Тема лекции: Физико-химические методы анализа. Методы исследования в химии Методы химического анализа кратко

Согласно «Правилам ветеринарного осмотра животных и ветеринарно-санитарной экспертизы мяса и мясных продуктов», кроме патологоанатомического, органолептического и бактериологического анализа мясо вынужденного убоя, а также при подозрении, что животное перед убоем находилось в состоянии агонии или было павшим должно быть подвергнуто физико-химическом исследованиям.

Бактериоскопия . Бактериоскопическое исследование мазков отпечатков из глубоких слоев мышц, внутренних органов и лимфатических узлов имеет целью предварительного (до получения результатов бактериологического исследования) обнаружения возбудителей инфекционных заболеваний (сибирская язва, эмфизематозный карбункул и др.) и обсеменения мяса условно-патогенной микрофлорой (кишечная палочка, протей и др.).

Методика бактериоскопического исследования заключается в следующем. Кусочки мышц, внутренних органов или лимфоузлов прижигают шпателем или двукратно погружают в спирт и поджигают, затем при помощи стерильных пинцета, скальпеля или ножниц из середины вырезают кусочек ткани и делают мазки-отпечатки на предметном стекле. Сушат на воздухе, фламбируют над пламенем горелки и окрашивают по Граму. Препарат окрашивают через фильтровальную бумагу раствором карболового генцианвиолета – 2 мин., фильтровальную бумагу снимают, краску сливают и не промывая препарата обрабатывают его раствором Люголя – 2 мин., обесцвечивают 95% спиртом – 30 сек., промывают водой, докрашивают фуксином Пфейфера – 1 мин., вновь промывают водой, высушивают и микроскопируют под иммерсией. В мазках-отпечатках из глубоких слоев мяса, внутренних органов и лимфатических узлов здоровых животных микрофлора отсутствует.

При заболеваниях в мазках-отпечатках находят палочки или кокки. Полное определение обнаруженной микрофлоры может быть определено в ветеринарной лаборатории, для чего делают посев на питательные среды, получают чистую культуру и идентифицируют ее.

Определение рН . Величина рН мяса зависит от содержания в нем гликогена в момент убоя животного, а также от активности внутримышечного ферментативного процесса, который называют созреванием мяса.

Сразу после убоя реакция среды в мышцах слабощелочная или нейтральная – равная – 7. Уже через сутки рН мяса от здоровых животных в результате расщепления гликогена до молочной кислоты снижается до 5,6-5,8. В мясе больных или убитых в агональном состоянии животных такого резкого снижения величины рН не происходит, так как в мышцах таких животных содержится меньше гликогена, (расходуется при болезни как энергетическое вещество), а, следовательно, образуется меньше молочной кислоты и рН менее кислая, т.е. более высокая.

Мясо больных и переутомленных животных находится в пределах 6,3-6,5, а агонирующих или павших 6,6 и выше, она приближается к нейтральной – 7. При этом следует подчеркнуть, что мясо перед исследованием должно быть выдержано не менее 24 часов.

Указанные величины рН абсолютного значения не имеют, они носят ориентировочный, вспомогательный характер, так как величина рН зависит не только от количества гликогена в мышцах, но еще и температуры, при которой хранилось мясо и времени, прошедшего после убоя животного.

Определяют рН колометрическим или потенциометрическим методами.

Колометрический метод . Для определения рН используют аппарат Михаэлиса, который состоит из стандартного набора цветных жидкостей в запаянных пробирках, компаратора (штатива) с шестью гнездами для пробирок и набором индикаторов во флаконах.

Вначале готовят водную вытяжку (экстракт) из мышечной ткани в соотношении 1:4 – одна весовая часть мышц и 4 – дистиллированной воды. Для этого взвешивают 20 гр. мышечной ткани (без жира и соединительной ткани) мелко измельчают ее ножницами, растирают пестиком в фарфоровой ступке, в которую добавляют немного воды из общего количества 80 мл. Содержимое ступки переносят в плоскодонную колбу, ступку и пестик промывают оставшимся количеством воды, которую сливают в ту же колбу. Содержимое колбы встряхивают 3 мин., затем в течение 2 мин. отстаивают и вновь 2 мин. встряхивают. Вытяжку фильтруют через 3 слоя марли, а затем через бумажный фильтр.

Вначале ориентировочно определяют рН для выбора нужного индикатора. Для этого в фарфоровую чашечку наливают 1-2 мл, вытяжки и добавляют 1-2 капли универсального индикатора. Цвет жидкости, полученный при добавлении индикатора сравнивают с цветной шкалой имеющейся в наборе. При кислой реакции среды для дальнейшего исследования берут индикатор паранитрофенол, при нейтральной или щелочной - метанитрофенол. В гнезда компаратора вставляют пробирки одинакового диаметра из бесцветного стекла и заполняют их следующим образом: в первую, вторую и третью пробирки первого ряда наливают по 5 мл, в первую и в третью добавляют по 5 мл, дистиллированной воды, во вторую – 4 мл, воды и 1 мл, индикатора, в 5 пробирку (среднюю второго ряда) наливают 7 мл, воды, в четвертое и шестое гнездо вставляют стандартные запаянные пробирки с цветной жидкостью, подбирая их таким образом, чтобы цвет содержимого в одной из них был одинаков с цветом средней пробирки среднего ряда. РН исследуемого экстракта соответствует цифре, указанной на стандартной пробирке. Если оттенок цвета жидкости в пробирке с исследуемым экстрактом занимает промежуточное положение между двумя стандартами, то берут среднее значение между показателями этих двух стандартных пробирок. При пользовании аппаратом микро - Михаэлиса количество компонентов реакции уменьшают в 10 раз.

Потенциометрический метод . Этот метод более точен, но сложен по выполнению тем, что требует постоянной настройки потенциометра по стандартным буферным растворам. Подробное описание определения рН этим способом имеется в инструкции прилагаемой к приборам различной конструкции, при чем величину рН при помощи потенциометров можно определять как в экстрактах, так и непосредственно в мышцах.

