один из реагентов в не реакционноспособное состояние.

Методы физико-химического анализа в современной экспериментальной кинетике используются чаще, чем химические. С их помощью можно наблюдать изменение концентраций веществ в реальном времени. При этом реакцию нет необходимости останавливать и отбирать пробы.

Физико-химические методы основываются на измерении физического свойства, зависящего от количественного содержания в системе определённого соединения и изменяющегося со временем. Например, если в реакции участвуют газы, то таким свойством может быть давление. Также измеряют электропроводность, показатель преломления, спектры поглощения веществ.