Титриметрический метод анализа основан на использовании. Титриметрические методы анализа

Введение

Лабораторный практикум выполняется после изучения теоретического курса «Аналитическая химия и ФХМА» и служит для закрепления и углубления полученных знаний.

Задачей количественного анализа является определение количества (содержания) элементов (ионов), радикалов, функциональных групп, соединений или фаз в анализируемом объекте . В этом курсе рассматриваются основные методы титриметрического (объемного) анализа, способы титрования и их практическое применение.

Прежде чем приступить к выполнению лабораторного практикума, студенты проходят инструктаж по технике безопасности. Перед выполнением каждой работы студент должен сдать коллоквиум по разделам, указанным преподавателем, а также по методике проведения анализа. Для этого необходимо:

1) повторить соответствующий раздел курса;

2) подробно ознакомиться с методикой проведения работы;

3) составить уравнения химических реакций, лежащих в основе проводимого химического анализа;

4) изучить особенности проведения анализа с точки зрения техники безопасности.

По результатам работы студенты составляют отчёт, в котором должны быть указаны:

· название работы;

· цель работы;

· теоретические основы метода: сущность метода, основное уравнение, расчеты и построение кривых титрования, выбор индикатора;

· реактивы и оборудование, используемые в ходе проведения работы;

· методика анализа:

Приготовление первичных стандартов;

Приготовление и стандартизация рабочего раствора;

Определение содержания исследуемого вещества в растворе;

· экспериментальные данные;

· статистическая обработка результатов анализа;

· выводы.

ТИТРИМЕТРИЧЕСКИЕ МЕТОДЫ АНАЛИЗА



Титриметрический метод анализа основан на измерении объема реагента точно известной концентрации (титранта), затраченного на химическую реакцию с определяемым веществом.

Процедура определения (титрование) состоит в том, что к точно известному объему раствора определяемого вещества с неизвестной концентрацией из бюретки по каплям добавляют титрант, до наступления точки эквивалентности.

где X – определяемое вещество; R – титрант, P – продукт реакции.

Точка эквивалентности (т.э.) – это теоретическое состояние раствора, наступающее в момент добавления эквивалентного количества титранта R к определяемому веществу X . На практике титрант добавляют к определяемому веществу до достижения конечной точкой титрования (к.т.т.), под которой понимают при визуальной индикации точки эквивалентности момент изменения окраски индикатора, добавленного в раствор. Кроме визуальной индикации точка эквивалентности может быть зарегистрирована инструментальными способами. В этом случае под конечной точкой титрования (к.т.т.) понимают момент резкого изменения физической величины, измеряемой в процессе титрования (сила тока, потенциал, электропроводность и т. д.).

В титриметрическом методе анализа используются следующие типы химических реакций: реакции нейтрализации, реакции окисления-восстановления, реакции осаждения и реакции комплексообразования.

В зависимости от типа применяемой химической реакции различают следующие методы титриметрического анализа:

– кислотно-основное титрование;

– осадительное титрование;

– комплексонометрическое титрование или комплексонометрия;

– окислительно-восстановительное титрование или редоксиметрия.

К реакциям, применяемым в титриметрическом методе анализа, предъявляют следующие требования:

· реакция должна протекать в стехиометрических соотношениях, без побочных реакций;

· реакция должна протекать практически необратимо (≥ 99,9 %), константа равновесия реакции К р >10 6 , образующиеся осадки должны иметь растворимость S < 10 -5 моль/дм 3 , а образующиеся комплексы – К уст > 10 -6 ;

· реакция должна протекать с достаточно большой скоростью;

· реакция должна протекать при комнатной температуре;

· точка эквивалентности должна фиксироваться четко и надежно каким-либо способом.

Способы титрования

В любом методе титриметрического анализа существует несколько способов титрования. Различают прямое титрование, обратное титрование и титрование по замещению .

Прямое титрование – к раствору определяемого вещества добавляют по каплям титрант до достижения точки эквивалентности.

Схема титрования: X + R = P .

Закон эквивалентов для прямого титрования:

C (1/ z) Х V Х = C (1/ z) R V R . (2)

Количество (массу) определяемого вещества, содержащееся в исследуемом растворе, вычисляют, используя закон эквивалентов (для прямого титрования)

m Х = C (1/z)R V R M (1/z) Х ٠10 -3 , (3)

где C (1/ z) R – молярная концентрация эквивалента титранта, моль/дм 3 ;

V R – объем титранта, см 3 ;

M (1/ z ) Х молярная масса эквивалента определяемого вещества;

C (1/ z) Х – молярная концентрация эквивалента определяемого вещества, моль/дм 3 ;

V Х – объем определяемого вещества, см 3 .

Обратное титрование – используют два титранта. Сначала
к анализируемому раствору добавляют точный объем первого титранта (R 1 ), взятый в избытке. Остаток непрореагировавшего титранта R 1 оттитровывают вторым титрантом (R 2 ). Количество титранта R 1 , израсходованного
на взаимодействие с анализируемым веществом (Х ) определяют по разности между добавленным объемом титранта R 1 (V 1 ) и объемом титранта R 2 (V 2 ) затраченного на титрование остатка титранта R 1 .

Схема титрования: X + R 1 фиксированный избыток = P 1 (R 1 остаток).

R 1 остаток + R 2 = P 2 .

При использовании обратного титрования закон эквивалентов записывается следующим образом:

Массу определяемого вещества в случае обратного титрования вычисляют по формуле

Способ обратного титрования применяется в тех случаях, когда для прямой реакции невозможно подобрать подходящий индикатор или она протекает с кинетическими затруднениями (низкая скорость химической реакции).

Титрование по замещению (косвенное титрование) – применяют в тех случаях, когда прямое или обратное титрование определяемого вещества невозможно или вызывает затруднения либо отсутствует подходящий индикатор.

К определяемому веществу Х добавляют какой-либо реагент А в избытке, при взаимодействии с которым выделяется эквивалентное количество вещества Р . Затем продукт реакции Р оттитровывают подходящим титрантом R .

Схема титрования: X + А избыток = P 1.

P 1 + R = P 2.

Закон эквивалентов для титрования по замещению записывают следующим образом:

Так как число эквивалентов определяемого вещества Х и продукта реакции Р одинаковы, расчет массы определяемого вещества в случае косвенного титрования вычисляют по формуле

m Х = C (1/z) R V R M (1/z) Х ٠10 -3 . (7)

Реактивы

1. Янтарная кислота Н 2 С 4 Н 4 О 4 (х.ч.) – первичный стандарт.

2. Раствор гидроксида натрия NaOH с молярной концентрацией
~2,5 моль/дм 3

3. Н 2 О дистиллированная.

Оборудование студенты описывают самостоятельно.

Ход выполнения работы:

1. Приготовление первичного стандарта янтарной кислоты HOOCCH 2 CH 2 COOH.

Янтарную кислоту готовят объемом 200,00 см 3 с молярной концентрацией эквивалента моль/дм 3 .

г/моль.

Уравнение реакции:

Взятие навески (взвешивание):

Масса навески

Навеску количественно переносят в мерную колбу ( см 3), добавляют 50 – 70 см 3 дистиллированной воды, перемешивают до полного растворения янтарной кислоты, доводят до метки дистиллированной водой
и тщательно перемешивают.

рассчитывают
по формуле

Реактивы

1. Карбонат натрия Na 2 CO 3 (х.ч.) – первичный стандарт.

2. Н 2 О дистиллированная.

3. Хлороводородная кислота НСl концентрации 1:1 (r=1,095 г/см 3).

4. Кислотно-основной индикатор (выбирают по кривой титрования).

5. Смешанный индикатор – метиловый оранжевый и метиленовый синий.

Ход выполнения работы:

1. Приготовление первичного стандарта карбоната натрия (Na 2 CO 3).

Раствор карбоната натрия готовят объёмом 200,00 см 3 с молярной концентрацией эквивалента моль/дм 3 .

Расчет массы навески, г: (масса берется с точностью до четвертого знака после запятой).

Уравнения реакции:

1) Na 2 CO 3 + HCl = NaHCO 3 + NaCl

2) NaHCO 3 + HCl = NaCl + H 2 O + CO 2

_____________________________________

Na 2 CO 3 +2HCl = 2NaCl + H 2 O + CO 2

H 2 CO 3 – слабая кислота (K a1 = 10 -6,35 , K a2 = 10 -10,32).

Взятие навески (взвешивание):

Масса часового стекла (стакана)

Масса часового стекла (стакана) с навеской

Масса навески

Навеску количественно переносят в мерную колбу ( см 3), добавляют 50 – 70 см 3 дистиллированной воды, перемешивают до полного растворения карбоната натрия, доводят до метки дистиллированной водой
и тщательно перемешивают.

Фактическую концентрацию первичного стандарта рассчитывают
по формуле

2. Приготовление и стандартизация титранта (раствора HCl)

Раствор хлороводородной кислоты готовят объемом примерно 500 см 3
с молярной концентрацией эквивалента примерно 0,05÷0,06 моль/дм 3)

Титрант – раствор хлороводородной кислоты приблизительной концентрацией 0,05 моль/дм 3 готовят из хлороводородной кислоты, разбавленной 1:1 (r=1,095 г/см 3).

Стандартизацию раствора HCl проводят по первичному стандарту Na 2 CO 3 прямым титрованием, способом пипетирования.

Индикатор выбирают по кривой титрования карбоната натрия хлороводородной кислотой (рис. 4).

Рис. 4. Кривая титрования 100,00 см 3 раствора Na 2 CO 3 с С = 0,1000 моль/дм 3 раствором HCl с С 1/ z = 0,1000 моль/дм 3

При титровании до второй точки эквивалентности используют индикатор метиловый оранжевый, 0,1%-ный водный раствор (рТ = 4,0). Изменение окраски от желтой до оранжевой (цвет «чайной розы»). Интервал перехода
(рН = 3,1 – 4,4) .

Схема 3. Стандартизация раствора HCl

В коническую колбу для титрования вместимостью 250 см 3 помещают аликвоту 25,00 см 3 стандартного раствора Na 2 CO 3 (пипеткой), добавляют 2 – 3 капли метилового оранжевого, разбавляют водой до 50 – 75 см 3 и титруют раствором хлороводородной кислоты до перехода окраски из желтой в цвет «чайной розы» от одной капли титранта. Титрование проводят в присутствии «свидетеля» (исходный раствор Na 2 CO 3 с индикатором). Результаты титрования заносят в табл. 4. Концентрацию хлороводородной кислоты определяют по закону эквивалентов: .

Таблица 4

Результаты стандартизации раствора соляной кислоты

Задачи

1. Сформулируйте понятие эквивалента в кислотно-основных реакциях . Вычислите величину эквивалентов соды и фосфорной кислоты в следующих реакциях:

Na 2 CO 3 + HCl = NaHCO 3 +NaCl

Na 2 CO 3 + 2HCl = 2NaCl + CO 2 + H 2 O

H 3 PO 4 + NaOH = NaH 2 PO 4 + H 2 O

H 3 PO 4 + 2NaOH = Na 2 HPO 4 + H 2 O

H 3 PO 4 + 3NaOH = Na 3 PO 4 + 3H 2 O

2. Напишите уравнения реакций между соляной кислотой, серной кислотой, гидроксидом натрия, гидроксидом алюминия, карбонатом натрия, гидрокарбонатом калия и рассчитайте эквивалентную массу этих веществ.