Реакция на пероксидазу . Сущность реакции заключается в том, что находящийся в мясе фермент пероксидаза разлагает перекись водорода с образованием атомарного кислорода, который и окисляет бензидин. При этом образуется парахинондиимид, который с неокисленным бензидином дает соединение сине-зеленого цвета, переходящего в бурый. В ходе этой реакции важное значение имеет активность пероксидазы. В мясе здоровых животных она весьма активна, в мясе больных и убитых в агональном состоянии активность ее значительно снижается.

Активность пероксидазы, как и всякого фермента зависит от рН среды, хотя полного соответствия между бензидиновой реакции и рН не наблюдается.

Ход реакции: в пробирку наливают 2 мл вытяжки из мяса (в концентрации 1:4), приливают 5 капель 0,2% спиртового раствора бензидина и добавляют две капли 1% раствора перекиси водорода.

Вытяжка из мяса здоровых животных приобретает сине-зеленый цвет, переходящий через несколько минут в буро-коричневый (положительная реакция). В вытяжке из мяса больного или убитого в агональном состоянии животного сине-зеленый цвет не появляется, и вытяжка приобретает сразу буро-коричневый цвет (отрицательная реакция).

Формольная проба (проба с формалином ). При тяжело протекающих заболеваниях еще при жизни животного в мышцах в значительном количестве накапливаются промежуточные и конечные продукты белкового обмена – полипептиды, пептиды, аминокислоты и др.

Суть данной реакции заключается в осаждении этих продуктов формальдегидом. Для постановки пробы необходима водная вытяжка из мяса в соотношении 1:1.

Для приготовления вытяжки (1:1) пробу мяса освобождают от жира и соединительной ткани и взвешивают 10 гр. Затем навеску помещают с ступку, тщательно измельчают изогнутыми ножницами, приливают 10 мл. физиологического раствора и 10 капель 0,1 н. раствора гидроксида натрия. Мясо растирают пестиком. Полученную кашицу переносят с помощью ножниц или стеклянной палочки в колбу и нагревают до кипения для осаждения белков. Колбу охлаждают под струей холодной воды, после чего ее содержимое нейтрализуют добавлением 5 капель 5% раствора щавелевой кислоты и фильтруют через фильтровальную бумагу. Если вытяжка после фильтрования остается мутной, ее фильтруют вторично или центрифугируют. Если нужно получить большее количество вытяжки берут в 2-3 раза больше мяса и соответственно в 2-3 раза больше и других компонентов.

Выпускаемый промышленностью формалин имеет кислую среду, поэтому его предварительно нейтрализуют 0,1 н. раствором гидроксида натрия по индикатору, состоящему из равной смеси 0,2% водных растворов нейтральрота и метиленового голубого до перехода цвета из фиолетового в зеленый.

Ход реакции: в пробирку наливают 2 мл, вытяжки и добавляют 1 мл, нейтрализованного формалина. Вытяжка, полученная из мяса животного убитого в агонии, тяжело больного или павшего превращается в плотный желеобразный сгусток. В вытяжке из мяса больного животного выпадают хлопья. Вытяжка из мяса здорового животного остается жидкой и прозрачной или слабо мутнеет.

Химические методы анализа

(a. chemical methods of analysis; н. chemische Analyseverfahren; ф. procedes chimiques de l"analyse; и. metodos quimicos de analisis ) - совокупность методов качеств. и количеств. анализа веществ, осн. на применении хим. реакций.
Kачественные X. м. a. (см. Качественный анализ) включают использование реакций обнаружения, характерных для неорганич. ионов в растворах и для функциональных групп органич. соединений. Эти реакции обычно сопровождаются изменением окраски раствора, образованием осадков или выделением газообразных продуктов. B зависимости от количества анализируемого вещества различают макроанализ (1-0,1 г), полумикроанализ (0,1-0,01 г), микроанализ (0,01-0,001 г) и ультрамикрохим. (0,0001 г) анализ (см. Микрохимический анализ).
K количественным X. м. a. (см. Количественный анализ) обычно относят "классические" методы: гравиметрию (см. Гравиметрический анализ), титриметрию (см. Титриметрический анализ) c визуальной индикацией конечной точки титрования, и газоволюмометрию. Газоволюмометрия (газовый объёмный анализ) основана на избирательной абсорбции составных частей газовой смеси в сосудах, заполненных тем или иным поглотителем, c последующим измерением уменьшения объёма газа c помощью бюретки. Tак, диоксид углерода поглощают раствором гидроксида калия, - раствором пирогаллола, монооксид углерода - аммиачным раствором хлорида меди. Газоволюмометрия относится к экспрессным методам анализа. Oна широко используется для определения карбонатов в г. п. и минералах.
X. м. a. широко используют для анализа руд, г. п., минералов и др. материалов при определении в них компонентов c содержанием от десятых долей до неск. десятков процента. X. м.a. характеризуются высокой точностью (погрешность анализа обычно составляет десятые доли процента). Oднако эти методы постепенно вытесняются более экспрессными физ.-хим. и физ. (см. Физические методы анализа) методами анализа. Литература : Kрешков A. П., Oсновы аналитической химии, 3 изд., т. 2, M., 1970; Золотов Ю. A., Oчерки аналитической химии, M., 1977. H. B. Tрофимов.


Горная энциклопедия. - М.: Советская энциклопедия . Под редакцией Е. А. Козловского . 1984-1991 .

Смотреть что такое "Химические методы анализа" в других словарях:

    химические методы анализа - cheminiai analizės metodai statusas T sritis chemija apibrėžtis Metodai, kuriuose analizinį signalą sukelia cheminė reakcija. atitikmenys: angl. chemical analytical methods; methods of chemical analysis rus. химические методы анализа … Chemijos terminų aiškinamasis žodynas

    Основаны на зависимости физ. св в в ва от его природы, причем ана лит. сигнал представляет собой величину физ. св ва, функционально связанную с концентрацией или массой определяемого компонента. Ф. х. м. а. могут включать хим. превращения… … Химическая энциклопедия

    Основаны на использовании хим. р ций с участием ферментов. О содержании определяемого компонента судят либо по кол ву конечного продукта ферментативной р ции, либо, чаще, по начальной скорости процесса, положенного в основу методики определения… … Химическая энциклопедия

    МЕТОДЫ ГИДРОХИМИЧЕСКОГО АНАЛИЗА МОРСКОЙ ВОДЫ - химические и физико химические методы, используемые в океанологии для определения компонентов химического состава морской воды. При анализе проб морской воды устанавливают соленость, содержание растворенных газов (см. Газы) и биогенных элементов… … Морской энциклопедический справочник

