Аминокислоты в кислой и щелочной среде. Аминокислоты аргинин и лизин составляют

В кислой среде α-аминокислоты выступают как основания (по аминогруппе), а в щелочной - как кислоты (по карбоксильной группе). У некоторых аминокислот может ионизироваться также радикал (R), в связи, с чем все аминокислоты можно разделить на заряженные и незаря­женные (при физиологическом значении рН=6,0 - 8,0) (см. табл. 4). В качестве примера первых можно привести аспарагиновую кислоту и ли­зин:

Если радикалы аминокислот нейтральные, то они не оказывают влияния на диссоциацию α-карбоксильной или α-аминогруппы, и вели­чинырК (отрицательный логарифм, показывающий значение рН, при котором эти группы наполовину диссоциированы) остаются относительно постоянными.

Величины рК для α-карбоксилыюй (pK 1) и α-аминогруппы (рК 2) сильно различаются. При рН < pK 1 почти все молекулы аминокислоты протежированы и заряжены положительно. Напротив, при рН > рК 2 прак­тически все молекулы аминокислоты являются отрицательно за­ряженными, так как α-карбоксильная группа находится в диссоции­рованном состоянии.

Следовательно, в зависимости от рН среды аминокислоты имеют суммарный нулевой положительный или отрицательный заряд. Значение рН, при котором суммарный заряд молекулы равен нулю, и она не перемещается в электрическом поле ни к катоду, ни к аноду, называется изоэлектрической точкой и обозначается pI.

Для нейтральных α-аминокислот значение pI находят как сред­нее арифметическое между двумя значениями рК:

При рН раствора меньше pI аминокислоты протонируются и, за­ряжаясь положительно, перемещаются в электрическом поле к катоду. Обратная картина наблюдается при рН > pI.

Для аминокислот, содержащих заряженные (кислотные или ос­новные) радикалы, изоэлектрическая точка зависит от кислотности или основности этих радикалов и их рК (рК 3). Значение pI для них находят по следующим формулам:

для кислых аминокислот:

для основных аминокислот:

В клетках и межклеточной жидкости организма человека и жи­вотных рН среды близко к нейтральному, поэтому основные аминокисло­ты (лизин, аргинин) имеют положительный заряд (катионы), кислые ами­нокислоты (аспарагиновая, глутаминовая) имеют отрицательный заряд (анионы), а остальные существуют в виде биполярного цвиттер-иона.

Стереохимия аминокислот

Важной особенностью белковых α-аминокислот является их оп­тическая активность. За исключением глицина все они построены асим­метрично, в связи с чем, будучи растворены в воде или в соляной кисло­те, способны вращать плоскость поляризации света. Аминокислоты суще­ствуют в виде пространственных изомеров, относящихся к D- или L-ряду. L- или D-конфигурация определяется типом строения соединения относительно асимметрического атома углерода (атом углерода, свя­занный с четырьмя различными атомами или группами атомов). В фор­мулах асимметрический атом углерода обозначают звездочкой. На рис.3 показаны проекционные модели L- и D- конфигураций аминокислот, ко­торые являются как бы зеркальным отображением друг друга. Все 18 оптически активных белковых аминокислот относятся к L -ряду. Однако в клетках многих микроорганизмов и в антибиотиках, продуцируемых некоторыми из них, обнаружены D-аминокислоты.

Рис. 3. Конфигурация L- и D- аминокислот

Строение белков

Исходя из результатов изучения продуктов гидролиза белков и выдвинутых А.Я. Данилевским идей о роли пептидных связей -CO-NH- в построении белковой молекулы, немецкий ученый Э.Фишер предложил в начале XX века пептидную теорию строения белков. Согласно этой тео­рии, белки представляют собой линейные полимеры α-аминокислот, свя­занных пептиднойсвязью - полипептиды:

В каждом пептиде один концевой аминокислотный остаток имеет свободную α-аминогруппу (N-конец), а другой - свободную α-карбок­сильную группу (С-конец). Структуру пептидов принято изображать, на­чиная с N-концевой аминокислоты. При этом аминокислотные остатки обозначаются символами. Например: Ala-Tyr-Leu-Ser-Tyr- - Cys. Этой записью обозначен пептид, в котором N-концевой α-аминокислотой яв­ ляется аланин, а С-концевой - цистеин. При чтении такой записи окончания названий всех кислот, кроме последних меняются на - "ил": аланил-тирозил-лейцил-серил-тирозил- -цистеин. Длина пептидной цепи в пептидах и белках, встречающихся в организме, колеблется от двух до сотен и тысяч аминокислотных остатков.