3. Постройте кривую титрования 100,00 см 3 соляной кислоты с молярной концентрацией эквивалента 0,1 моль/дм 3 гидроксидом натрия с молярной концентрацией эквивалента 0,1 моль/дм 3 . Выберите возможные индикаторы

4. Постройте кривую титрования 100,00 см 3 акриловой кислоты (CH 2 =CHCOOH, pK a = 4,26) с молярной концентрацией эквивалента
0,1 моль/дм 3 гидроксидом натрия с молярной концентрацией эквивалента
0,1 моль/дм 3 . Как изменяется состав раствора в процессе титрования? Выберите возможные индикаторы и рассчитайте индикаторную погрешность титрования.

5. Постройте кривую титрования гидразина (N 2 H 4 +H 2 O, pK b = 6,03)
с молярной концентрацией эквивалента 0,1 моль/дм 3 соляной кислотой
с молярной концентрацией эквивалента 0,1 моль/дм 3 . В чем сходство
и различие расчетов рН и кривой титрования в сравнении с кривой титрования слабой кислоты щелочью? Выберите возможные индикаторы
и рассчитайте индикаторную погрешность титрования.

6. Вычислите коэффициенты активности и активные концентрации ионов
в 0,001 М растворе сульфата алюминия, 0,05 М карбоната натрия, 0,1 М хлорида калия.

7. Вычислите рН 0,20 М раствора метиламина, если его ионизация в водном растворе описывается уравнением

В + Н 2 О = ВН + + ОН - , К b = 4,6 ×10 - 3 , где В – основание.

8. Вычислить константу диссоциации хлорноватистой кислоты HOCl, если 1,99 × 10 - 2 М раствор имеет рН = 4,5.

9. Вычислите рН раствора, содержащего 6,1 г/моль гликолевой кислоты (СH 2 (OH)COOH, К а = 1,5 × 10 - 4).

10. Вычислите рН раствора, полученного смешением 40 мл 0,015 М раствора хлороводородной кислоты с:

а) 40 мл воды;

б) 20 мл 0,02 М раствора гидроксида натрия;

в) 20 мл 0,02 М раствора гидроксида бария;

г) 40 мл 0,01 М раствора хлорноватистой кислоты, К а =5,0 × 10 - 8 .

11. Вычислите концентрацию ацетат-иона в растворе уксусной кислоты
c массовой долей 0,1 %.

12. Вычислите концентрацию иона аммония в растворе аммиака c массовой долей 0,1 %.

13. Рассчитайте массу навески карбоната натрия, необходимую для приготовления 250,00 мл 0,5000 М раствора .

14. Рассчитайте объем раствора соляной кислоты с молярной концентрацией эквивалента 11 моль/л и объем воды, которые необходимо взять для приготовления 500 мл 0,5 М раствора соляной кислоты.

15. В 300 мл 0,3 %-ного раствора хлороводородной кислоты растворили 0,15 г металлического магния. Вычислите молярную концентрацию ионов водорода, магния и хлора в полученном растворе.

16. При смешении 25,00 мл раствора серной кислоты с раствором хлорида бария получено 0,2917 г сернокислого бария. Определите титр раствора серной кислоты.

17. Вычислить массу карбоната кальция, вступившего в реакцию
с 80,5 ммоль хлороводородной кислоты.

18. Сколько граммов однозамещенного фосфата натрия надо добавить
к 25,0 мл 0,15 М раствора гидроксида натрия, чтобы получить раствор с рН=7? Для фосфорной кислоты pK а1 = 2,15; pK а2 = 7,21; pK а3 = 12,36.

19. На титрование 1,0000 г дымящейся серной кислоты, тщательно разбавленной водой, расходуется 43,70 мл 0,4982 М раствора гидроксида натрия. Известно, что дымящаяся серная кислота содержит серный ангидрид, растворенный в безводной серной кислоте. Вычислить массовую долю серного ангидрида в дымящей серной кислоте.

20. Абсолютная погрешность измерения объема с помощью бюретки составляет 0,05 мл. Рассчитать относительную погрешность измерения объемов в 1; 10 и 20 мл.

21. В мерной колбе вместимостью 500,00 мл приготовлен раствор
из навески 2,5000 г карбоната натрия. Вычислить:

а) молярную концентрацию раствора;

б) молярную концентрацию эквивалента (½ Na 2 CO 3);

в) титр раствора;

г) титр по соляной кислоте.

22. Какой объем 10 %-ного раствора карбоната натрия плотностью
1,105 г/см 3 нужно взять для приготовления:

а) 1 л раствора с титром ТNa 2 CO 3 = 0,005000 г/см 3 ;

б) 1 л раствора с ТNa 2 CO 3 /HCl = 0,003000 г/см 3 ?

23. Какой объем соляной кислоты с массовой долей 38,32 % и плотностью 1,19 г/см 3 следует взять для приготовления 1500 мл 0,2 М раствора?

24. Какой объем воды нужно добавить к 1,2 л 0,25 М HCl, чтобы приготовить 0,2 М раствор?

25. Из 100 г технического гидроксида натрия, содержащего 3 % карбоната натрия и 7 % индифферентных примесей, приготовили 1л раствора. Вычислить молярную концентрацию и титр по соляной кислоте полученного щелочного раствора, считая, что карбонат натрия титруется до угольной кислоты.

26. Имеется образец, в котором может содержаться NaOH, Na 2 CO 3 , NaHCO 3 или смесь названных соединений массой 0,2800 г. Пробу растворили в воде.
На титрование полученного раствора в присутствии фенолфталеина расходуется 5,15 мл, а в присутствии метилового оранжевого – 21,45 мл соляной кислоты с молярной концентрацией эквивалента 0,1520 моль/л. Определить состав образца и массовые доли компонентов в образце.

27. Постройте кривую титрования 100,00 см 3 0,1000 М раствора аммиака 0,1000 М раствором соляной кислоты, обоснуйте выбор индикатора.

28. Вычислите рН точки эквивалентности, начала и конца титрования 100,00 см 3 0,1000 М раствора малоновой кислоты (HOOCCH 2 COOH) 0,1000 М раствором гидроксида натрия (рК а 1 =1,38; рК а 2 =5,68).

29. На титрование 25,00 см 3 раствора карбоната натрия с молярной концентрацией эквивалента 0,05123 моль/дм 3 пошло 32,10 см 3 соляной кислоты. Вычислите молярную концентрацию эквивалента соляной кислоты.

30. Сколько мл 0,1 М раствора хлорида аммония необходимо добавить
к 50,00 мл 0,1 М раствора аммиака, чтобы получился буферный раствор
с рН=9,3.

31. Смесь серной и фосфорной кислот перенесли в мерную колбу объемом 250,00 см 3 . Для титрования взяли две пробы по 20,00 см 3 , одну оттитровали раствором гидроксида натрия с молярной концентрацией эквивалента
0,09940 моль/дм 3 с индикатором метилоранжем, а вторую с фенолфталеином. Расход гидроксида натрия в первом случае составил 20,50 см 3 , а во втором 36,85 см 3 . Определите массы серной и фосфорной кислот в смеси.

В комплексонометрии

До точки эквивалентности =(C M V M – C ЭДТА V ЭДТА)/(V М +V ЭДТА). (21)

В точке эквивалентности = . (22)

После точки эквивалентности = . (23)

На рис. 9 показаны кривые титрования иона кальция в буферных растворах с различными значениями рН. Видно, что титрование Са 2+ возможно только при рН ³ 8.

Реактивы

2. Н 2 О дистиллированная.

3. Стандартный раствор Mg (II) с молярной концентрацией
0,0250 моль/дм 3 .

4. Аммиачный буфер с рН = 9,5.

5. Раствор гидроксида калия КОН с массовой долей 5%.

6. Эриохром черный Т, индикаторная смесь.

7. Калькон, индикаторная смесь.

Теоретические основы метода:

Метод основан на взаимодействии ионов Са 2+ и Мg 2+ с динатриевой солью этилендиаминтетрауксусной кислоты (Na 2 H 2 Y 2 или Na-ЭДТА) с образованием прочных комплексов в молярном отношении M:L=1:1 в определённом интервале рН.

Для фиксирования точки эквивалентности при определении Са 2+ и Мg 2+ используют калькон и эриохром черный Т.

Определение Са 2+ проводят при рН ≈ 12, при этом Mg 2+ находится
в растворе в виде осадка гидроксида магния и не титруется ЭДТА.

Mg 2+ + 2OH - = Mg(OH) 2 ↓

Са 2+ + Y 4- « CaY 2-

При рН ≈ 10 (аммиачный буферный раствор) Мg 2+ и Са 2+ находятся
в растворе в виде ионов и при добавлении ЭДТА титруются совместно.

Ca 2+ + HY 3- « CaY 2- + H +

Mg 2+ + HY 3- « MgY 2- +H +

Для определения объема ЭДТА, затраченного на титрование Mg 2+ ,
из суммарного объёма, пошедшего на титрование смеси при рН ≈ 10, вычитают объём, пошедший на титрование Са 2+ при рН ≈ 12.

Для создания рН ≈ 12 применяют 5% – ный раствор KOH, для создания
рН ≈ 10 используют аммиачный буферный раствор (NH 3 ×H 2 O + NH 4 Cl).

Ход выполнения работы:

1. Стандартизация титранта – раствора ЭДТА (Na 2 H 2 Y)

Раствор ЭДТА готовят приблизительной концентрации 0,025 М
из ≈ 0,05 М раствора, разбавляя его дистиллированной водой в 2 раза. Для стандартизации ЭДТА применяют стандартный раствор MgSO 4
c концентрацией 0,02500 моль/дм 3 .

Схема 5. Стандартизация титранта – раствора ЭДТА

В коническую колбу для титрования вместимостью 250 см 3 помещают 20,00 cм 3 стандартного раствора MgSO 4 c концентрацией 0,02500 моль/дм 3 , добавляют ~ 70 см 3 дистиллированной воды, ~ 10 см 3 аммиачного буферного раствора с рН ~ 9,5 – 10 и вносят индикатор эриохром чёрный Т около 0,05 г
(на кончике шпателя). При этом раствор окрашивается в винно-красный цвет. Раствор в колбе медленно титрируют раствором ЭДТА до перехода окраски из винно-красной в зелёную. Результаты титрования заносят в табл. 6. Концентрацию ЭДТА определяют по закону эквивалентов: .

Таблица 6

Результаты стандартизации раствора ЭДТА

2. Определение содержания Са 2+

Кривые титрования Са 2+ раствором ЭДТА при рН=10 и рН=12 строят самостоятельно.

Раствор задачи в мерной колбе доводят до метки дистиллированной водой и тщательно перемешивают.

Схема 6. Определение содержания Са 2+ в растворе

В коническую колбу для титрования вместимостью 250 см 3 помещают аликвоту исследуемого раствора 25,00 см 3 , содержащую кальций и магний, добавляют ~ 60 см 3 воды, ~ 10 см 3 5% – ного раствора КОН. После выпадения аморфного осадка Mg(OH) 2 ↓ в раствор вносят индикатор калькон около 0,05 г (на кончике шпателя) и медленно титруют раствором ЭДТА до перехода окраски из розовой в бледно-голубую. Результаты титрования (V 1) заносят в табл.7.

Таблица 7

№ опыта Объем ЭДТА, см 3 Содержание Са 2+ в растворе, г
25,00
25,00
25,00
25,00
25,00

3. Определение содержания Mg 2+

Кривую титрования Mg 2+ раствором ЭДТА при рН=10 строят самостоятельно.