    Содержание 1 Методы электроаналитической химии 2 Введение 3 Теоретическая часть … Википедия

    В этой статье отсутствует вступление. Пожалуйста, допишите вводную секцию, кратко раскрывающую тему статьи. В зависимости от точности результатов, которые необходимо получить при проведении мониторинга по тому или иному компоненту, явлению, пр … Википедия

    Совокупность методов, позволяющая выяснить количественные содер. хим. элементов (или их окислов) в осад. п. Непосредственное решение получают в результате валового хим. анализа на главные составляющие п. компоненты. Как правило, с помощью хим.… … Геологическая энциклопедия

    МЕТОДЫ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ, технологическая реализация процесса кристаллизации с целью получения монокристаллов и пленок различных веществ. В промышленности и исследовательских лабораториях кристаллы выращивают из паров, растворов, расплавов,… … Энциклопедический словарь

    Методы математические, применяемые в технологии сборного железобетона - – условно делятся на три группы: группа А – вероятностно статистические методы, включающие использование общей теории вероятностей, описательной статистики, выборочного метода и проверки статистических гипотез, дисперсионного и… … Энциклопедия терминов, определений и пояснений строительных материалов

    - (в аналитической химии) важнейшие аналитические операции, необходимые потому, что большинство аналитических методов недостаточно селективны (избирательны), т. е. обнаружению и количественному определению одного элемента (вещества) мешают многие… … Википедия

Книги

  • Аналитическая химия и физико-химические методы анализа. В 2 томах. Том 1 , Под редакцией А. А. Ищенко. В двух томах учебника представлены важнейшие разделы современной аналитической химии. В первом томе изложены теоретические основы аналитической химии, рассмотрены химические методы анализа,…
  • Аналитическая химия и физико-химические методы анализа. Шпаргалка , . В шпаргалке в краткой и удобной форме приведены ответы на все основные вопросы, предусмотренные государственным образовательным стандартом и учебной программой по дисциплине "Аналитическая…

Методом анализа называют принципы, положенные в основу анализа вещества, то есть вид и природу энергии, вызывающей возмущение химических частиц вещества.

В основе анализа лежит зависимость между фиксируемым аналитическим сигналом от наличия или концентрации определяемого вещества.

Аналитический сигнал – это фиксируемое и измеряемое свойство объекта.

В аналитической химии методы анализа классифицируют по характеру определяемого свойства и по способу регистрации аналитического сигнала:

1.химические

2.физические

3.физико-химические

Физико-химические методы называют инструментальными или измерительными, так как они требуют применения приборов, измерительных инструментов.

Рассмотрим полную классификацию химических методов анализа.

Химические методы анализа - основаны на измерении энергии химической реакции.

В ходе реакции изменяются параметры, связанные с расходом исходных веществ или образованием продуктов реакции. Эти изменения можно либо наблюдать непосредственно (осадок, газ, цвет), либо измерять такие величины, как расход реагента, массу образующегося продукта, время реакции и т.д.

По цели проведения методы химического анализа подразделяют на две группы:

I.Качественный анализ – заключается в обнаружении отдельных элементов (или ионов), из которых состоит анализируемое вещество.

Методы качественного анализа классифицируются:

1. анализ катионов

2. анализ анионов

3. анализ сложных смесей.

II.Количественный анализ – заключается в определении количественного содержания отдельных составных частей сложного вещества.

Количественные химические методы классифицируют:

1. Гравиметрический (весовой) метод анализа основан на выделении определяемого вещества в чистом виде и его взвешивании.

Гравиметрические методы по способу получения продукта реакции делят:



а) химиогравиметрические методы основаны на измерении массы продукта химической реакции;

б) электрогравиметрические методы основаны на измерении массы продукта электрохимической реакции;

в) термогравиметрические методы основаны на измерении массы вещества, образующегося при термическом воздействии.

2. Волюмометрические методы анализа основаны на измерении объема реагента, израсходованного на взаимодействие с веществом.

Волюмометрические методы в зависимости от агрегатного состояния реагента делят на:

а) газоволюметрические методы, которые основаны на избирательном поглощении определяемого компонента газовой смеси и измерением объема смеси до и после поглощения;

б) ликвидоволюметрические (титриметрические или объёмные) методы основаны на измерении объема жидкого реагента, израсходованного на взаимодействие с определяемым веществом.

В зависимости от типа химической реакции выделяют методы объемного анализа:

· протолитометрия – метод, основанный на протекании реакции нейтрализации;

· редоксометрия – метод, основанный на протекании окислительно-восстановительных реакциях;

· комплексонометрия – метод, основанный на протекании реакции комплексообразования;

· методы осаждения – методы, основанные на протекании реакций образования осадков.

3. Кинетические методы анализа основаны на определении зависимости скорости химической реакции от концентрации реагирующих веществ.

Лекция № 2. Стадии аналитического процесса

Решение аналитической задачи осуществляется путем выполнения анализа вещества. По терминологии ИЮПАК анализом[‡] называют процедуру получения опытным путем данных о химическом составе вещества.

Независимо от выбранного метода проведение каждого анализа складывается из следующих стадий:

1) отбор пробы (пробоотбор);

2) подготовка пробы (пробоподготовка);

3) измерение (определение);

4) обработка и оценка результатов измерений.

Рис1. Схематическое изображение аналитического процесса.

Отбор проб

Проведение химического анализа начинают с отбора и подготовки пробы к анализу. Следует отметить, что все стадии анализа связаны между собой. Так, тщательно измеренный аналитический сигнал не дает правильной информации осодержании определяемого компонента, если неправильно проведен отбор или подготовка пробы к анализу. Погрешность при отборе пробы часто опреде­ляет общую точность определения компонента и делает бессмысленным ис­пользование высокоточных методов. В свою очередь отбор и подготовка пробы зависят не только от природы анализируемого объекта, но и от способа изме­рения аналитического сигнала. Приемы и порядок отбора пробы и ее подготов­ки настолько важны при проведении химического анализа, что обычно предпи­сываются Государственным стандартом (ГОСТ).