Для определения аминокислотного состава белки (пептиды) подвергают гидролизу:

В нейтральной среде эта реакция протекает очень медленно, но ускоряется в присутствии кислот или щелочей. Обычно гидролиз белков проводят в запаянной ампуле в 6М растворе соляной кислоты при 105 °С; в таких условиях полный распад происходит примерно за сутки. В неко­торых случаях белок гидролизуют в более мягких условиях (при темпера­туре 37-40 °С) под действием биологических катализаторов-ферментов в течение нескольких часов.

Затем аминокислоты гидролизата разделяют методом хромато­графии на ионообменных смолах (сульфополистирольный катионит), вы­деляя отдельно фракцию каждой аминокислоты. Для вымывания аминокис­лот с ионнообменной колонки используют буферы с возрастающим зна­чением рН. Первым снимается аспартат, имеющий кислотную боковую цепь; аргинин с основной боковой цепью вымывается последним. После­довательность снятия аминокислот с колонки определяют по профилю вымывания стандартных аминокислот. Фракционированные аминокислоты определяют по окраске, образующейся при нагревании с нингидрином:

В этой реакции бесцветный нингидрин превращается; в синефиолетовый продукт, интенсивность окраски которого (при 570 нм) пропорциональна количеству аминокислоты (только пролин дает желтое окрашивание). Измерив, интенсивность окрашивания, можно рассчитать концентрацию каждой аминокислоты в гидролизате и число остатков каждой из них в исследуемом белке.

В настоящее время такой анализ проводят с помощью автомати­ческих приборов - аминокислотных анализаторов (см. ниже рис. Схемы прибора). Результат ана­лиза прибор выдаёт в виде графика концентраций отдельных аминокис­лот. Этот метод нашел широкое применение в исследовании состава пищевых веществ, клинической практике; с его помощью за 2-3 часа можно получить полную картину качественного состава амино­кислот продуктов и биологических жидкостей.

Белки составляют материальную основу химической деятельности клетки. Функции белков в природе универсальны. Названию белки, наиболее принятому в отечественной литературе, соответствует термин протеины (от греч. proteios - первый). К настоящему времени достигнуты большие успехи в установлении соотношения структуры и функций белков, механизма их участия в важнейших процессах жизнедеятельности организма и в понимании молекулярных основ патогенеза многих болезней.

В зависимости от молекулярной массы различают пептиды и белки. Пептиды имеют меньшую молекулярную массу, чем белки. Для пептидов более свойственна регуляторная функция (гормоны, ингибиторы и активаторы ферментов, переносчики ионов через мембраны, антибиотики, токсины и др.).

12.1. α -Аминокислоты

12.1.1. Классификация

Пептиды и белки построены из остатков α-аминокислот. Общее число встречающихся в природе аминокислот превышает 100, но некоторые из них обнаружены лишь в определенном сообществе орга- низмов, 20 наиболее важных α-аминокислот постоянно встречаются во всех белках (схема 12.1).

α-Аминокислоты - гетерофункциональные соединения, молекулы которых содержат одновременно аминогруппу и карбоксильную группу у одного и того же атома углерода.

Схема 12.1. Важнейшие α-аминокислоты*

* Сокращенные обозначения применяются только для записи аминокислотных остатков в молекулах пептидов и белков. ** Незаменимые аминокислоты.

Названия α-аминокислот могут быть построены по заместительной номенклатуре, но чаще используются их тривиальные названия.

Тривиальные названия α-аминокислот обычно связаны с источниками выделения. Серин входит в состав фиброина шелка (от лат. serieus - шелковистый); тирозин впервые выделен из сыра (от греч. tyros - сыр); глутамин - из злаковой клейковины (от нем. Gluten - клей); аспарагиновая кислота - из ростков спаржи (от лат. asparagus - спаржа).

Многие α-аминокислоты синтезируются в организме. Некоторые аминокислоты, необходимые для синтеза белков, в организме не образуются и должны поступать извне. Такие аминокислоты называют незаменимыми (см. схему 12.1).