Схема 7. Определение содержания Mg 2+ в растворе

В коническую колбу для титрования вместимостью 250 см 3 помещают аликвоту 25,00 см 3 исследуемого раствора, содержащую кальций и магний, добавляют ~ 60 см 3 дистиллированной воды, ~ 10 см 3 аммиачного буферного раствора с рН ~ 9,5–10 и вносят индикатор эриохром чёрный Т около 0,05 г
(на кончике шпателя). При этом раствор окрашивается в винно-красный цвет. Раствор в колбе медленно титрируют раствором ЭДТА до перехода окраски из винно-красной в зелёную. Результаты титрования (V 2) заносят в табл. 8.

Таблица 8

Результаты титрования раствора, содержащего кальций и магний

№ опыта Объем исследуемого раствора, см 3 Объем ЭДТА, V ∑ , см 3 Содержание Mg 2+ в растворе, г
25,00
25,00
25,00
25,00
25,00

Реактивы

1. Раствор ЭДТА с молярной концентрацией ~ 0,05 моль/дм 3 .

2. Стандартный раствор Cu(II) с титром 2,00×10 -3 г/дм 3 .

3. Н 2 О дистиллированная.

4. Аммиачный буфер с рН~ 8 – 8,5.

5. Мурексид, индикаторная смесь.

Задачи

1. Вычислите α 4 для ЭДТА при pH=5, если константы ионизации ЭДТА следующие: K 1 =1,0·10 -2 , K 2 =2,1·10 -3 , K 3 =6,9·10 -7 , K 4 =5,5·10 -11 .

2. Постройте кривую титрования 25,00 мл 0,020 М раствора никеля 0,010 М раствором ЭДТА при pH=10, если константа устойчивости
К NiY = 10 18,62 . Вычислите p после добавления 0,00; 10,00; 25,00; 40,00; 50,00 и 55,00 мл титранта.

3. На титрование 50,00 мл раствора, содержащего ионы кальция
и магния, потребовалось 13,70 мл 0,12 М раствора ЭДТА при pH=12 и 29,60 мл при pH=10. Выразите концентрации кальция и магния в растворе в мг/мл.

4. При анализе в 1 л воды найдено 0,2173 г оксида кальция и 0,0927 г оксида магния. Вычислите, какой объём ЭДТА концентрации 0,0500 моль/л был затрачен на титрование.

5. На титрование 25,00 мл стандартного раствора, содержащего 0,3840 г сульфата магния, израсходовано 21,40 мл раствора трилона Б. Вычислите титр этого раствора по карбонату кальция и его молярную концентрацию.

6. На основании констант образования (устойчивости) комплексонатов металлов, приведенных ниже, оцените возможность комплексонометрического титрования ионов металлов при pH = 2; 5; 10; 12.

7. При титровании 0,01 М раствора Ca 2+ 0,01 М раствором ЭДТА при pH=10 константа устойчивости K CaY = 10 10,6 . Вычислите, какой должна быть условная константа устойчивости комплекса металла с индикатором при pH=10, если в конечной точке титрования =.

8. Константа кислотной ионизации индикатора, используемого при комплексонометрическом титровании, равна 4,8·10 -6 . Вычислите содержание кислотной и щелочной форм индикатора при pH = 4,9, если его общая концентрация в растворе составляет 8,0·10 -5 моль/л. Определите возможность использования данного индикатора при титровании раствора
с pH=4,9, если цвет его кислотной формы совпадает с цветом комплекса.

9. Для определения содержания алюминия в образце навеску образца 550 мг растворили и добавили 50,00 мл 0,05100 М раствора комплексона III. Избыток последнего оттитровали 14,40 мл 0,04800 М раствором цинка (II). Рассчитайте массовую долю алюминия в образце.

10. При разрушении комплекса, содержащего висмут и йодид-ионы, последние титруют раствором Ag(I), а висмут – комплексоном III.
Для титрования раствора, содержащего 550 мг образца, требуется 14,50 мл 0,05000 М раствора комплексона III, а на титрование йодид-иона, содержащегося в 440 мг образца, затрачивается 23,25 мл 0,1000 М раствора Ag(I). Рассчитайте координационное число висмута в комплексе, если йодид-ионы являются лигандом.

11. Образец массой 0,3280 г, содержащий Pb, Zn, Cu, растворили
и перевели в мерную колбу на 500,00 см 3 . Определение вели в три этапа:
а) на титрование первой порции раствора объемом 10,00 см 3 , содержащего Pb, Zn, Cu, затрачено 37,50 см 3 0,0025 М раствора ЭДТА; б) во второй порции объемом 25,00 см 3 замаскировали Cu, а на титрование Pb и Zn израсходовано 27,60 см 3 ЭДТА; в) в третьей порции объемом 100,00 см 3 замаскировали Zn
и Cu, на титрование Pb затрачено 10,80 см 3 ЭДТА. Определите массовую долю Pb, Zn, Cu в образце.

Кривые титрования

В редоксметрии кривые титрования строят в координатах Е = f (C R ),
они иллюстрируют графическое изменение потенциала системы в процессе титрования. До точки эквивалентности потенциал системы рассчитывается по отношению концентраций окисленной и восстановленной форм определяемого вещества (потому что до точки эквивалентности одна из форм титранта практически отсутствует), после точки эквивалентности – по отношению концентраций окисленной и восстановленной форм титранта (потому что после точки эквивалентности определяемое вещество оттитровано практически полностью).

Потенциал в точке эквивалентности определяется по формуле

, (26)

где – число электронов, участвующих в полуреакциях;

– стандартные электродные потенциалы полуреакций.

На рис. 10 представлена кривая титрования раствора щавелевой кислоты H 2 C 2 O 4 раствором перманганата калия KMnO 4 в кислой среде
( = 1 моль/дм 3).

Рис. 10. Кривая титрования 100,00 см 3 раствора щавелевой

кислоты H 2 C 2 O 4 с С 1/ z = 0,1000 моль/дм 3 раствором перманганата

калия KMnO 4 с С 1/ z = 0,1000 моль/дм 3 при =1 моль/дм 3

Потенциал полуреакции MnO 4 - + 5e + 8H + → Mn 2+ + 4H 2 O зависит от рН среды, так как в полуреакции участвуют ионы водорода.

Перманганатометрия

Титрантом является раствор перманганата калия KMnO 4 , являющийся сильным окислителем. Основное уравнение:

MnO 4 - +8H + + 5e = Mn 2+ + 4H 2 O, =+1,51 В.

М 1/ z (KMnO 4)= г/моль.

В слабокислых, нейтральных и слабощелочных средах вследствие меньшего окислительно-восстановительного потенциала перманганат-ион восстанавливается до Mn +4 .

MnO 4 - +2H 2 O + 3e = MnО 2 ¯ + 4OH - , = +0,60 В.

М 1/ z (KMnO 4)= 158,03/3= 52,68 г/моль.

В щелочной среде раствор перманганата калия восстанавливается
до Mn +6 .

MnO 4 - + 1e = MnO 4 2- , = +0,558 В.

М 1/ z (KMnO 4)= 158,03 г/моль.

Для исключения побочных реакций титрование перманганатом калия проводят в кислой среде, которую создают серной кислотой. Соляную кислоту для создания среды применять не рекомендуется, так как перманганат калия способен окислять хлорид-ион.

2Cl - – 2e = Cl 2 , = +1,359 В.

Наиболее часто перманганат калия применяют в виде раствора
с молярной концентрацией эквивалента ~ 0,05 – 0,1 моль/дм 3 . Он не является первичным стандартом в силу того, что водные растворы перманганата калия способны окислять воду и органические примеси в ней:

4MnO 4- + 2H 2 O = 4MnО 2 ¯+ 3O 2 ­+ 4OH -

Разложение растворов перманганата калия ускоряется в присутствии диоксида марганца. Поскольку диоксид марганца является продуктом разложения перманганата, этот осадок оказывает автокаталитический эффект на процесс разложения.

Твердый перманганат калия, применяемый для приготовления растворов, загрязнен диоксидом марганца, поэтому приготовить раствор из точной навески нельзя. Для того чтобы получить достаточно устойчивый раствор перманганата калия, его после растворения навески KMnO 4 в воде оставляют в темной бутыли на несколько дней (или кипятят), а затем отделяют MnO 2 ¯ фильтрованием через стеклянный фильтр (применять бумажный фильтр нельзя, так как он реагирует с перманганатом калия, образуя диоксид марганца).

Окраска раствора перманганата калия настолько интенсивна,
что индикатор в этом методе не требуется. Для того чтобы придать заметную розовую окраску 100 см 3 воды, достаточно 0,02 – 0,05 см 3 раствора KMnO 4
с молярной концентрацией эквивалента 0,1 моль/дм 3 (0,02 М). Окраска перманганата калия в конечной точке титрования неустойчивая и постепенно обесцвечивается в результате взаимодействия избытка перманганата
с ионами марганца (II), присутствующими в конечной точке в относительно большом количестве:

2MnO 4 - + 3Mn 2+ + 2H 2 O « 5MnО 2 ¯ + 4H +

Стандартизацию рабочего раствора KMnO 4 проводят по оксалату натрия или щавелевой кислоте (свежеперекристаллизованной и высушенной при 105°С).

Используют растворы первичных стандартов с молярной концентрацией эквивалента С (½ Na 2 C 2 O 4) = 0,1000 или 0,05000 моль/л.

C 2 O 4 2- – 2e ® 2CO 2 , = -0,49 В

Цель работы: приобретение навыков в применении одного из методов количественного анализа – титриметрического, и обучение элементарным приемам статистической обработки результатов измерений.

Теоретическая часть

Титриметрический анализ - это метод количественного химического анализа, основанный на измерении объема раствора реактива с точно известной концентрацией, расходуемого для реакции с определяемым веществом.

Титриметрическое определение вещества проводится титрованием - добавлением одного из растворов к другому небольшими порциями и отдельными каплями при постоянном фиксировании (контроле) результата.

Один их двух растворов содержит вещество в неизвестной концентрации и представляет собой анализируемый раствор.

Второй раствор содержит реагент с точно известной концентрацией и называется рабочим раствором, стандартным раствором или титрантом.

Требования к реакциям, применяемым при титриметрическом анализе:

1. Возможность фиксировать точку эквивалентности, наиболее широко используют наблюдение за его окраской, которая может меняться при следующих условиях:

Одно из реагирующих веществ окрашено, и окрашенный реагент в процессе реакции изменяет свой цвет;

Применяемые вещества – индикаторы - изменяют окраску в зависимости от свойств раствора (например, в зависимости от реакции среды).

2. Количественное течение реакции, вплоть до равновесия, характеризуемого соответствующей величиной константы равновесия

3. Достаточная скорость химической реакции, т.к. фиксировать точку эквивалентности при медленно текущих реакциях крайне трудно.

4. Отсутствие побочных реакций, при которых точные вычисления невозможны.

Методы титриметрического анализа можно классифицировать по характеру химической реакции, лежащей в основе определения веществ: кислотно-основного титрования (нейтрализации), осаждения, комплексообразования, окисления-восстановления.

Работа с растворами .

Мерные колбы предназначены для измерения точного объема жидкости. Они представляют собой круглые плоскодонные сосуды с узким длинным горлом, на котором имеется метка, до которой следует наполнять колбу (рис. 1).

Рис.1 Мерные колбы

Техника приготовления растворов в мерных колбах из фиксаналов.

Для приготовления раствора из фиксанала ампулу разбивают над воронкой, вставленной в мерную колбу, содержимое ампулы смывают дистиллированной водой; затем растворяют его в мерной колбе. Раствор, находящийся в мерной колбе, доводят до метки. После доведения уровня жидкости до метки раствор в колбе хорошо перемешивают.