Рассмотрим основные правила отбора проб:

· Результат может быть правильным только в том случае, если проба достаточно представительна , то есть точно отражает состав материала, из которого она была отобрана. Чем больше материала отобрано для пробы, тем она представительней. Однако с очень большой пробой трудно работать, это увеличивает время анализа и расходы на него. Таким образом, отбирать пробу нужно так, чтобы она была представительной и не очень большой.

· Оптимальная масса пробы обусловлена неоднородностью анализируемого объекта, размером частиц, с которых начинается неоднородность, и требованиями к точности анализа.

· Для обеспечения представительности пробы необходимо обеспечить однородность партии. Если сформировать однородную партию не удается, то следует использовать расслоение партии на однородные части.

· При отборе проб учитывают агрегатное состояние объекта.

· Должно выполняться условие по единообразию способов отбора проб: случайный отбор, периодический, шахматный, многоступенчатый отбор, отбор «вслепую», систематический отбор.

· Один из факторов, который нужно учитывать при выборе способа отбора пробы – возможность изменения состава объекта и содержания определяемого компонента во времени. Например, переменный состав воды в реке, изменение концентрации компонентов в пищевых продуктах и т.д.

Существует множество видов анализа. Их можно классифицировать по разным признакам:.

- по характеру получаемой информации . Различают качественный анализ (в этом случае выясняют, из чего состоит данное вещество, какие именно компоненты входят в его состав) и количественный анализ (определяют содержание тех или иных компонентов, например в % по массе, или соотношения разных компонентов). Грань между качественным и количественным анализом весьма условна, особенно при исследовании микропримесей. Так, если в ходе качественного анализа некоторый компонент не был обнаружен, то обязательно указывают, какое минимальное количество этого компонента можно было бы обнаружить с помощью данного метода. Возможно, отрицательный результат качественного анализа связан не с отсутствием компонента, а с недостаточной чувствительностью использованного метода! С другой стороны, количественный анализ всегда выполняется с учетом заранее найденного качественного состава исследуемого материала.

- классификация по объектам анализа: технический, клинический , криминалистический и др.

- классификация по объектам определения .

Не следует путать термины - анализировать и определять. Объектами определения называют компоненты, содержание которых требуется установить или достоверно обнаружить. С учетом природы определяемого компонента выделяют различные виды анализа (табл.1.1).

Таблица 1-1. Классификация видов анализа (по объектам определения или обнаружения)

Вид анализа Объект определения(или обнаружения) Пример Область применения
Изотопный Атомы с заданными значениями заряда ядра и массового числа (изотопы) 137 Cs, 90 Sr, 235 U Атомная энергетика, контроль загрязнения окружающей среды, медицина, археология и др.
Элементный Атомы с заданными значениями заряда ядра (элементы) Cs, Sr, U, Cr, Fe, Hg Повсеместно
Вещественный Атомы (ионы) элемента в данной степени окисления или в соединениях заданного состава (форма элемента) Сr(III), Fe 2+ , Hg в составе комплексных соединений Химическая технология, контроль загрязнения окружающей среды, геология, металлургия и др.
Молекулярный Молекулы с заданным составом и структурой Бензол, глюкоза, этанол Медицина, контроль загрязнения окружающей среды, агрохимия, химическая технология, криминалистика.
Структурно-групповойилифункциональный Сумма молекул с заданными структурными характеристиками и близкими свойствами (сумма изомеров и гомологов) Предельные углеводороды, моносахариды спирты Химическая технология, пищевая промышленность, медицина.
Фазовый Фаза или элемент в составе данной фазы Графит в стали, кварц в граните Металлургия, геология, технология стройматериалов.

Классификация «по объектам определения» очень важна, поскольку помогает выбрать подходящий способ проведения анализа (аналитический метод). Так, для элементного анализа часто применяют спектральные методы, основанные на регистрации излучения атомов на разных длинах волн. Большинство спектральных методов предполагает полную деструкцию (атомизацию) анализируемого вещества. Если же надо установить природу и количественное содержание разных молекул, входящих в состав исследуемого органического вещества (молекулярный анализ ), то одним из наиболее подходящих методов окажется хроматографический, не предполагающий деструкции молекул.

В ходе элементного анализа идентифицируют или количественно определяют элементы независимо от их степени окисления или от вхождения в состав тех или иных молекул. Полный элементный состав исследуемого материала определяют в редких случаях. Обычно достаточно определить некоторые элементы, существенно влияющие на свойства исследуемого объекта.

Вещественный анализ стали выделять в самостоятельный вид сравнительно недавно, раньше его рассматривали как часть элементного. Цель вещественного анализа - раздельно определить содержание разных форм одного и того же элемента. Например, хрома (III) и хрома (VI) в сточной воде. В нефтепродуктах раздельно определяют «серу сульфатную», «серу свободную» и «серу сульфидную». Исследуя состав природных вод, выясняют, какая часть ртути существует в виде прочных (недиссоциирующих) комплексных и элементоорганических соединений, а какая - в виде свободных ионов. Эти задачи труднее, чем задачи элементного анализа.

Молекулярный анализ особенно важен при исследовании органических веществ и материалов биогенного происхождения. Примером может быть определение бензола в бензине или ацетона в выдыхаемом воздухе. В подобных случаях необходимо учитывать не только состав, но и структуру молекул. Ведь в исследуемом материале могут находиться изомеры и гомологи определяемого компонента. Так, часто приходится определять содержание глюкозы в присутствии множества ее изомеров и других родственных соединений, например сахарозы.

Когда речь идет об определении суммарного содержания всех молекул, имеющих некоторые общие структурные особенности, одни и те же функциональные группы, а следовательно и близкие химические свойства, пользуются термином структурно-групповой (или функциональный) анализ. Например, сумму спиртов (органических соединений, имеющих ОН-группу) определяют, проводя общую для всех спиртов реакцию с металлическим натрием, а затем измеряя объем выделяющегося водорода. Сумму непредельных углеводородов (имеющих двойные или тройные связи) определяют, окисляя их иодом. Суммарные содержания однотипных компонентов иногда устанавливают и в неорганическом анализе - например, суммарное содержание редкоземельных элементов.