К незаменимым α-аминокислотам относятся:

валин изолейцин метионин триптофан

лейцин лизин треонин фенилаланин

α-Аминокислоты классифицируют несколькими способами в зависимости от признака, положенного в основу их деления на группы.

Одним из классификационных признаков служит химическая природа радикала R. По этому признаку аминокислоты делятся на алифатические, ароматические и гетероциклические (см. схему 12.1).

Алифатические α-аминокислоты. Это наиболее многочисленная группа. Внутри нее аминокислоты подразделяют с привлечением дополнительных классификационных признаков.

В зависимости от числа карбоксильных групп и аминогрупп в молекуле выделяют:

Нейтральные аминокислоты - по одной группе NH 2 и СООН;

Основные аминокислоты - две группы NH 2 и одна группа

СООН;

Кислые аминокислоты - одна группа NH 2 и две группы СООН.

Можно отметить, что в группе алифатических нейтральных аминокислот число атомов углерода в цепи не бывает больше шести. При этом не существует аминокислоты с четырьмя атомами углерода в цепи, а аминокисоты с пятью и шестью атомами углерода имеют только разветвленное строение (валин, лейцин, изолейцин).

В алифатическом радикале могут содержаться «дополнительные» функциональные группы:

Гидроксильная - серин, треонин;

Карбоксильная - аспарагиновая и глутаминовая кислоты;

Тиольная - цистеин;

Амидная - аспарагин, глутамин.

Ароматические α-аминокислоты. К этой группе относятся фенилаланин и тирозин, построенные таким образом, что бензольные кольца в них отделены от общего α-аминокислотного фрагмента метиленовой группой -СН 2-.

Гетероциклические α-аминокислоты. Относящиеся к этой группе гистидин и триптофан содержат гетероциклы - имидазол и индол соответственно. Строение и свойства этих гетероциклов рассмотрены ниже (см. 13.3.1; 13.3.2). Общий принцип построения гетероциклических аминокислот такой же, как и ароматических.

Гетероциклические и ароматические α-аминокислоты можно рассматривать как β-замещенные производные аланина.

К героциклическим относится также аминокислота пролин, в которой вторичная аминогруппа включена в состав пирролидинового

В химии α-аминокислот большое внимание уделяется строению и свойствам «боковых» радикалов R, которые играют важную роль в формировании структуры белков и выполнении ими биологических функций. Большое значение имеют такие характеристики, как полярность «боковых» радикалов, наличие в радикалах функциональных групп и способность этих функциональных групп к ионизации.

В зависимости от бокового радикала выделяют аминокислоты с неполярными (гидрофобными) радикалами и аминокислоты c поляр- ными (гидрофильными) радикалами.

К первой группе относятся аминокислоты с алифатическими боковыми радикалами - аланин, валин, лейцин, изолейцин, метионин - и ароматическими боковыми радикалами - фенилаланин, триптофан.

Ко второй группе принадлежат аминокислоты, у которых в радикале имеются полярные функциональные группы, способные к иони- зации (ионогенные) или не способные переходить в ионное состояние (неионогенные) в условиях организма. Например, в тирозине гидроксильная группа ионогенная (имеет фенольный характер), в серине - неионогенная (имеет спиртовую природу).

Полярные аминокислоты с ионогенными группами в радикалах в определенных условиях могут находиться в ионном (анионном или катионном) состоянии.

12.1.2. Стереоизомерия

Основной тип построения α-аминокислот, т. е. связь одного и того же атома углерода с двумя разными функциональными группами, радикалом и атомом водорода, уже сам по себе предопределяет хираль- ность α-атома углерода. Исключение составляет простейшая аминокислота глицин H 2 NCH 2 COOH, не имеющая центра хиральности.

Конфигурация α-аминокислот определяется по конфигурационному стандарту - глицериновому альдегиду. Расположение в стандартной проекционной формуле Фишера аминогруппы слева (подобно группе ОН в l-глицериновом альдегиде) соответствует l-конфи- гурации, справа - d-конфигурации хирального атома углерода. По R, S-системе α-атом углерода у всех α-аминокислот l-ряда имеет S-, а у d-ряда - R-конфигурацию (исключение составляет цистеин, см. 7.1.2).