Бюретки представляют собой тонкие стеклянные трубки, градуированные в миллилитрах (рис. 2). К нижнему, слегка суженному концу бюретки припаян стеклянный кран или присоединен резиновый шланг с шариковым затвором и стеклянным носиком. Для работы выбирают бюретку в зависимости от объема раствора, применяемого в анализе.

Рис.2. Бюретки

Порядок работы с бюреткой

1. Бюретку промывают дистиллированной водой.

2. Подготовленную к работе бюретку закрепляют вертикально в штативе, с помощью воронки наливают в бюретку раствор так, чтобы его уровень был выше нулевой отметки.

3. Из нижнего оттянутого конца бюретки удаляют пузырьки воздуха. Для этого отгибают его кверху и выпускают жидкость до тех пор, пока весь воздух не будет удален. Затем опускают капилляр вниз.

4. Уровень жидкости в бюретке устанавливают на нулевое деление.

5. При проведении титрования нажимают на резиновую трубку сбоку от шарика и сливают жидкость из бюретки в колбу, вращая последнюю. Сначала титрант, находящийся в бюретке, сливают тонкой струйкой. Когда же окраска индикатора в месте падения капель титранта начнет изменяться, раствор приливают осторожно, по каплям. Титрование прекращают, когда наступает резкое изменение окраски индикатора от приливания одной капли титранта, и записывают объем израсходованного раствора.

6. По окончании работы титрант из бюретки сливают, бюретку промывают дистиллированной водой.

Метод кислотно-основного титрования (нейтрализации)

Метод кислотно-основного титрования основан на реакции взаимодействия кислот и оснований, т.е. на реакции нейтрализации:

H + + OH¯ = H 2 O

При выполнении данного задания используется метод кислотно-основного титрования, основанный на применении реакции нейтрализации:



2NaOH + H 2 SO 4 = Na 2 SO 4 + 2H 2 O

Метод заключается в том, что к раствору определяемого вещества - гидроксида натрия – постепенно прибавляют раствор серной кислоты известной концентрации. Добавление раствора кислоты продолжают до тех пор, пока его количество не станет эквивалентным количеству реагируемого с ним гидроксида натрия, т.е. до нейтрализации щёлочи. Момент нейтрализации устанавливают по изменению окраски индикатора, прибавляемого в титруемый раствор. По закону эквивалентов в соответствии с уравнением:

С н(к-ты) · V (к-ты) = C н (щелочи) · V (щелочи)

С н(к-ты) и C н (щелочи) – молярные концентрации эквивалентов реагирующих растворов, моль/л;

V (к-ты) и V (щелочи) – объёмы реагирующих растворов, л (мл).

С (NaOH) и - молярные концентрации эквивалента NaOH и H 2 SO 4 в реагирующих растворах, моль/л;

V (NaOH) и ) - объёмы реагирующих растворов щёлочи и кислоты, мл.

Примеры решения задач.

1. На нейтрализацию 0,05 л раствора кислоты израсходовано 20 см 3 0,5н раствора щелочи. Чему равна нормальность кислоты?

2. Сколько и какого вещества останется в избытке, если к 60см 3 0,4н раствора серной кислоты прибавить 120см 3 0,3н раствора гидроксида калия?

Решение задач по определению рН раствора, концентраций различного типа представлено в методическом пособии .

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Получите у лаборанта колбу с раствором щёлочи неизвестной концентрации. Пробы анализируемого раствора отмерьте мерным цилиндром по 10 мл в три конические колбы для титрований. В каждую из них добавьте 2-3 капли индикатора метилового оранжевого. Раствор приобретёт жёлтую окраску (метилоранж жёлтый в щелочной среде и оранжево-красный в кислой).

Приготовьте к работе установку для титрований (рис.3) Бюретку ополосните дистиллированной водой, а затем заполните раствором серной кислоты точно известной концентрации (молярная концентрация эквивалента H 2 SO 4 указана на склянке) выше нулевого деления. Каучуковую трубку со стеклянным наконечником отогните вверх и, оттягивая резину от стеклянной оливы, закрывающей выход из бюретки, медленно выпускайте жидкость так, чтобы после заполнения наконечника в нём не осталось пузырьков воздуха. Избыток раствора кислоты выпустите из бюретки в подставленный стакан, при этом нижний мениск жидкости в бюретке должен установиться на нулевом делении.

Одну из колб раствора щёлочи подставьте под наконечник бюретки на лист белой бумаги и приступайте непосредственно к титрованию: одной рукой медленно подавайте кислоту из бюретки, а другой непрерывно перемешивайте раствор круговым движением колбы в горизонтальной плоскости. В конце титрования раствор кислоты из бюретки следует подавать по каплям до тех пор, пока от одной капли раствор примет неисчезающую оранжевую окраску.

Определите объём кислоты, израсходованный на титрование, с точностью до 0,01мл. Отсчёт делений бюретки производите по нижнему мениску, при этом глаз должен находиться на уровне мениска.

Повторите титрование ещё 2 раза, начиная каждый раз с нулевого деления бюретки. Результаты титрований запишите в таблицу 1.

Концентрацию раствора щёлочи вычислите по формуле:

Таблица 1

Результаты титрования раствора гидроксида натрия

Проведите статистическую обработку результатов титрований по методике, описанной в приложении. Результаты статистической обработки экспериментальных данных сведите в таблицу 2.

Таблица 2

Результаты статистической обработки экспериментальных данных титрования раствора гидроксида натрия. Доверительная вероятность α = 0,95.

n S x

Запишите результат определения молярной концентрации эквивалента NaOH в анализируемом растворе в виде доверительного интервала.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. Раствор гидроксида калия имеет рН =12. Концентрация основания в растворе при 100% диссоциации равна … моль/л.

1) 0,005; 2) 0,01; 3) 0,001; 4) 1·10 -12 ; 5) 0,05.

2. На нейтрализацию 0,05 л раствора кислоты израсходовано 20 см 3 0,5 н раствора щелочи. Чему равна нормальность кислоты?

1) 0,2 н; 2) 0,5 н; 3) 1,0 н; 4) 0,02 н; 5) 1,25 н.

3. Сколько и какого вещества останется в избытке, если к 75 см 3 0,3 н раствора серной кислоты прибавить 125 см 3 0,2 н раствора гидроксида калия?

1) 0,0025 г щелочи; 2) 0,0025 г кислоты; 3) 0,28 г щелочи; 4) 0,14 г щелочи; 5) 0,28 г кислоты.

4. Метод анализа, основанный на определении повышения температуры кипения, называется…

1) спектрофотометрический; 2) потенциометрический; 3) эбулиоскопический; 4) радиометрический; 5) кондуктометрический.

5. Определить процентную концентрацию, молярность и нормальность раствора серной кислоты, полученного при растворении 36 г кислоты в 114 г воды, если плотность раствора 1,031 г/см 3 .

1) 31,6 ; 3,77; 7,54 ; 2) 31,6; 0,00377; 0,00377 ;

3) 24,0 ; 2,87; 2,87 ; 4) 24,0 ; 0,00287; 0,00287;

5) 24,0; 2,87; 5,74.

Титриметрический метод анализа (титрование) позволяет провести объемный количественный анализ и находит широкое применение в химии. Его главное достоинство - разнообразие способов и методов, благодаря чему его можно использовать для решения разнообразных аналитических задач.

Принцип анализа

Титриметрический метод анализа основан на измерении объема раствора известной концентрации (титранта), вступившего в реакцию с исследуемым веществом.

Для анализа понадобится специальное оборудование, а именно, бюретка - тонкая стеклянная трубка с нанесенной градуировкой. Верхний конец этой трубки открыт, а на нижнем находится запорный кран. Прокалиброванную бюретку с помощью воронки заполняют титрантом до нулевой отметки. Анализ проводят до конечной точки титрования (КТТ), добавляя небольшое количество раствора из бюретки к исследуемому веществу. Конечную точку титрования идентифицируют по изменению цвета индикатора или какого-либо физико-химического свойства.

Конечный результат рассчитывается по затраченному объему титранта и выражается в титре (Т) - массе вещества, приходящейся на 1 мл раствора (г/мл).

Обоснование процесса

Титриметрический метод количественного анализа дает точные результаты, поскольку вещества реагируют друг с другом в эквивалентных количествах. Это означает, что произведение их объема и количества тождественны друг другу: C 1 V 1 = C 2 V 2 . Из этого уравнения легко найти неизвестное значение С 2 , если остальные параметры задаются самостоятельно (С 1 , V 2) и устанавливаются в ходе анализа (V 1).

Обнаружение конечной точки титрования

Поскольку своевременное фиксирование конца титрования - наиболее важная часть анализа, нужно правильно подобрать его способы. Наиболее удобным считается использование цветных или флуоресцентных индикаторов, но можно применять и инструментальные методы - потенциометрию, амперометрию, фотометрию.

Окончательный выбор способа обнаружения КТТ зависит от требуемой точности и селективности определения, а также его скорости и возможности автоматизации. Особенно актуально это для мутных и окрашенных растворов, а также агрессивных сред.

Требования к реакции титрования

Чтобы титриметрический метод анализа дал верный результат, нужно правильно подобрать реакцию, которая будет лежать в его основе. Требования к ней следующие:

  • стехиометричность;
  • высокая скорость протекания;
  • высокая константа равновесия;
  • наличие достоверного способа фиксирования экспериментального конца титрования.

Подходящие реакции могут принадлежать любому типу.

Виды анализа

Классификация методов титриметрического анализа основана на типе реакции. По этому признаку различают следующие методы титрования:

  • кислотно-основное;
  • окислительно-восстановительное;
  • комплексометрическое;
  • осадительное.

В основе каждого вида лежит свой тип реакции, подбираются специфические титранты, в зависимости от которых в анализе выделяют подгруппы методов.

Кислотно-основное титрование

Титриметрический метод анализа с использованием реакции взаимодействия гидроксония с гидроксид-ионом (Н 3 О + + ОН - = Н 2 О) называется кислотно-основным. Если известное вещество в растворе образует протон, что характерно для кислот, метод относится к подгруппе ацидиметрия. Здесь в качестве титранта обычно используют устойчивую соляную кислоту HCl.

Если титрант образует гидроксид-ион, метод называется алкалиметрией. Используемые вещества - щелочи, например, NaOH, или соли, полученные взаимодействием сильного основания со слабой кислотой, как Na 2 CO 3 .

Индикаторы при этом используется цветные. В качестве них выступают слабые органические соединения - кислоты и основания, у которых различаются структура и окраска протонированных и не протонированных форм. Чаще всего в кислотно-основном титровании используется одноцветный индикатор фенолфталеин (прозрачный раствор в щелочной среде становится малиновым) и двухцветный метиловый оранжевый (красное вещество становится желтым в кислой среде).

Их широкое применение связано с высоким светопоглощением, благодаря которому их окраска хорошо заметна невооруженным глазом, и контрастности и узкой области перехода цвета.

Окислительно-восстановительное титрование

Окислительно-восстановительный титриметрический анализ - это метод количественного анализа, основанный на изменении соотношения концентраций окисленной и восстановленной форм: aOx 1 + bRed 2 = aRed 1 + bOx 2 .

Делится метод на следующие подгруппы:

  • перманганатометрия (титрант - KMnO 4);
  • иодометрия (I 2);
  • дихроматометрия (K 2 Cr 2 O 7);
  • броматометрия (KBrO 3);
  • иодатометрия (KIO 3);
  • цериметрия (Ce(SO 4) 2);
  • ванадатометрия (NH 4 VO 3);
  • титанометрия (TiCl 3);
  • хромометрия (CrCl 2);
  • аскорбинометрия (С 6 Н 8 ОН).