Специфическим видом анализа является фазовый анализ . Так, углерод в чугунах и сталях может растворяться в железе, может образовывать химические соединения с железом (карбиды), а может и образовывать отдельную фазу (графит). Физические свойства изделия (прочность, твердость и т.п.) зависят не только от общего содержания углерода, но и от распределения углерода между этими формами. Поэтому металлургов интересует не только общее содержание углерода в чугуне или стали, но и наличие в этих материалах отдельной фазы графита (свободного углерода), а также количественное содержание этой фазы.

Основное внимание в базовом курсе аналитической химии уделяется элементному и молекулярному анализу. В других видах анализа применяют весьма специфические методы, и в программу базового курса изотопный, фазовый и структурно-групповой анализы не входят.

Классификация по точности результатов, продолжительности и стоимости анализов. Упрощенный, быстрый и дешевый вариант анализа называют экспресс-анализом . Для их выполнения часто применяют тест-методы. Например, любой человек (не аналитик) может оценить содержание нитратов в овощах (сахара в моче, тяжелых металлов в питьевой воде и т.п.), воспользовавшись специальной индикаторной бумагой. Результат будет виден на глаз, поскольку содержание компонента определяется с помощью прилагаемой к бумаге шкалы окрасок. Тест-методы не требуют доставки пробы в лабораторию, какой-либо обработки исследуемого материала; в этих методах не применяется дорогостоящее оборудование, не проводятся расчеты. Важно лишь, чтобы результат не зависел от присутствия в исследуемом материале других компонентов, а для этого надо, чтобы реактивы, которыми пропитывают бумагу при ее изготовлении, были бы специфическими. Обеспечить специфичность тест-методов очень трудно, и широко распространенным этот вид анализа стал лишь в последние годы ХХ века.. Конечно, тест-методы не могут обеспечить высокой точности анализа, но она требуется далеко не всегда.

Прямая противоположность экспресс-анализу - арбитражный анализ. Основное требование к нему - обеспечить как можно большую точность результатов. Арбитражные анализы проводят довольно редко (например, для разрешения конфликта между изготовителем и потребителем промышленной продукции). Для выполнения таких анализов привлекают наиболее квалифицированных исполнителей, применяют самые надежные и многократно проверенные методики. Время, затраченное на выполнение такого анализа, как и его стоимость, - не имеют принципиального значения.

Промежуточное место между экспрессным и арбитражным анализом - по точности, длительности, стоимости и другим показателям - занимают так называемые рутинные анализы . Основная часть анализов, выполняемых в заводских и других контрольно-аналитических лабораториях, относится именно к этому типу.

Существуют и другие способы классификации, другие виды анализов. Например, учитывают массу исследуемого материала, непосредственно используемую в ходе анализа. В рамках соответствующей классификации выделяют макроанализ (килограммы, литры), полумикроанализ (доли грамма, миллилитры) и микроанализ . В последнем случае применяют навески порядка миллиграмма и менее, объемы растворов измеряют в микролитрах, а результат реакции иногда приходится наблюдать под микроскопом. Микроанализ используется в аналитических лабораториях довольно редко.

1.3. Методы анализа

Понятие «метод анализа» является важнейшим для аналитической химии. Этот термин используют, когда хотят выявить суть того или иного анализа, его основной принцип. Методом анализа называют достаточно универсальный и теоретически обоснованный способ проведения анализа, безотносительно к тому, какой компонент определяют и что именно анализируют. Существуют три основных группы методов (рис.1-1). Одни из них нацелены преимущественно на разделение компонентов исследуемой смеси (последующий анализ без этой операции оказывается неточным или вообще невозможным). В ходе разделения обычно происходит и концентрирование определяемых компонентов (см. главу 8). Примером могут быть методы экстрагирования или методы ионного обмена. Другие методы применяют в ходе качественного анализа, они служат для достоверного опознания (идентификации) интересующих нас компонентов. Третьи, наиболее многочисленные, предназначены для количественного определения компонентов. Соответствующие группы называют методами разделения и концентрирования, методами идентификации и методами определения. Методы двух первых групп, как правило, играют вспомогательную роль; они будут рассмотрены позднее. Наибольшее значение для практики имеют методы определения .

Кроме трех основных групп, существуют гибридные методы. На рис.1.1 эти методы не показаны. В гибридных методах разделение, идентификация и определение компонентов органично сочетаются в одним приборе (или в едином комплексе приборов). Важнейшим из таких методов является хроматографический анализ. В специальном приборе (хроматографе) компоненты исследуемой пробы (смеси) разделяются, поскольку они с разной скоростью двигаются сквозь колонку, заполненную порошком твердого вещества (сорбента). По времени выхода компонента из колонки судят о его природе и таким образом опознают все компоненты пробы. Вышедшие из колонки компоненты по очереди попадают в другую часть прибора, где специальное устройство – детектор - измеряет и записывает сигналы всех компонентов. Нередко тут же проводится автоматический расчет содержаний всех компонентов. Понятно, что хроматографический анализ нельзя считать только методом разделения компонентов, или только методом количественного определения, это именно гибридный метод.

Каждый метод определения объединяет множество конкретных методик, в которых измеряется одна и та же физическая величина. Например, для проведения количественного анализа можно измерить потенциал электрода, опущенного в исследуемый раствор, а потом по найденной величине потенциала рассчитать содержание некоторого компонента раствора. Все методики, где основной операцией является измерение потенциала электрода, считают частными случаями потенциометрического метода . При отнесении методики к тому или иному аналитическому методу не важно, какой объект исследуется, какие именно вещества и с какой точностью определяются, какой прибор используют и как проводят расчеты - важно лишь, какую величину мы измеряем. Измеряемую в ходе анализа физическую величину, зависящую от концентрации определяемого компонента, принято называть аналитическим сигналом .

Аналогичным образом можно выделить метод спектрального анализа. В этом случае основная операция - измерение интенсивности света, излучаемого пробой на определенной длине волны. Метод титриметрического (объемного) анализа основан на измерении объема раствора, затраченного на химическую реакцию с определяемым компонентом пробы. Слово «метод» часто опускают, говорят просто «потенциометрия», «спектральный анализ», «титриметрия» и т.п. В рефрактометрическом анализе сигналом является показатель преломления света исследуемым раствором, в спектрофотометрии – поглощение им света (на определенной длине волны). Перечень методов и соответствующих им аналитических сигналов можно продолжить, всего известно несколько десятков независимых методов.