Большинство α-аминокислот содержит в молекуле один асимметрический атом углерода и существует в виде двух оптически активных энантиомеров и одного оптически неактивного рацемата. Почти все природные α-аминокислоты принадлежат к l-ряду.

Аминокислоты изолейцин, треонин и 4-гидроксипролин содержат в молекуле по два центра хиральности.

Такие аминокислоты могут существовать в виде четырех стереоизомеров, представляющих собой две пары энантиомеров, каждая из которых образует рацемат. Для построения белков животных организмов используется только один из энантиомеров.

Стереоизомерия изолейцина аналогична рассмотренной ранее стереоизомерии треонина (см. 7.1.3). Из четырех стереоизомеров в состав белков входит l-изолейцин с S-конфигурацией обоих асимметрических атомов углерода С-α и С-β. В названиях другой пары энантиомеров, являющихся диастереомерами по отношению к лейцину, используется приставка алло-.

Расщепление рацематов. Источником получения α-аминокислот l-ряда служат белки, которые подвергают для этого гидролитическому расщеплению. В связи с большой потребностью в отдельных энантиомерах (для синтеза белков, лекарственных веществ и т. п.) разработаны химические методы расщепления синтетических рацемических аминокислот. Предпочтителен ферментативный способ расщепления с использованием ферментов. В настоящее время для разделения рацемических смесей используют хроматографию на хиральных сорбентах.

12.1.3. Кислотно-основные свойства

Амфотерность аминокислот обусловлена кислотными (СООН) и основными (NH 2) функциональными группами в их молекулах. Аминокислоты образуют соли как со щелочами, так и с кислотами.

В кристаллическом состоянии α-аминокислоты существуют как диполярные ионы H3N+ - CHR-COO- (обычно используемая запись

строения аминокислоты в неионизированной форме служит лишь для удобства).

В водном растворе аминокислоты существуют в виде равновесной смеси диполярного иона, катионной и анионной форм.

Положение равновесия зависит от рН среды. У всех аминокислот преобладают катионные формы в сильнокислых (рН 1-2) и анион- ные - в сильнощелочных (рН >11) средах.

Ионное строение обусловливает ряд специфических свойств аминокислот: высокую температуру плавления (выше 200 ?С), растворимость в воде и нерастворимость в неполярных органических растворителях. Способность большинства аминокислот хорошо растворяться в воде является важным фактором обеспечения их биологического функционирования, с нею связаны всасывание аминокислот, их транспорт в организме и т. п.

Полностью протонированная аминокислота (катионная форма) с позиций теории Брёнстеда является двухосновной кислотой,

Отдавая один протон, такая двухосновная кислота превращается в слабую одноосновную кислоту - диполярный ион с одной кислотной группой NH 3 + . Депротонирование диполярного иона приводит к получению анионной формы аминокислоты - карбоксилат-иона, являющегося основанием Брёнстеда. Значения характеризую-

щие кислотные свойства карбоксильной группы аминокислот, обычно лежат в интервале от 1 до 3; значения рK а2 характеризующие кислотность аммониевой группы, - от 9 до 10 (табл. 12.1).

Таблица 12.1. Кислотно-основные свойства важнейших α-аминокислот

Положение равновесия, т. е. соотношение различных форм аминокислоты, в водном растворе при определенных значениях рН существенно зависит от строения радикала, главным образом от присутствия в нем ионогенных групп, играющих роль дополнительных кислотных и основных центров.

Значение рН, при котором концентрация диполярных ионов максимальна, а минимальные концентрации катионных и анионных форм аминокислоты равны, называется изоэлектрической точкой (p/).

Нейтральные α-аминокислоты. Эти аминокислоты имеют значения рI несколько ниже 7 (5,5-6,3) вследствие большей способности к ионизации карбоксильной группы под влиянием -/-эффекта группы NH 2 . Например, у аланина изоэлектрическая точка находится при рН 6,0.

Кислые α-аминокислоты. Эти аминокислоты имеют в радикале дополнительную карбоксильную группу и в сильнокислой среде находятся в полностью протонированной форме. Кислые аминокислоты являются трехосновными (по Брёндстеду) с тремя значениями рК а, как это видно на примере аспарагиновой кислоты (р/ 3,0).

У кислых аминокислот (аспарагиновой и глутаминовой) изоэлектрическая точка находится при рН много ниже 7 (см. табл. 12.1). В организме при физиологических значениях рН (например, рН крови 7,3-7,5) эти кислоты находятся в анионной форме, так как у них ионизированы обе карбоксильные группы.