В ряде случаев роль индикатора может играть реагент, участвующий в реакции и меняющий свою окраску с приобретением окисленной или восстановленной формы. Но также применяют специфические индикаторы, например:

  • при определении йода используют крахмал, который образует темно-синее соединение с I 3 — ионами;
  • при титровании трехвалентного железа применяют тиоционат-ионы, образующие с металлом комплексы, окрашенные в ярко-красный цвет.

Кроме того, есть специальные редокс-индикаторы - органические соединения, имеющие разную окраску окисленной и восстановленной форм.

Комплексометрическое титрование

Если кратко, титриметрический метод анализа, называемый комплексометрическим, основан на взаимодействии двух веществ с образованием комплекса: M + L = ML. Если используются соли ртути, например, Hg(NO 3) 2 , метод называется меркуриметрией, если этилендиаминтетрауксусная кислота (ЭДТА) - комплексонометрией. В частности, с помощью последнего метода проводится титриметрический метод анализа воды, а именно, ее жесткости.

В комплексонометрии используют прозрачные металлоиндикаторы, приобретающие окраску при образовании комплексов с ионами металлов. Например, при титровании солей трехвалентного железа ЭДТА в качестве индикатора используют прозрачную сульфосалициловую кислоту. Она окрашивает раствор в красный цвет при образовании комплекса с железом.

Однако чаще металлоиндикаторы имеют собственный цвет, который меняют в зависимости от концентрации иона металла. В качестве таких индикаторов применяются многоосновные кислоты, образующие достаточно устойчивые комплексы с металлами, которые при этом быстро разрушаются при воздействии ЭДТА с контрастным изменением окраски.

Осадительное титрование

Титриметрический метод анализа, в основе которого лежит реакция взаимодействия двух веществ с образованием твердого соединения, выпадающего в осадок (М + Х = МХ↓), является осадительным. Он имеет ограниченное значение, так как обычно процессы осаждения протекают неколичественно и нестехиометрично. Но иногда он все-таки используется и имеет две подгруппы. Если в методе используются соли серебра, например, AgNO 3 , он называется аргентометрией, если соли ртути, Hg 2 (NO 3) 2 , то меркурометрией.

Для обнаружения конечной точки титрования используют следующие способы:

  • метод Мора, в котором индикатором служит хромат-ион, образующий красно-кирпичный осадок с серебром;
  • метод Фольгарда, основанный на титровании раствора ионов серебра тиоцианатом калия в присутствии трехвалентного железа, образующего с титрантом красного комплекса в кислой среде;
  • метод Фаянса, предусматривающий титрование с адсорбционными индикаторами;
  • метод Гей-Люссака, в котором КТТ определяется по просветлению или помутнению раствора.

Последний метод в последнее время практически не используется.

Способы титрования

Титрование классифицируется не только по лежащей в основе реакции, но и по способу выполнения. По этому признаку выделяют следующие виды:

  • прямое;
  • обратное;
  • титрование заместителя.

Первый случай используют только в условиях идеального протекания реакции. Титрант при этом добавляют непосредственно к определяемому веществу. Так с помощью ЭДТА определяют магний, кальций, медь, железо и еще около 25 металлов. Но в других случаях чаще используют более сложные способы.

Обратное титрование

Идеальную реакцию удается подобрать не всегда. Чаще всего она медленно протекает, или для нее сложно подобрать способ фиксирования конечной точки титрования, или среди продуктов образуются летучие соединения, из-за чего определяемое вещество частично теряется. Преодолеть эти недостатки можно, используя метод обратного титрования. Для этого к определяемому веществу приливают большое количество титранта, чтобы реакция прошла до конца, а затем определяют, какое количество раствора осталось непрореагировавшим. Для этого остатки титранта от первой реакции (Т 1) титруются другим раствором (Т 2), и его количество определяется по разности произведений объемов и концентраций в двух реакциях: С Т1 V T 1 -C T 2 V T 2 .

Применение титриметрического метода анализа обратным способом лежит в основе определения диоксида марганца. Его взаимодействие с сульфатом железа протекает очень медленно, поэтому соль берется в избытке и реакция ускоряется при помощи нагревания. Непрореагировавшее количество иона железа титруется дихроматом калия.

Титрование заместителя

Титрование заместителя используется в случае нестехиометричных или медленных реакций. Его суть в том, что для определяемого вещества подбирается стехиометричная реакция со вспомогательным соединением, после чего титрованию подвергают продукт взаимодействия.

Именно так поступают при определении дихромата. К нему добавляют иодид калия, в результате чего выделяется эквивалентное определяемому веществу количество йода, которое затем титруется тиосульфатом натрия.

Таким образом, титриметрический анализ позволяет определить количественное содержание широкого круга веществ. Зная их свойства и особенности протекания реакций, можно подобрать оптимальный метод и способ титрования, который даст результат с высокой степенью точности.

Классификация методов титриметрического анализа

Аналитическая химия

Методы титриметрического анализа можно классифицировать по характеру химической реакции, лежащей в основе определения веществ, и по способу титрования.

По своему характеру реакции, используемые в титриметрическом анализе, относятся к различным типам - реакциям соединения ионов и реакциям окисления - восстановления. В соответствии с этим титриметрические определения можно подразделять на следующие основные методы: метод кислотно-основного титрования (нейтрализации), методы осаждения и комплексообразования, метод окисления - восстановления.

Метод кислотно-основного титрования (нейтрализации). Сюда относятся определения, основанные на взаимодействии кислот и оснований, т.е. на реакции нейтрализации:

Методом кислотно-основного титрования (нейтрализации) определяют количество кислот (алкалиметрия) или оснований (ациди-метрия) в данном растворе, количество солей слабых кислот и слабых оснований, а также веществ, которые реагируют с этими солями. Применение неводных растворителей (спирты, ацетон и т. п.) позволило расширить круг веществ, которые можно определять данным методом.

Методы осаждения и комплексообразования. Сюда относятся титриметрические определения, основанные на осаждении того или иного иона в виде малорастворимого соединения или связывания его в малодиссоциированный комплекс.

Методы окисления - восстановления (редоксиметрия). Эти методы основаны на реакциях окисления и восстановления. Их называют обычно по применяемому титрованному раствору реагента, например:

перманганатометрия, в которой используются реакции окисления перманганатом калия KMnO4;

иодометрия, в которой используются реакции окисления иодом или восстановления I-ионами;

бихроматометрия, в которой используются реакции окисления бихроматом калия К2Сr2О7;

броматометрия, в которой используются реакции окисления броматом калия КВrO3.

К методам окисления - восстановления относятся также цериметрия (окисление Се4+-ионами), ванадатометрия (окисление VO3-ионами), титанометрия (восстановление Т13+-ионами). По способу титрования различают следующие методы.

Метод прямого титрования. В этом случае определяемый ион титруют раствором реагента (или наоборот).

Метод замещения. Этот метод применяют тогда, когда по тем или иным причинам трудно определить точку эквивалентности, например при работе с неустойчивыми веществами и т. п.

Метод обратного титрования (титрование по остатку). Этот метод применяют, когда нет подходящего индикатора или когда основная реакция протекает не очень быстро. Например, для определения CaCO3 навеску вещества обрабатывают избытком титрованного раствора соляной кислоты:

Каким бы из методов ни проводилось определение, всегда предполагается:

1) точное измерение объемов одного или обоих реагирующих растворов;

2) наличие титрованного раствора, при помощи которого проводят титрование;

3) вычисление результатов анализа.

В соответствии с этим, прежде чем переходить к рассмотрению отдельных методов титриметрического анализа, остановимся на измерении объемов, расчете концентраций и приготовлении титрованных растворов, а также на вычислениях при титриметрических определениях.

Точка эквивалентности

Точка эквивалентности (в титриметрическом анализе) - момент титрования, когда число эквивалентов добавляемого титранта эквивалентно или равно числу эквивалентов определяемого вещества в образце. В некоторых случаях наблюдают несколько точек эквивалентности, следующих одна за другой, например, при титровании многоосновных кислот или же при титровании раствора, в котором присутствует несколько определяемых ионов.

На графике кривой титрования присутствует одна или несколько точек перегиба, соответствующих точкам эквивалентности.

Точкой окончания титрования (подобна точке эквивалентности, но не то же самое) считают момент, при котором индикатор изменяет свой цвет при колориметрическом титровании.

Методы определения точки эквивалентности

С помощью индикаторов

Это вещества, изменяющие свой цвет вследствие протекания химических процессов. Кислотно-основные индикаторы, например фенолфталеин, изменяют свой цвет в зависимости от pH раствора, в котором они находятся. Редокс-индикаторы изменяют свой цвет вслед за изменением потенциала системы, используются таким образом при окислительно-восстановительном титровании. Перед началом титрования в исследуемый раствор добавляют несколько капель индикатора и начинают по каплям добавлять титрант. Как только раствор вслед за индикатором изменяет свой цвет, титрование прекращают, этот момент приблизительно и есть точка эквивалентности.

Правило выбора индикатора - при титровании используется такой индикатор, который изменяет свою окраску около точки эквивалентности, т.е. интервал перехода окраски индикатора должен по возможности совпадать со скачком титрования.

Потенциометрия

В данном случае используют прибор для измерения электродного потенциала раствора. При достижении точки эквивалентности потенциал рабочего электрода резко изменяется.

С помощью pH-метров

pH-метр по сути своей также является потенциметром, в котором используется электрод, потенциал которого зависит от содержания в растворе ионов H+, это пример использования ионоселективного электрода. Таким образом можно следить за изменением pH в течение всего процесса титрования. При достижении точки эквивалентности pH резко изменяется. Данный способ более точный по сравнению с титрованием с использованием кислотно-основных индикаторов, и может быть легко автоматизирован.

Проводимость

Проводимость раствора электролитов зависит от находящихся в нем ионов. Во время титрования проводимость часто значительно изменяется (Например, при кислотно-основном титровании, ионы H+ и OH− взаимодействуют, образуя нейтральную молекулу H2O, что вызывает изменение проводимости раствора). Общая проводимость раствора зависит и от других присутствующих ионов (например, противоинов), которые вносят в нее различный вклад. Он, в свою очередь, зависит от подвижности каждого иона и от общей концентрации ионов (ионной силы). В связи с этим предсказать изменение проводимости гораздо сложнее, нежели измерить ее.

Изменение цвета

При протекании некоторых реакций происходит изменение цвета и без добавления индикатора. Чаще всего это наблюдается при окислительно-восстановительном титровании, когда исходные вещества и продукты реакции имеют разные цвета в разных степенях окисления.

Осаждение

Если во время реакции образуется твердое нерастворимое вещество, то по окончании титрования образуется преципитат. Классическим примером такой реакции является образование крайне нерастворимого хлористого серебра AgCl из ионов Ag+ и Cl−. Удивительно, но это не позволяет точно определить момент окончания титрования, поэтому осадительное титрование чаще всего используют в качестве обратного титрования.

Изотермическое калориметрическое титрование

Используется изотермический титровальный калориметр, который по величине тепла, которое выделила или поглотила реагирующая система, определяет точку эквивалентности. Данный способ важен в биохимическом титровании, например, для определения того, как ферментный субстрат связывается с ферментом.