Каждый метод определения имеет свои собственные теоретические основы и связан с применением специфического оборудования. Области применения разных методов существенно различаются. Одни методы преимущественно используются для анализа нефтепродуктов, другие – для анализа лекарственных препаратов, третьи – для исследования металлов и сплавов, и т.д. Аналогично можно выделять методы для проведения элементного анализа, методы изотопного анализа и т.д. Есть и универсальные методы, применяемые в анализе самых разных материалов и пригодные для определения в них самых разных компонентов. Например, спектрофотометрический метод может служить и для элементного, и для молекулярного, и для структурно-группового анализа.

Точность, чувствительность и другие характеристики отдельных методик, относящихся к одному и тому же аналитическому методу, различаются, но не так сильно, как характеристики разных методов. Любую аналитическую задачу всегда можно решить несколькими разными методами (скажем, хром в легированной стали можно определить и спектральным методом, и титриметрическим, и потенциометрическим). Аналитик выбирает метод, учитывая известные возможности каждого из них и конкретные требования к данному анализу. Нельзя раз и навсегда выбрать “лучшие” и “худшие” методы, все зависит от решаемой задачи, от требований к результатам анализа. Так, гравиметрический анализ дает, как правило, более точные результаты, чем спектральный, но требует больших затрат труда и времени. Поэтому гравиметрический анализ хорош для проведения арбитражных анализов, но не годится для экспресс-анализа.

Методы определения делят на три группы: химические, физические и физико-химические . Нередко физические и физико-химические методы объединяют общим названием “инструментальные методы”, поскольку в обоих случаях используются приборы, причем одни и те же. Вообще границы между группами методов весьма условны.

Химические методы основаны на проведении химической реакции между определяемым компонентом и специально добавляемым реагентом. Реакция проходит по схеме:

Здесь и далее символом Х обозначается определяемый компонент (молекула, ион, атом и т.п.), R - добавляемый реагент, Y - совокупность продуктов реакции. К группе химических методов относят классические (давно известные и хорошо изученные) методы определения, прежде всего гравиметрию и титриметрию. Число химических методов сравнительно невелико, все они имеют одни и те же теоретические основы (теорию химических равновесий, законы химической кинетики и т.п.). В качестве аналитического сигнала в химических методах обычно измеряют массу или объем вещества. Сложные физические приборы, за исключением аналитических весов, и специальные эталоны химического состава в химических методах не используются. Эти методы имеют много общего и по своим возможностям. Они будут рассмотрены в главе 4.

Физические методы не связаны с проведением химических реакций и применением реагентов. Их основной принцип – сопоставление однотипных аналитических сигналов компонента Х в исследуемом материале и в некотором эталоне (образце с точно известной концентрацией Х). Заранее построив градуировочный график (зависимость сигнала от концентрации или массы Х) и измерив значение сигнала для пробы исследуемого материала, рассчитывают концентрацию Х в этом материале. Существуют и другие способы расчета концентраций (см.главу 6). Физические методы обычно чувствительнее, чем химические, поэтому определение микропримесей ведут преимущественно физическими методами. Эти методы легко поддаются автоматизации, требуют меньших затрат времени на проведение анализа. Однако физические методы нуждаются в специальных эталонах, требуют довольно сложного, дорогого и весьма специализированного оборудования, К тому же они, как правило, менее точны, чем химические.

Промежуточное место между химическими и физическими методами по своим принципам и возможностям занимают физико-химические методы анализа. В этом случае аналитик проводит химическую реакцию, но за ее ходом или за ее результатом следит не визуально, а с применением физических приборов. Например, постепенно добавляет к исследуемому раствору другой – с известной концентрацией растворенного реагента, и при этом контролирует потенциал электрода, опущенного в титруемый раствор (потенциометрическое титрование ), По скачку потенциала аналитик судит об окончании реакции, измеряет затраченный на нее объем титранта и рассчитывают результат анализа. Такие методы, как правило, столь же точны, как и химические, и почти столь же чувствительны, как и физические методы.

Инструментальные методы часто разделяют по другому, более четко выраженному признаку – по природе измеряемого сигнала. В этом случае выделяют подгруппы оптических, электрохимических, резонансных, активационных и других методов. Существуют также немногочисленные и пока что недостаточно развитые методы биологические и биохимические методы.

Анализ вещества может проводиться с целью установление качественного или количественного его состава. В соответствии с этим различают качественный и количественный анализ.

Качественный анализ позволяет установить, из каких химических элементов состоит анализируемое вещество и какие ионы, группы атомов или молекулы входят в его состав. При исследовании состава неизвестного вещества качественный анализ всегда предшествует количественному, так как выбор метода количественного определения составных частей анализируемого вещества зависит от данных, полученных при его качественном анализе.

Качественный химический анализ большей частью основывается на превращении анализируемого вещества в какое - нибудь новое соединение, обладающее характерными свойствами: цветом, определенным физическим состоянием, кристаллической или аморфной структурой, специфическим запахом и т.п. Химическое превращение, происходит при этом, называют качественной аналитической реакцией, а вещества, вызывающие это превращение, называют реактивами (реагентами).

При анализе смеси нескольких веществ, близких по химическим свойствам, их предварительно разделяют и только затем проводят характерные реакции на отдельные вещества (или ионы), поэтому качественный анализ охватывает не только отдельные реакции обнаружения ионов, но и методы их разделения.

Количественный анализ позволяет установить количественные соотношения частей данного соединения или смеси веществ. В отличии от качественного анализа количественный анализ дает возможность определить содержание отдельный компонентов анализируемого вещества или общее содержание определяемого вещества в исследуемом продукте.

Методы качественного и количественного анализа, позволяющие определить в анализируемом веществе содержание отдельных элементов, называют элементами анализа; функциональных групп - функциональным анализом; индивидуальных химических соединений, характеризующихся определенным молекулярным весом, - молекулярным анализом.

Совокупность разнообразных химических, физических и физико - химических методов разделения и определения отдельных структурных (фазовых) составляющих гетерогенных систем, различающихся по свойствам и физическому строению и ограниченных друг от друга поверхностями раздела, называют фазовым анализом.