Основные α-аминокислоты. В случае основных аминокислот изоэлектрические точки находятся в области рН выше 7. В сильно- кислой среде эти соединения также представляют собой трехосновные кислоты, этапы ионизации которых показаны на примере лизина (р/ 9,8).

В организме основные аминокислоты находятся в виде катионов, т. е. у них протонированы обе аминогруппы.

В целом ни одна α -аминокислота in vivo не находится в своей изоэлектрической точке и не попадает в состояние, отвечающее наименьшей растворимости в воде. Все аминокислоты в организме находятся в ионной форме.

12.1.4. Аналитически важные реакции α -аминокислот

α-Аминокислоты как гетерофункциональные соединения вступают в реакции, характерные как для карбоксильной, так и для аминогруппы. Некоторые химические свойства аминокислот обусловлены функциональными группами в радикале. В настоящем разделе рассматриваются реакции, имеющие практическое значение для идентификации и анализа аминокислот.

Этерификация. При взаимодействии аминокислот со спиртами в присутствии кислотного катализатора (например, газообразный хлороводород) с хорошим выходом получаются сложные эфиры в виде гидрохлоридов. Для выделения свободных эфиров реакционную смесь обрабатывают газообразным аммиаком.

Сложные эфиры аминокислот не имеют диполярного строения, поэтому, в отличие от исходных кислот, они растворяются в органических растворителях и обладают летучестью. Так, глицин - крис- таллическое вещество с высокой температурой плавления (292 ?С), а его метиловый эфир - жидкость с температурой кипения 130 ?С. Анализ эфиров аминокислот можно проводить с помощью газожидкостной хроматографии.

Реакция с формальдегидом. Практическое значение имеет реакция с формальдегидом, которая лежит в основе количественного определения аминокислот методом формольного титрования (метод Сёренсена).

Амфотерность аминокислот не позволяет проводить непосредственно титрование их щелочью в аналитических целях. При взаимодействии аминокислот с формальдегидом получаются относительно устойчивые аминоспирты (см. 5.3) - N-гидроксиметильные производные, свободную карбоксильную группу которых затем титруют щелочью.

Качественные реакции. Особенность химии аминокислот и белков заключается в использовании многочисленных качественных (цветных) реакций, составлявших ранее основу химического анализа. В настоящее время, когда исследования проводятся с помощью физико-химических методов, многие качественные реакции продолжают применять для обнаружения α-аминокислот, например, в хроматографическом анализе.

Хелатообразование. С катионами тяжелых металлов α-аминокислоты как бифункциональные соединения образуют внутрикомплексные соли, например, со свежеприготовленным гидроксидом меди(11) в мягких условиях получаются хорошо кристаллизующиеся хелатные

соли меди(11) синего цвета (один из неспецифических способов обнаружения α-аминокислот).

Нингидринная реакция. Общая качественная реакция α-аминокислот - реакция с нингидрином. Продукт реакции имеет синефиолетовый цвет, что используется для визуального обнаружения аминокислот на хроматограммах (на бумаге, в тонком слое), а также для спектрофотометрического определения на аминокислотных анализаторах (продукт поглощает свет в области 550-570 нм).

Дезаминирование. В лабораторных условиях эта реакция осуществляется при действии азотистой кислоты на α-аминокислоты (см. 4.3). При этом образуется соответствующая α-гидроксикислота и выделяется газообразный азот, по объему которого судят о количестве вступившей в реакцию аминокислоты (метод Ван-Слайка).

Ксантопротеиновая реакция. Эта реакция используется для обнаружения ароматических и гетероциклических аминокислот - фенилаланина, тирозина, гистидина, триптофана. Например, при действии концентрированной азотной кислоты на тирозин образуется нитропроизводное, окрашенное в желтый цвет. В щелочной среде окраска становится оранжевой в связи с ионизацией фенольной гидроксильной группы и увеличением вклада аниона в сопряжение.

Существует также ряд частных реакций, позволяющих обнаруживать отдельные аминокислоты.

Триптофан обнаруживают при помощи реакции с п-(диметиламино)бензальдегидом в среде серной кислоты по появляющемуся красно-фиолетовому окрашиванию (реакция Эрлиха). Эта реакция используется для количественного анализа триптофана в продуктах расщепления белков.