Термометрическая титриметрия

Термометрическая титриметрия - чрезвычайно гибкая техника. Она отличается от калориметрической титриметрии тем, что теплота реакции, о которой свидетельствует падение или рост температуры, не используется для определения количества содержащегося в исследуемом образце раствора вещества. Напротив, точка эквивалентности определяется на основе области, в которой происходит изменение температуры. В зависимости от того, является реакция между титрантом и исследуемым веществом экзотермической или эндотермической, температура в течение процесса титрования будет, соответственно, возрастать или падать. Когда все исследуемое вещество прореагировало с титрантом, изменение области, в которой происходит рост или падение температуры, позволяет определить точку эквивалентности и изгиб на кривой температуры. Точно точку эквивалентности можно определить, взяв вторую производную кривой температуры: четкий пик будет указывать на точку эквивалентности.

Спектроскопия

Точку эквивалентности можно определить, измеряя абсорбцию света раствором во время титровании, если известен спектр продукта, титранта или исследуемого вещества. Относительное содержание продукта реакции и исследуемого вещества позволяют определить точку эквивалентности. При этом присутствие свободного титранта (указывающее на завершение реакции) можно обнаружить при очень малых величинах.

Амперометрия

Метод, позволяющий определить точку эквивалентности по величине тока при заданном потенциале. Величина тока вследствие реакции окисления/восстановления исследуемого вещества или продукта у рабочего электрода зависит от их концентрации в растворе. Точке эквивалентности соответствует изменение величины тока. Данный метод наиболее полезен, когда необходимо уменьшить расход титранта, например, при титровании галидов ионом Ag+.

Прямое и обратное титрование.

В простейшем варианте титрования анализируемое вещество взаимодействует непосредственно с титрантом. Количество анализируемого вещества рассчитывают исходя из молярной концентрации титранта, его объема, требуемого для достижения точки эквивалентности, и стехиометрии реакции между определяемым веществом и титрантом.

В обратном титровании анализируемое вещество взаимодействует не с титрантом, а с другим реагентом, присутствующим в избытке. Избыток затем определяют титрованием. Если известно исходное количество реагента и определен его избыток, то разность между ними – это количество реагента, пошедшее на реакцию с определяемым веществом.

Обратное титрование используют, например, когда константа равновесия реакции прямого титрования слишком мала. Среди других причин применения обратного титрования – отсутствие подходящего метода индикации или недостаточная скорость реакции при прямом титровании.

Заместительное титрование.

К анализируемому раствору, содержащему определяемые ионы металла, добавляют магниевый комплекс MgY2-. Т.к. он менее устойчив, чем комплекс определяемого иона металла с комплексоном, то идет реакция замещения и выделяется ион Mg2+.

Затем ион Mg2+ оттитровывают комплексоном III в присутствии эриохрома черного Т.

По объему ЭДТА, затраченному на титрование, рассчитывают массу определяемого иона металла. Такой способ титрования возможен только в случае, если комплексные соединения определяемых металлов устойчивее магниевого комплекса.

___________________________________________________________________________________________________________________________________________________________________________________________

КЫРГЫЗСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ им. Ж. БАЛАСАГЫНА

ФАКУЛЬТЕТ ХИМИИ И ХИМИЧЕСКОЙ ТЕХНОЛОГИ

Кафедра ЮНЕСКО по экологическому образованию и естественным наукам

РЕФЕРАТ

по дисциплине : Аналитическая химия

на тему :

МЕТОД НЕЙТРАЛИЗАЦИИ В ТИТРИМЕТРИЧЕСКОМ МЕТОДЕ АНАЛИЗА

Студентки II курса гр. хт-1-08

ФИО: Байтанаевой А.

Преподаватель: доцент Ли С.П.

Бишкек-2010г.

Введение

Аналитическая химия. Методы определения

Титриметрический метод анализа

Приготовление титрованного раствора

Титрование. Индикаторы

Методы установления точек эквивалентности. Классификация методов титриметрического анализа

Посуды, применяемые для титрования

Вычисления в объемном анализе

Методы кислотно-основного титрования, или методы нейтрализации

Заключение

Использованная литература

Введение

Аналитическая химия является фундаментальной химической наукой, занимающей видное место в ряду других химических дисциплин. Вместе с тем аналитическая химия теснейшим образом связана с повседневной практикой, поскольку без данных анализа о содержании в сырье или конечном продукте основных компонентов и примесей невозможно грамотное проведение технологического процесса в металлургической, химической, фармацевтической и многих других отраслях промышленности.

Данные химического анализа требуются при решении экономических и других важных вопросов.

Современное развитие аналитической химии, обусловленное в значительной мере прогрессом различных отраслей производства.

Аналитическая химия. Методы определения

аналитический химия титриметрический нейтрализация

Аналитическая химия- это наука об определении химического состава веществ и отчасти их химической структуры. Методы, которые создает аналитическая химия, позволяют отвечать на вопросы о том, из чего состоит вещество, какие компоненты входят в его состав. Аналитические методы часто дают возможность узнавать, в какой форме данный компонент присутствует в веществе, например, каково состояние окисления элемента.

Методы определения можно классифицировать, основываясь на свойстве вещества, которое положено в основу определения. Если измеряется масса осадка, метод называется гравиметрическим, если определяется интенсивность окраски раствора, - фотометрическим, а если величина ЭДС,- потенциометрическим.

Методы определения часто делят на химические (классические), физико-химические (инструментальные) и физические .

Химическими в аналитической химии принято называть главным образом гравиметрические и титриметрические методы. Эти методы наиболее старые, но широко распространенные до настоящего времени, играющие важную роль в практике химического анализа.

Гравиметрический (весовой) анализ - измерение массы определяемого вещества или его составных частей, выделяемых в химически чистом состоянии или в виде соответствующих соединений.

Титриметрический (объемный) анализ - измерение объема израсходованного на реакцию реактива точно известной концентрации.

Физико-химические и физические методы анализа обычно делят на следующие группы:

1) электрохимические

2) спектральные (оптические)

) хроматографические

) радиометрические

) масс-спектрометрические

Титриметрический метод анализа

Титриметрическим методом анализа называют метод количественного анализа, основанный на измерении количества реагента, требующегося для завершения реакции с данным количеством определяемого вещества.

Метод заключается в том, что к раствору определяемого вещества постепенно прибавляют раствор реактива известной концентрации. Добавление реактива продолжают до тех пор, пока его количество не станет эквивалентным количеству реагирующего с ним определяемого вещества.

Количественные определения с помощью объемного метода выполняются очень быстро. Время, требуемое для завершения определения титриметрическим методом, измеряется минутами. Это позволяет без особой затраты труда проводить несколько последовательных и параллельных определений.

Основоположником титриметрического анализа является французский ученый Ж.Л.Гей-Люссак.

Химический элемент, простое или сложное вещество, содержание которого определяют в данном образце анализируемого продукта, называют определяемым веществом .

К определяемым веществам относят также атомы, ионы, связанные свободные радикалы и функциональные группы.

Твердое, жидкое или газообразное вещество, вступающее в реакцию с определенным веществом, называют реагентом .

Титрование - это приливание одного раствора к другому при непрерывном смешивании. Концентрация одного раствора точна известна.

Титрант (стандартный или титрованный раствор) - это раствор с точно известной концентрацией.

Нормальность раствора N - количество грамм-эквивалента вещества, содержащегося в 1л раствора.

N 1 V 1 =N 2 V 2

Титр (Т) - точная концентрация стандартного раствора (титранта).

Выражают числом граммов растворенного вещества, содержащегося в 1мл раствора, г/мл.

В аналитической химии титр - один из способов выражения концентрации раствора.

N- нормальность раствора, г-экв/л

Э- эквивалент растворенного вещества

Т- титр, г/см 3 (мл).

Химические элементы или их соединения вступают в химические реакции друг с другом в строго определенных весовых количествах, соответствующих их химическим эквивалентам (грамм-эквивалентам).

Другими словами, грамм-эквивалент одного вещества реагирует с одним грамм-эквивалентом другого вещества.

Приготовление титрованного раствора по точной навеске исходного вещества

Первым способом приготовления раствора точно известной концентрации, т.е. характеризующегося определенным титром, является растворение точной навески исходного химически чистого вещества в воде или другом растворителе и разбавление полученного раствора до требуемого объема. Зная массу растворенного в воде химически чистого соединения и объем полученного раствора, легко вычислить титр (Т) приготовленного реактива, в г/мл:

Этим способом готовят титрованные растворы таких веществ, которые можно легко получить в чистом виде и состав которых отвечает точно определенной формуле и не изменяется в процессе хранения. Взвешивание вещества проводят в бюксе. Таким путем нельзя приготовить титрованные растворы веществ, которые отличаются большой гигроскопичностью, легко теряют кристаллизационную воду, подвергаются действию двуокиси углерода воздуха и т.д.

Приготовление титрованных растворов по "фиксаналу"

Очень часто на практике для приготовления титрованных растворов используют приготовленные на химических заводах или в специальных лабораториях точно отвешенные количества твердых химически чистых соединений или точно отмеренные объемы их растворов определенной нормальности.

Для приготовления требуемого титрованного раствора ампулу разбивают над специальной воронкой, снабженной пробивным устройством, содержимое ее количественно переводят в мерную колбу и доводят объем водой до метки.

Обычно в ампулах содержится 0,1г-экв вещества, т.е. столько, сколько требуется для приготовления 1л 0,1н. раствора.

Титрование

Титрование проводят следующим образом. Бюретку заполняют рабочим раствором до нулевого деления так, чтобы в нижнем конце ее не было пузырьков воздуха. Исследуемый раствор отмеряют пипеткой и переносят в коническую колбу. Сюда же вливают несколько капель раствора индикатора, за исключением тех случаев, когда один из взятых растворов является индикатором. К раствору в колбе постепенно приливают раствор из бюретки до изменения окраски раствора в колбе. Сначала раствор из бюретки приливают тонкой струей, непрерывно перемешивая титруемый раствор вращением колбы. По мере титрования рабочий раствор приливают все медленнее и к концу титрования его добавляют уже по каплям.

Необходимо во время титрования левой рукой управлять зажимом бюретки, а правой одновременно вращать колбу с титруемой жидкостью, перемешивая, таким образом, титруемый раствор.

Результаты титрования будут правильными, если в конце титрования окраска титруемого раствора резко изменится от одной капли рабочего раствора. Чтобы переход окраски раствора был лучше заметен, колбу с титруемым раствором во время титрования помещают на белую подставку.

После каждого титрования отсчитывают по шкале бюретки объем затраченного рабочего раствора и результат отсчета записывают в лабораторный журнал. Каждый раствор титруют не менее трех раз, результаты титрования не должны отличаться друг от друга более чем на 0,1 мл. Концентрацию раствора вычисляют по среднему значению.

Индикаторы

Индикаторами называются вещества, при помощи которых устанавливают момент эквивалентности между титруемыми растворами. В качестве индикаторов чаще всего применяют вещества, способные давать с одним из реагирующих веществ легко заметную цветную реакцию. Например, крахмал, взаимодействуя с раствором йода, окрашивается в интенсивно синий цвет. Следовательно, крахмал- индикатор на свободный йод. Один и тот же индикатор в различных условиях часто приобретает различную окраску. Например, фенолфталеин в кислой и нейтральной среде бесцветен, а в щелочной среде принимает красно-фиолетовую окраску.

Иногда индикатором служит непосредственно одно из реагирующих веществ. Например, раствор окислителя KMnO 4 в кислой среде при постепенном прибавлении восстановителя к нему обесцвечивается. Как только в растворе появится избыточная капля KMnO 4 , раствор окрасится в бледно-розовый цвет.