Методы качественного анализа

В качественном анализе для установления состава исследуемого вещества используют характерные химические или физические свойства этого вещества. Совершенно нет необходимости выделять открываемые элементы в чистом виде, что бы обнаружить их присутствие в анализируемом веществе. Однако выделение в чистом виде металлов, неметаллов и их соединений иногда используется в качественном анализе для их идентификации, хотя такой путь анализа весьма труден. Для обнаружения отдельных элементов пользуются более простыми и удобными методами анализа, основанными на химических реакциях, характерных для ионов данных элементов и протекающих при строго определенных условиях.

Аналитическим признаком присутствия в анализируемом соединении искомого элемента является выделение газа, отличающегося специфическим запахом; в другом - выпадении осадка, характеризующегося определенным цветом.

Реакции, протекающее между твердыми веществами и газами. Аналитические реакции могут протекать не только в растворах, но имежду твердыми, а также и газообразными веществами.

Примером реакции между твердыми веществами является реакция выделение металлической ртути при нагревании сухих солей ее с карбонатом натрия. Образование белого дыма при взаимодействии газообразного аммиака с хлористым водородом может служить примером аналитической реакции с участием газообразных веществ.

Реакции, применяемые в качественном анализе можно подразделить на следующие группы.

1. Реакции осаждения, сопровождающиеся образованием осадков различных цвета. Например:

CaC2O4 - белого цвета

Fe43 - синий,

CuS - коричнево - желтый

HgI2 - красный

MnS - телесно - розовый

PbI2 - золотистый

Образующиеся осадки могут отличаться определенной кристаллической структурой, растворимостью в кислотах, щелочах, аммиака и т.п.

2. Реакции, сопровождающиеся образованием газов, обладающих известным запахом, растворимостью и т.д.

3. Реакции, сопровождающиеся образованием слабых электролитов. К числу таких реакций, в результате который образуются:CH3COOH, H2F2, NH4OH, HgCl2, Hg(CN)2, Fe(SCN)3 и т.п. Реакциями этого же типа можно считать реакции кислотно - основного взаимодействия, сопровождающиеся образованием нейтральных молекул воды, реакции образования газов и малорастворимых в воде осадков и реакции комплексообразования.

4. Реакции кислотно- основного взаимодействия, сопровождающиеся переходом протонов.

5. Реакции комплексообразования, сопровождающиеся присоединения к атомам комплексообразователя различных легандов - ионов и молекул.

6. Реакции комплексообразования, связанные с кислотно - основным взаимодействием

7. Реакции окисления - восстановления, сопровождающиеся переходом электронов.

8. Реакции окисления - восстановления, связанные с кислотно - основным взаимодействием.

9. Реакции окисления - восстановления, вязанные с комплексообразованием.

10. Реакции окисления - восстановления, сопровождающиеся образованием осадков.

11. Реакции ионного обмена, протекающие на катионитах или анионитах.

12. Каталитические реакции, используемые в кинетических методах анализа

Анализ мокрым и сухим путем

Реакции, применяемые в качественном химическом анализе, чаще всего проводят в растворах. Анализируемое вещество сначала растворяют, а затем действуют на полученный раствор соответствующими реактивами.

Для растворения анализируемого вещества применяют дистиллированную воду, уксусную и минеральные кислоты, царскую водку, водный раствор аммиака, органические растворители и т.п. Чистота применимых растворителей является важным условием для получения правильных результатов.

Переведенное в раствор вещество подвергают систематическому химическому анализу. Систематический анализ состоит из ряд предварительных испытаний и последовательно выполняемых реакций.

Химический анализ исследуемых веществ в растворах называют анализо мокрым путем.

В некоторых случаях вещества анализируют сухим путем, без перевода их в раствор. Чаще всего такой анализ сводиться к испытанию способности вещества окрашивать бесцветное пламя горелки в характерный цвет или придавать определенную окраску плаву (так называемую перлу), полученному при нагревании вещества с тетраборатом натрия (бурой) или фосфатом натрия ("фосфорной солью") в ушке из платиновой проволоки.

Химический и физический метод качественного анализа.

Химические методы анализа. Методы определения состава веществ, основанные на использовании их химических свойств, называют химическими методами анализа.

Химические методы анализа широко применяют в практике. Однако они имеют ряд недостатков. Так, для определения состава данного вещества иногда необходимо предварительно отделить определяемую составную часть от посторонних примесей и выделить ее в чистом виде. Выделение веществ в чистом виде часто составляет очень трудную, а иногда и невыполнимую задачу. Кроме того, для определения малых количеств примесей (менее 10"4%), содержащихся в анализируемом веществе, приходится иногда брать большие пробы.

Физические методы анализа. Присутствие того или иного химического элемента в образце можно обнаружить и не прибегая к химическим реакциям, основываясь непосредственно на изучении физических свойств исследуемого вещества, например окрашивании бесцветного пламени горелки в характерные цвета летучими соединениями некоторых химических элементов.

Методы анализа, при помощи которых можно определить состав исследуемого вещества, не прибегая к использованию химических реакций, называют физическими методами анализа. К физическим методам анализа относятся методы, основанные на изучении оптических, электрических, магнитных, тепловых и других физических свойств анализируемых веществ.

К числу наиболее широко применяемых физических методов анализа относятся следующие.

Спектральный качественный анализ. Спектральный анализ основан на наблюдении эмиссионных спектров (спектров испускания, или излучения) элементов, входящих в состав анализируемого вещества.

Люминесцентный (флуоресцентный) качественный анализ. Люминесцентный анализ основан на наблюдении люминесценции (излучение света) анализируемых веществ, вызываемой действием ультрафиолетовых лучей. Метод применяется для анализа природных органических соединений, минералов, медицинских препаратов, ряда элементов и др.

Для возбуждения свечения исследуемое вещество или его раствор облучают ультрафиолетовыми лучами. При этом атомы вещества, поглотив определенное количество энергии, переходят в возбужденное состояние. Это состояние характеризуется большим запасом энергии, чем нормальное состояние вещества. При переходе вещества от возбужденного к нормальному состоянию возникает люминесценция за счет избыточной энергии.

Люминесценцию, очень быстро затухающую после прекращения облучения, называют флуоресценцией.

Наблюдая характер люминесцентного свечения и измеряя интенсивность, или яркость люминесценции соединения или его растворов, можно судить о составе исследуемого вещества.