Цистеин обнаруживают с помощью нескольких качественных реакций, основанных на реакционной способности содержащейся в нем меркаптогруппы. Например, при нагревании раствора белка с ацетатом свинца (СНзСОО)2РЬ в щелочной среде образуется черный осадок сульфида свинца PbS, что указывает на присутствие в белках цистеина.

12.1.5. Биологически важные химические реакции

В организме под действием различных ферментов осуществляется ряд важных химических превращений аминокислот. К таким пре- вращениям относятся трансаминирование, декарбоксилирование, элиминирование, альдольное расщепление, окислительное дезаминирование, окисление тиольных групп.

Трансаминирование является основным путем биосинтеза α-ами- нокислот из α-оксокислот. Донором аминогруппы служит аминокислота, имеющаяся в клетках в достаточном количестве или избытке, а ее акцептором - α-оксокислота. Аминокислота при этом превращается в оксокислоту, а оксокислота - в аминокислоту с соответствующим строением радикалов. В итоге трансаминирование представляет обратимый процесс взаимообмена амино- и оксо- групп. Пример такой реакции - получение l-глутаминовой кислоты из 2-оксоглутаровой кислоты. Донорной аминокислотой может служить, например, l-аспарагиновая кислота.

α-Аминокислоты содержат в α-положении к карбоксильной группе электроноакцепторную аминогруппу (точнее, протонированную аминогруппу NH 3 +), в связи с чем способны к декарбоксилированию.

Элиминирование свойственно аминокислотам, у которых в боковом радикале в β-положении к карбоксильной группе содержится электроноакцепторная функциональная группа, например гидроксильная или тиольная. Их отщепление приводит к промежуточным реакционноспособным α-енаминокислотам, легко переходящим в таутомерные иминокислоты (аналогия с кето-енольной таутомерией). α-Иминокислоты в результате гидратации по связи C=N и последующего отщепления молекулы аммиака превращаются в α-оксокислоты.

Такой тип превращений имеет название элиминирование-гидратация. Примером служит получение пировиноградной кислоты из серина.

Альдольное расщепление происходит в случае α-аминокислот, у которых в β-положении содержится гидроксильная группа. Например, серин расщепляется с образованием глицина и формальдегида (последний не выделяется в свободном виде, а сразу связывается с коферментом).

Окислительное дезаминирование может осуществляться с участием ферментов и кофермента НАД+ или НАДФ+ (см. 14.3). α-Аминокислоты могут превращаться в α-оксокислоты не только через трансаминирование, но и путем окислительного дезаминирования. Например, из l-глутаминовой кислоты образуется α-оксоглутаровая кислота. На первой стадии реакции осуществляется дегид- рирование (окисление) глутаминовой кислоты до α-иминоглутаровой

кислоты. На второй стадии происходит гидролиз, в результате которого получаются α-оксоглутаровая кислота и аммиак. Стадия гидролиза протекает без участия фермента.

В обратном направлении протекает реакция восстановительного аминирования α-оксокислот. Всегда содержащаяся в клетках α-оксоглутаровая кислота (как продукт метаболизма углеводов) превращается этим путем в L-глутаминовую кислоту.

Окисление тиольных групп лежит в основе взаимопревращений цистеиновых и цистиновых остатков, обеспечивающих ряд окислительно-восстановительных процессов в клетке. Цистеин, как и все тиолы (см. 4.1.2), легко окисляется с образованием дисульфида - цистина. Дисульфидная связь в цистине легко восстанавливается с образованием цистеина.

Благодаря способности тиольной группы к легкому окислению цистеин выполняет защитную функцию при воздействии на орга- низм веществ с высокой окислительной способностью. Кроме того, он был первым лекарственным средством, проявившим противолучевое действие. Цистеин используется в фармацевтической практике в качестве стабилизатора лекарственных препаратов.

Превращение цистеина в цистин приводит к образованию дисульфидных связей, например, в восстановленном глутатионе

(см. 12.2.3).

12.2. Первичная структура пептидов и белков

Условно считают, что пептиды содержат в молекуле до 100 (что соответствует молекулярной массе до 10 тыс.), а белки - более 100 аминокислотных остатков (молекулярная масса от 10 тыс. до нескольких миллионов).