Методы установления точек эквивалентности

Установление конечной точки титрования или точки эквивалентности представляет собой важнейшую операцию титриметрического метода анализа, так как от точности определения точки эквивалентности зависит точность результатов анализа. Обычно конец титрования устанавливают по изменению окраски титруемого раствора или индикатора, вводимого в начале или в процессе титрования. Применят также и безиндикаторные методы, основанные на использовании специальных приборов, позволяющих судить об изменениях, которые происходят в титруемом растворе в процессе титрования. Такие методы называют физико-химическими или инструментальными методами определения точек эквивалентности. Они основаны на измерении электропроводности, значений потенциалов, оптической плотности и других физико-химических параметров титруемых растворов, которые резко изменяются в точке эквивалентности.

Точку эквивалентности можно определить следующими методами:

)визуально - по изменению цвета раствора, если определяемое вещество или реагент окрашены; так как в точке эквивалентности концентрация определяемого вещества уменьшается до минимума, а концентрация реагента начинает повышаться.

) визуально - по появлению помутнения или по изменению окраски раствора, вызываемой образованием продуктов реакции, или индикатора, если они бесцветны.

) физико-химическими методами с последующим анализом кривых титрования, отражающих происходящие в процессе титрования изменения физико-химических параметров титруемых растворов независимо от окраски. Точку эквивалентности устанавливают по пересечению кривых или по скачку кривой титрования.

Классификация титрования

)Метод нейтрализации основан на использовании реакций нейтрализации кислот, оснований, солей слабых кислот или слабых оснований, сильно гидролизирующихся в водных растворах, разнообразных неорганических и органических соединений, проявляющих в неводных растворах кислые или основные свойства, и др.

)Метод окисления-восстановления основан на использовании реакций окисления-восстановления элементов, способных переходить из низших степеней окисления в высшие, и наоборот, а также ионов и молекул, которые реагируют с окислителями или восстановителями, не подвергаясь непосредственному окислению или восстановлению.

)Метод осаждения основан на использовании реакций осаждения.

)Метод комплексообразования основан на использовании реакций комплексообразования, из которых наиболее широко применяют реакции ионов металлов с так называемыми комплексонами.

Посуды, применяемые для титрования

Мерные колбы служат для измерения объемов растворов, приготовления растворов определенной концентрации. Объем жидкости, вмещаемой колбой, выражают в миллилитрах. На колбе указывают ее емкость и температуру(20 0 С), при которой эта емкость измерена.

Мерные колбы бывают различной емкости: от 25 до 2000 мл.

Пипетки служат для отмеривания небольших объемов растворов и перенесения определенного объема раствора из одного сосуда в другой. Объем жидкости, вмещаемой пипеткой, выражают в миллилитрах. На расширенной части пипетки указывают ее емкость и температуру (обычно 20 0 С), при которой эта емкость измерена.

Пипетки бывают различной емкости: от 1 до 100мл.

Измерительные пипетки небольшой емкости не имеют расширения и градуированы на 0,1-1мл.


Бюретки представляют собой узкие, градуированные по длине цилиндрические стеклянные трубки. Один конец бюретки сужен и снабжен стеклянным краном или резиновой трубкой, соединенной с капилляром, через который из бюретки выливается раствор. Резиновая трубка зажимается снаружи металлическим зажимом. При надавливании на зажим указательным и большим пальцами, из бюретки выливается жидкость.

Хорошо вымытую бюретку 2-3 раза ополаскивают дистиллированной водой, а затем раствором, которым ее будут наполнять. В капилляре крана не должно оставаться пузырьков воздуха. При отсчетах делений глаз наблюдателя должен находиться на уровне мениска. Объем светлых жидкостей отсчитывают по нижнему мениску, темных, например, KMnO 4 , I 2 ,- по верхнему.

Коническая колба

Мерные цилиндры

Вычисление в объемном анализе

Грамм-эквивалент

Грамм-эквивалентом называется количество граммов вещества, эквивалентное (химически равноценное) грамм-атому или грамм-иону водорода в данной реакции. Из этого определения следует, что грамм-эквивалент одного и того же вещества в разных реакциях может быть различный. Например, Na 2 CO 3 с кислотой может реагировать двояко:

Na 2 CO 3 +HCI= NaНСО 3 +NaCI (1) 2 CO 3 +2HCI= NaCI +Н 2 СО 3 (2)

В реакции (1) одна грамм-молекула Na 2 CO 3 реагирует с одной грамм-молекулой HCI, что соответствует одному грамм-атому водорода. В этой реакции грамм-эквивалент Na 2 CO 3 равен молю М(Na 2 CO 3), что выражается равенством Э(Na 2 CO 3)= М(Na 2 CO 3). В реакции (2) одна грамм-молекула Na 2 CO 3 реагирует с двумя молями HCI. Следовательно,

Э(Na 2 CO 3)= =53 г.

Нормальные и молярные растворы

Нормальность раствора N - количество грамм-эквивалента вещества, содержащегося в 1л раствора.

Молярность раствора указывает, сколько молей растворенного вещества содержится в 1л раствора.

Зная концентрацию раствора, выраженную в граммах на определенный объем, можно вычислить нормальность и молярность его:

Пример : В 250 мл раствора гидроокиси кальция содержится 3,705 г Са (ОН) 2 . Вычислить нормальность и молярность раствора.

Решение : Сначала вычислим, сколько граммов Са (ОН) 2 содержится в 1л раствора:

3,705г Са (ОН) 2 - 250 мл Х=14,82 г/л

Х г Са (ОН) 2 - 1000 мл

Найдем грамм-молекулу и грамм-эквивалент:

М(Са (ОН) 2)=74,10 г. Э(Са (ОН) 2)=37,05г.

Нормальность раствора:

05г/л - 1н. Х=0,4н.

14,82г/л - Х н.

Молярность раствора:

10г/л - 1моль Х=0,2М

82г/л - Х моль

Зная нормальность или молярность раствора, можно вычислить его титр.

Пример : Вычислить титр 0,1н. раствора H 2 SO 4 по NaOH.

Решение :

ТH 2 SO 4 / NaOH =г/мл

В объемном анализе применяют несколько методов вычисления.

) Вычисление нормальности анализируемого раствора по нормальности рабочего раствора . При взаимодействии двух веществ NaOH грамм-эквивалент одного вещества реагирует с грамм-эквивалентом другого. Растворы различных веществ одной и той же нормальности содержат в равных объемах одинаковое число грамм-эквивалентов растворенного вещества. Следовательно, одинаковые объемы таких растворов содержат эквивалентные количества вещества. Поэтому, например, для нейтрализации 10 мл 1н. HCI требуется затратить ровно 10 мл 1н. раствора NaOH.

Растворы одинаковой нормальности вступают в реакцию в равных объемах.

Зная нормальность одного из двух реагирующих растворов и их объемы, расходуемые на титрование друг друга, легко определить неизвестную нормальность второго раствора. Обозначим нормальность первого раствора через N 2 и его объем через V 2 . Тогда на основании сказанного можно составить равенство:

V 1 N 1 =V 2 N 2

Пример. Определить нормальность раствора соляной кислоты, если известно, что для нейтрализации 30,00 мл ее потребовалось 28,00 мл 0,1100 н. раствора NaOH.

Решение .

HCI V HCI =N NaOH V NaOH

N HCI = =.

) Вычисление количества определяемого вещества по титру рабочего раствора, выраженному в граммах определяемого вещества. Титр рабочего раствора в граммах определяемого вещества равен числу граммов определяемого вещества, которое эквивалентно количеству вещества, содержащегося в 1 мл рабочего раствора. Зная титр рабочего раствора по определяемому веществу T= и объем рабочего раствора, израсходованного на титрование, можно вычислить число граммов (массу) определяемого вещества.

Пример. Вычислить процентное содержание Na 2 CO 3 в образце, если для титрования навески 0, 100 гр. израсходовано 15,00 мл 0,1н. HCI.

Решение .

М (Na 2 CO 3) =106,00 гр. Э(Na 2 CO 3) =53,00 гр.

Т(HCI/ Na 2 CO 3)= =г/мл(Na 2 CO 3) = Т(HCI/ Na 2 CO 3) V HCI =0,0053*15,00=0,0795 г.

Процентное содержание Na 2 CO 3 равно

3) Вычисление числа миллиграмм-эквивалентов исследуемого вещества. Помножив нормальность рабочего раствора на объем его, израсходованный на титрование исследуемого вещества, получим число миллиграмм-эквивалентов растворенного вещества в оттитрованной части исследуемого вещества. Масса определяемого вещества равна:

(гр.)

Статистическая обработка результатов анализа

При анализе веществ (проб) обычно проводят несколько параллельных определений. При этом отдельные результаты определений должны быть близкими по величине и соответствовать истинному содержанию компонентов (элементов) в исследуемом веществе (пробе).

Существуют два фактора, по которым аналитик судит о полученных результатах анализа

1) Воспроизводимость полученных результатов.

2) Соответствие их составу вещества (пробы)

Воспроизводимость результатов анализа зависит от случайных ошибок анализа. Чем больше случайная ошибка, тем больше разброс значений при повторении анализа. Случайная ошибка может иметь размерность измеряемых величин (мг, мг/л) или же может быть выражена в процентах. Следовательно, воспроизводимость определяет вероятность того, что результаты последующих измерений окажутся в некотором заданном интервале, в центре которого находится среднее значение всех определений, выполненных данным методом.

В отличие от случайных ошибок, систематические ошибки влияют на все измерения всегда в одинаковой степени.

Цель всех аналитических определений и исследований сводится к нахождению результатов, наиболее близких к истинному составу или к истинному содержанию компонентов пробы.

Для оценки точности или надежности результатов аналитических определений пользуются статистической обработкой результатов и вычисляют следующие величины:

1) Среднее арифметическое

) Дисперсию

Среднюю квадратичную ошибку

S =

3) Среднюю квадратичную ошибку среднего арифметического

a=0, 95; R=2

4)
Доверительный интервал

Методы кислотно-основного титрования, или методы нейтрализации

Методы нейтрализации основаны на применении реакций нейтрализации. Основным уравнением процесса нейтрализации в водных растворах является взаимодействие ионов гидроксония (или водорода) с ионами гидроксила, сопровождающееся образованием слабодиссоциированных молекул воды:

H 3 O + +OH - →2H 2 O или

H + +OH - →H 2 O

Методы нейтрализации позволяют количественно определять кислоты (с помощью титрованных растворов щелочей), основания (с помощью титрованных растворов кислот) и другие вещества, реагирующие в стехиометрических соотношениях с кислотами и основаниями в водных растворах.

Техника определения состоит в том, что к определенному количеству раствора основания (или кислоты) постепенно приливают из бюретки титрованный раствор кислоты (или основания) до наступления точки эквивалентности. Количество основания (или кислоты), содержащееся в исследуемом растворе, вычисляют по объему титрованного раствора кислоты (или основания), израсходованного на нейтрализацию определенного объема раствора анализируемого образца или навески исследуемого продукта.

Кислотность или щелочность раствора определяют c помощью индикаторов. Для проявления окраски достаточно добавить в исследуемый раствор всего лишь 1-2 капли 0,1% раствора индикатора. Цвета различных индикаторов в растворах кислот и щелочей приведены в таблице.

Таблица 1.Окраска индикаторов в растворах щелочей и кислот.


Рассмотрим конкретный пример. Пусть имеется раствор NaOH неизвестной концентрации. 10,0 мл этого раствора поместили в колбу и добавили 1 каплю слабого раствора фенолфталеина. Раствор окрасился в малиновый цвет (рис.1а).