В ряде случаев определения ведут на основании изучения флуоресценции, возникающей в результате взаимодействия определяемого вещества с некоторыми реактивами. Известны также люминесцентные индикаторы, применяемые для определения реакции среды по изменению флуоресценции раствора. Люминесцентные индикаторы применяют при исследовании окрашенных сред.

Рентгеноструктурный анализ. С помощью рентгеновских лучей можно установить размеры атомов (или ионов) и их взаимное расположение в молекулах исследуемого образца, т. е. оказывается возможным определить структуру кристаллической решетки, состав вещества и иногда наличие в нем примесей. Метод не требует химической обработки вещества и больших его количеств.

Масс-спектрометрический анализ. Метод основан на определении отдельных ионизированных частиц, отклоняемых электромагнитным полем в большей или меньшей степени в зависимости от отношения их массы к заряду (подробнее см. книга 2).

Физические методы анализа, имея ряд преимуществ перед химическими, в некоторых случаях дают возможность решать вопросы, которые не удается разрешить методами химического анализа; пользуясь физическими методами, можно разделить элементы, трудно разделяемые химическими методами, а также вести непрерывную и автоматическую регистрацию показаний. Очень часто физические методы анализа применяют наряду с химическими, что позволяет использовать преимущества тех и других методов. Сочетание методов имеет особенно важное значение при определении в анализируемых объектах ничтожных количеств (следов) примесей.

Макро-, полумикро- и микрометоды

Анализ больших и малых количеств исследуемого вещества. В прежнее время химики пользовались для анализа большими количествами исследуемого вещества. Для того чтобы определить состав какого-либо вещества, брали пробы в несколько десятков граммов и растворяли их в большом объеме жидкости. Для этого требовалась и химическая посуда соответстэующей емкости.

В настоящее время химики обходятся в аналитической практике малыми количествами веществ. В зависимости от количества анализируемого вещества, объема растворов, используемых для анализа, и главным образом от применяемой техники выполнения эксперимента, методы анализа делят на макро-, полумикро- и микрометоды.

При выполнении анализа макрометодом для проведения реакции берут несколько миллилитров раствора, содержащего не менее 0,1 г вещества, и к испытуемому раствору добавляют не менее 1 мл раствора реактива. Реакции проводят в пробирках. При осаждении получают объемистые осадки, которые отделяют фильтрованием через воронки с бумажными фильтрами.

Капельный анализ

Техника проведения реакций в капельном анализе. Большое значение в аналитической химии приобрел так называемый капельный анализ, введенный в аналитическую практику Н. А. Тананаевым.

При работе этим методом большое значение имеют явления капиллярности и адсорбции, при помощи которых можно открывать и разделять различные ионы при их совместном присутствии. При капельном анализе отдельныеи реакции проводят на фарфоровых или стеклянных пластинках или на фильтровальной бумаге. При этом на пластинку или бумагу наносят каплю испытуемого раствора и каплю реактива, вызывающего характерное окрашивание или образование кристаллов.

При выполнении реакции на фильтровальной бумаге используют капиллярно-адсорбционные свойства бумаги. Жидкость всасывается бумагой, а образующееся окрашенное соединение адсорбцируется на небольшом участке бумаги, вследствие чего повышается чувствительность реакции.

Микрокристаллоскопический анализ

Микрокристаллоскопический метод анализа основан на обнаружении катионов и анионов при помощи реакции, в результате которых образуется соединение, обладающие характерной формой кристаллов.

Раньше этот метод применялся в качественном микрохимическом анализе. В настоящее время он используется также и в капельном анализе.

Для рассмотрения образующихся кристаллов в микрокристаллоскопическом анализе пользуются микроскопом.

Кристаллы характерной формы пользуются при работе с чистыми веществами путем внесения капли раствора или кристаллика реактива в каплю исследуемого вещества, помещенную на предметном стекле. Через некоторое время появляются ясно различимые кристаллы определенной формы и цвета.

Метод растирания порошка

Для обнаружения некоторых элементов иногда применяют метод растирания в фарфоровой пластинке порошкообразного анализируемого вещества с твердым реагентом. Открываемый элемент обнаруживается по образованию характерных соединений, отличающихся по цвету или запаху.

Методы анализа, основанные на нагревании и сплавлении вещества

Пирохимический анализ. Для анализа веществ применяют также методы, основанные на нагревании испытуемого твердого вещества или его сплавлении с соответствующими реагентами. Одни вещества при нагревании плавятся при определенной температуре, другие возгоняются, причем на холодных стенках прибора появляются характерные для каждого вещества осадки; некоторые соединения при нагревании разлагаются с выделением газообразных продуктов и т. д.

При нагревании анализируемого вещества в смеси с соответствующими реагентами происходят реакции, сопровождающиеся изменением цвета, выделением газообразных продуктов, образованием металлов.

Спектральный качественный анализ

Помимо описанного выше способа наблюдения невооруженным глазом за окрашиванием бесцветного пламени при внесении в него платиновой проволоки с анализируемым веществом в настоящее время широко используются другие способы исследования света, излучаемого раскаленными парами или газами. Эти способы основаны на применении специальных оптических приборов, описание которых дается в курсе физики. В такого рода спектральных приборах происходит разложение в спектр света с различными длинами волн, испускаемого образцом накаленного в пламени вещества.

В зависимости от способа наблюдения спектра спектральные приборы называют спектроскопами, с помощью которых ведут визуальное наблюдение спектра, или спектрографами, в которых спектры фотографируются.

Хроматографический метод анализ

Метод основан на избирательном поглощении (адсорбции) отдельных компонентов анализируемой смеси различными адсорбентами. Адсорбентами называют твердые тела, на поверхности которых происходит поглощение адсорбируемого вещества.

Сущность хроматографического метода анализа кратко заключается в следующем. Раствор смеси веществ, подлежащих разделению, пропускают через стеклянную трубку (адсорбционную колонку), заполненную адсорбентом.

Кинетические методы анализа

Методы анализа, основанные на измерении скорости реакции и использовании ее величины для определения концентрации, объединяются под общим названием кинетических методов анализа (К. Б. Яцимирский).

Качественное обнаружение катионов и анионов кинетическими методами выполняется довольно быстро и сравнительно просто, без применения сложных приборов.