В свою очередь, в группе пептидов принято различать олигопептиды (низкомолекулярные пептиды), содержащие в цепи не более 10 аминокислотных остатков, и полипептиды, в состав цепи которых входит до 100 аминокислотных остатков. Макромолекулы с числом аминокислотных остатков, приближающимся или немного превышающим 100, не разграничивают по понятиям полипептиды и белки, эти термины часто используют как синонимы.

Пептидную и белковую молекулу формально можно представить как продукт поликонденсации α-аминокислот, протекающей с обра- зованием пептидной (амидной) связи между мономерными звеньями (схема 12.2).

Конструкция полиамидной цепи одинакова для всего многообразия пептидов и белков. Эта цепь имеет неразветвленное строение и состоит из чередующихся пептидных (амидных) групп -СО-NH- и фрагментов -CH(R)-.

Один конец цепи, на котором находится аминокислота со свободной группой NH 2, называют N-концом, другой - С-концом,

Схема 12.2. Принцип построения пептидной цепи

на котором находится аминокислота со свободной группой СООН. Пептидные и белковые цепи записывают с N-конца.

12.2.1. Строение пептидной группы

В пептидной (амидной) группе -СО-NH- атом углерода находится в состоянии sp2-гибридизации. Неподеленная пара электронов атома азота вступает в сопряжение с π-электронами двойной связи С=О. С позиций электронного строения пептидная группа представляет собой трехцентровую p,π-сопряженную систему (см. 2.3.1), электронная плотность в которой смещена в сторону более электроотрицательного атома кислорода. Атомы С, Ои N, образующие сопряженную систему, находятся в одной плоскости. Распределение электронной плотности в амидной группе можно представить с по- мощью граничных структур (I) и (II) или смещения электронной плотности в результате +M- и - M-эффектов групп NH и C=O соответственно (III).

В результате сопряжения происходит некоторое выравнивание длин связей. Двойная связь С=О удлиняется до 0,124 нм против обычной длины 0,121 нм, а связь С-N становится короче - 0,132 нм по сравнению с 0,147 нм в обычном случае (рис. 12.1). Плоская сопряженная система в пептидной группе служит причиной затруднения вращения вокруг связи С-N (барьер вращения составляет 63-84 кДж/моль). Таким образом, электронное строение предопре- деляет достаточно жесткую плоскую структуру пептидной группы.

Как видно из рис. 12.1, α-атомы углерода аминокислотных остатков располагаются в плоскости пептидной группы по разные стороны от связи С-N, т. е. в более выгодном тpанс-положении: боковые радикалы R аминокислотных остатков в этом случае будут наиболее удалены друг от друга в пространстве.

Полипептидная цепь имеет удивительно однотипное строение и может быть представлена в виде ряда расположенных под углом друг

Рис. 12.1. Плоскостное расположение пептидной группы -CO-NH- и α-атомов углерода аминокислотных остатков

к другу плоскостей пептидных групп, соединенных между собой через α-атомы углерода связями Сα-N и Сα-Сsp 2 (рис. 12.2). Вращение вокруг этих одинарных связей весьма ограничено вследствие затруднений в пространственном размещении боковых радикалов аминокислотных остатков. Таким образом, электронное и пространственное строение пептидной группы во многом предопределяет структуру полипептидной цепи в целом.

Рис. 12.2. Взаимное положение плоскостей пептидных групп в полипептидной цепи

12.2.2. Состав и аминокислотная последовательность

При единообразно построенной полиамидной цепи специфичность пептидов и белков определяется двумя важнейшими характе- ристиками - аминокислотным составом и аминокислотной последовательностью.

Аминокислотный состав пептидов и белков - это природа и количественное соотношение входящих в них α-аминокислот.

Аминокислотный состав устанавливается путем анализа пептидных и белковых гидролизатов в основном хроматографическими методами. В настоящее время такой анализ осуществляется с помощью аминокислотных анализаторов.

Амидные связи способны гидролизоваться как в кислой, так и щелочной среде (см. 8.3.3). Пептиды и белки гидролизуются с образованием либо более коротких цепей - это так называемый частичный гидролиз, либо смеси аминокислот (в ионной форме) - полный гидролиз. Обычно гидролиз осуществляют в кислой среде, так как в условиях щелочного гидролиза многие аминокислоты неустойчивы. Следует отметить, что гидролизу подвергаются также амидные группы аспарагина и глутамина.