Титрование сильной кислоты сильным основанием

А) Приготовление 0,1 н. раствора HCI

Для приготовления 0,1н. раствора HCI берут кислоту меньшей концентрации, примерно 20%-ную. Определяют плотность ее ареометром (она равна 1,140), для этого кислоту наливают в высокий стеклянный цилиндр, диаметр которого превышает диаметра шарика ареометра. Осторожно опускают ареометр в жидкость и следят за тем, чтобы он свободно плавал, не касаясь стенок цилиндра. Отсчет ведут по шкале ареометра. Деление шкалы, совпадающее с уровнем жидкости, показывает плотность раствора. Затем узнают процентную концентрацию (по справочнику) и рассчитывают, сколько этой кислоты следует брать, чтобы получить 500 мл 0,1н. раствора HCI.

C (HCI) =28, 18%

Расчет навески на объем мерной колбы (250мл.)

m = = 36, 5 * 0, 1 * 0, 25=0, 92 гр.HCI.

гр. исходной кислоты содержится --- 28,18 гр. х.ч. HCI.

Х гр. --- 0,92 гр. HCI.

Х = 3,2 гр. х.ч. HCI.

Чтобы не отвешивать соляную кислоту, а отмерить мензуркой, вычислим объем 28,18%-ной кислоты, необходимый для приготовления раствора. Для этого массу 28,18%-ной кислоты делим на плотность:

V = = =2, 8 мл. HCI

Затем отмеряют 2,8 мл кислоты, переносят в мерную колбу на 500 мл и доводят объем раствора до метки, и, закрыв колбу пробкой, перемешивают. Получив примерно 0,1 н. раствор HCI, устанавливают титр и нормальную концентрацию его по раствору тетрабората натрия.

Б) Приготовление 0,1н. раствора тетрабората натрия (буры)

Для определения титра раствора HCI берут кристаллогидрат тетрабората натрия. Это соль удовлетворяет почти всем требованиям, предъявляемым к исходным веществам, но относительно мало растворяется в холодной воде. Для установки титра HCI или серной кислоты используют перекристаллизованный продукт.

При растворении тетрабората натрия в воде протекает реакция гидролиза:

В 4 О 7 2- + 5H 2 O D 2H 2 BO 3 - + 2H 3 BO 3

H 2 BO 3 ионы, в свою очередь, подвергаются гидролизу:

H 2 BO 3 - +H 2 OD OH - + H 3 BO 3

Ионы оттитровываются кислотой, и гидролиз идет до конца. Суммарно реакцию титрования можно выразить уравнением:

В 4 О 7 2- +2H + +5 H 2 OD 4H 3 BO 3

Э (Na 2 B 4 O 7 10H 2 O) =190, 6

1000мл (H 2 O) --- 190, 6 гр. (Na 2 B 4 O 7 10H 2 O) Х=95, 3гр. (Na 2 B 4 O 7 10H 2 O)

500 мл (H 2 O) --- Х гр. (Na 2 B 4 O 7 10H 2 O)

95, 3 гр. --- 1н. Х=9, 5гр. (Na 2 B 4 O 7 10 H 2 O )

Х гр. --- 0,1н.

Для растворения тетрабората натрия наливают в колбу примерно ½ объема колбы дистиллированной воды, нагревают на водяной бане, перемешивая содержимое колбы вращательным движением до полного растворения соли. После растворения колбу с тетраборатом натрия охлаждают до комнатной температуры и доводят до метки дистиллированной водой, сначала небольшими, а затем по каплям, применяя капиллярную пипетку. Закрыв колбу пробкой, тщательно перемешивают.

При расчете титра и нормальной концентрации раствора тетрабората натрия используют формулы:

Т(Na 2 B 4 O 7 10H 2 O)= (г/мл)

N (Na 2 B 4 O 7 10H 2 O) = (г-экв/л)

В) Определение титра раствора HCI по тетраборату натрия методом пипетирования .

Берут чистую пипетку на 10 мл, ополаскивают раствором тетрабората натрия (из мерной колбы). Наполняют пипетку раствором до метки и переносят для титрования в другую колбу, добавляют 2-3 капли индикатора метилового оранжевого. Бюретку перед титрованием промывают два раза небольшим количеством HCI и затем наполняют ее, доводя мениск до нулевой черты. Проверив, нет ли в капиллярной трубке ("носике") пузырьков воздуха, начинают титровать до появления бледно-красного цвета. Титрование повторяют 3 раза и вычисляют среднюю величину.

титрование15,0 мл HCI

2 титрование 14,8 мл HCI V СР =14,76 мл

3 титрование 14,5 мл HCI

После титрования проводят вычисление нормальной концентрации раствора HCI. Нормальность кислоты вычисляют по среднему значению из трех определений. Расчет ведут по формуле:

N СОЛИ V СОЛИ= N КИСЛ V КИСЛ

N HCI =

N HCI == 0, 06775 (г-экв/л)

Г) Приготовление титрованного раствора гидроксида натрия

Реактивы гидроксида натрия нередко содержат примеси карбоната натрия, и поэтому для точных работ раствор щелочи должен быть химически чистым.

При определении титра раствора гидроксида натрия по хлороводородной кислоте берут мерную колбу на 100 мл. Неизвестной количестве NaOH приливают дистиллированную воду до метки, закрывают пробкой и перемешивают. Затем пипеткой на 10 мл берут раствор щелочи из мерной колбы и переносят в колбу для титрования, прибавляют 2-3 капли Фенолфталеина и титруют хлороводородной кислотой до обесцвечивания. Титрование повторяют 3 раза и рассчитывают среднюю величину.

Е титрование- 1,8 мл

2-е титрование- 1,7 мл V СР = 1,7 мл

3-е титрование- 1,6 мл

Т HCI / NaOH = = = 0,00271 г/мл

m NaOH =

1) m NaOH ==0,04878 гр.

) m NaOH = 0,00271*1,7*10=0,04606 гр.

) m NaOH = 0,00271*1,6*10=0,04336 гр.

Статистическая обработка результатов анализа

(X i - ) 10 - 3 (X i - ) 10 - 6 Условия

0,000001


) S 2 = = =4*10 -6

3) S = ==2*10 -3

) = ==1, 1*10 -3

6) åa=ta, R S= 4,303*1, 1*10 -3 =4*10 -3

7) a= ±åa=(0,04606±4*10 - 3)

Определение гидроксида натрия и карбоната натрия при совместном их присутствии

Гидроксиды натрия и калия из воздуха поглощают СО 2 и превращаются в карбонаты:

NaOH + СО 2 ŽNa 2 CO 3 + H 2 O

Поэтому как твердое вещество, так и растворы этих реагентов часто имеют примесь карбонатов. В лабораторной практике нередко приходится определять карбонат натрия в присутствии гидроксида натрия. Для этого можно применять 2 способа: первый - фиксированием (на кривой титрования Na 2 CO 3) двух точек эквивалентности (способ Уордера); второй- титрованием раствора NaOH, осадив сначала карбонат-ион CO 3 2- при помощи иона бария Ba 2+ (способ Винклера).

По первому способу титрование смеси карбоната натрия и гидроксида натрия хлороводородной кислотой выражается следующими уравнениями:

NaOH + Na 2 CO 3 +2HCI g 2NaCI + NaHCO 3 + H 2 O 3 + HCIg NaCI+ H 2 O+ СО 2 h

Первая фаза заканчивается при pH8,3 в области перехода окраски индикатора фенолфталеина, а вторая при pH3,85 в интервале изменения окраски метилового оранжевого. Следовательно, в первой точке эквивалентности оттитровывают с фенолфталеином весь NaOH и половину Na 2 CO 3 , а во второй оставшуюся половину карбоната натрия дотитровывают с метиловым оранжевым.

Взятие навески NaOH

Расчет навески на объем мерной колбы (250 мл):

Mr (NaOH) =40 m= ==1 гр . NaOH

Э(NaОH)= 40 г.

Взятие навески Na 2 CO 3

Mr (Na 2 CO 3) =106 m= =53*0, 1*0, 25= 1,3 гр . Na 2 CO 3

Э(Na 2 CO 3)=53 г

Ход работы

Навеску NaOH и Na 2 CO 3 , помещают в мерную колбу на 250 мл, растворяют дистиллированной водой и доводят объем до метки.

Затем берут пипеткой 10 мл данного раствора, переносят в другую колбу и добавляют 4-5 капель 0,1% раствора фенолфталеина, и титруют раствором HCI до обесцвечивания.

Затраченное количество HCI отмеряют по бюретке и записывают. Затем прибавляют в эту же колбу с раствором 2-3 капли метилового оранжевого, получают желтую окраску анализируемого раствора и титруют из той же бюретки HCI до появления оранжевого окрашивания. Снова делают отсчет по бюретке. Титрование повторяют 3 раза и, как всегда берут среднюю величину.

а) титрование с фенолфталеином:

1) 12,2 мл HCI

) 12,1 мл HCI V ср = 12,06мл HCI

2. N NaOH = NaOH ==0,048 (г-экв/л)

Вычисляем количество граммов гидроксида натрия, находящегося в 250 мл раствора:

m ==0, 6775(г)

Т акже вычисляются концентрация раствора и количество карбоната натрия:

N (Na 2 CO 3) ==0, 06715 (г-экв/л) = =0, 8976 (г)

Д ля повышения точности анализа рекомендуется: а) титрование с фенолфталеином вести осторожно, особенно к концу, чтобы уменьшить возможность образования угольной кислоты; б) уменьшить поглощение СО 2 из воздуха анализируемым раствором, для чего не следует давать стоять раствору в открытой колбе до титрования, осторожно перемешивать его в процессе титрования.

Контрольная работа

Титрование с фенолфталеином:

1) 4, 4 мл HCI

2) 4,4 мл HCI

3) 4,6 мл HCI

Титрование с метиловым оранжевым:

1) 6,3 мл HCI

2) 6,4 мл HCI

3) 6,3 мл HCI

1) Следовательно, на титрование NaOH и половины Na 2 CO 3 израсходовали 4,6 мл HCI, а на весь NaOH и Na 2 CO 3 - 6,6мл HCI;

на половину Na 2 CO 3 - (6,3-4,4)=1,9мл

на все количество Na 2 CO 3 - (1,9*2)=3,8мл

2) на титрование NaOH и половины Na 2 CO 3 израсходовали 4,8 мл HCI, а на весь NaOH и Na 2 CO 3 6,7мл HCI.

на половину Na 2 CO 3 -(6,4-4,4) =2мл

на все количество Na 2 CO 3 - (2*2)=4 мл

на титрование NaOH - (6,4-4)=2,4 мл

) на титрование NaOH и половины Na 2 CO 3 израсходовали 5мл HCI, а на весь NaOH и Na 2 CO 3 6,8 мл HCI.

на половину Na 2 CO 3 - (6,3-4,6)= 1,7 мл

на все количество Na 2 CO 3 - (2*1,7) =3,4 мл

на титрование NaOH - (6,3-3,4)=2,9 мл

T HCI / NaOH = =г/мл

m NaOH =

) m NaOH =0, 0027*2, 5*10=0,0675гр.

) m NaOH =0, 0027*2,4*10=0,0648гр.

) m NaOH =0, 0027*2,9*10=0,0783гр.
=3

Использованная литература

1) Васильев В.П. Аналитическая химия, часть I Москва 1989

2) Золотов Ю.А. Аналитическая химия: проблемы и достижения Москва 1992

) Крешков А.П. Основы аналитической химии, часть II

) Логинов, Шапиро С.А. Аналитическая химия Москва1971