Первичная структура пептидов и белков - это аминокислотная последовательность, т. е. порядок чередования α-аминокислотных остатков.

Первичную структуру определяют путем последовательного отщепления аминокислот с какого-либо конца цепи и их идентификации.

12.2.3. Строение и номенклатура пептидов

Названия пептидов строят путем последовательного перечисления аминокислотных остатков, начиная с N-конца, с добавлением суффикса -ил, кроме последней С-концевой аминокислоты, для которой сохраняется ее полное название. Другими словами, названия

аминокислот, вступивших в образование пептидной связи за счет «своей» группы СООН, оканчиваются в названии пептида на -ил: аланил, валил и т. п. (для остатков аспарагиновой и глутаминовой кислот используют названия «аспартил» и «глутамил» соответствен- но). Названия и символы аминокислот означают их принадлежность к l -ряду, если не указано иное (d или dl ).

Иногда в сокращенной записи символами Н (как часть аминогруппы) и ОН (как часть карбоксильной группы) уточняется незамещенность функциональных групп концевых аминокислот. Этим способом удобно изображать функциональные производные пептидов; например, амид приведенного выше пептида по С-концевой аминокислоте записывается Н-Asn-Gly-Phe-NH2.

Пептиды содержатся во всех организмах. В отличие от белков они имеют более разнородный аминокислотный состав, в частнос- ти, довольно часто включают аминокислоты d -ряда. В структурном отношении они также более разнообразны: содержат циклические фрагменты, разветвленные цепи и т. д.

Один из наиболее распространенных представителей трипептидов - глутатион - содержится в организме всех животных, в растениях и бактериях.

Цистеин в составе глутатиона обусловливает возможность существования глутатиона как в восстановленной, так и окисленной форме.

Глутатион участвует в ряде окислительно-восстановительных процессов. Он выполняет функцию протектора белков, т. е. вещества, предохраняющего белки со свободными тиольными группами SH от окисления с образованием дисульфидных связей -S-S-. Это касается тех белков, для которых такой процесс нежелателен. Глутатион в этих случаях принимает на себя действие окислителя и таким образом «защищает» белок. При окислении глутатиона происходит межмолекулярное сшивание двух трипептидных фрагментов за счет дисульфидной связи. Процесс обратим.

12.3. Вторичная структура полипептидов и белков

Для высокомолекулярных полипептидов и белков наряду с первичной структурой характерны и более высокие уровни организа- ции, которые называют вторичной, третичной и четвертичной струк- турами.

Вторичная структура описывается пространственной ориентацией основной полипептидной цепи, третичная - трехмерной архитектурой всей белковой молекулы. Как вторичная, так и третичная структура связана с упорядоченным расположением макромолекулярной цепи в пространстве. Третичная и четвертичная структура белков рассматривается в курсе биохимии.

Расчетным путем было показано, что для полипептидной цепи одной из наиболее выгодных конформаций является расположение в пространстве в виде правозакрученной спирали, названной α-спиралью (рис. 12.3, а).

Пространственное расположение α-спирализованной полипептидной цепи можно представить, вообразив, что она обвивает некий

Рис. 12.3. α-Спиральная конформация полипептидной цепи

цилиндр (см. рис. 12.3, б). На один виток спирали в среднем приходится 3,6 аминокислотного остатка, шаг спирали составляет 0,54 нм, диаметр - 0,5 нм. Плоскости двух соседних пептидных групп располагаются при этом под углом 108?, а боковые радикалы аминокислот находятся на наружной стороне спирали, т. е. направлены как бы от поверхности цилиндра.

Основную роль в закреплении такой конформации цепи играют водородные связи, которые в α-спирали образуются между кар- бонильным атомом кислорода каждого первого и атомом водорода NН-группы каждого пятого аминокислотного остатка.

Водородные связи направлены почти параллельно оси α-спирали. Они удерживают цепь в закрученном состоянии.

Обычно белковые цепи спирализованы не полностью, а лишь частично. В таких белках, как миоглобин и гемоглобин, содержатся довольно длинные α-спиральные участки, например цепь миоглобина

спирализована на 75%. Во многих других белках доля спиральных участков в цепи может быть небольшой.

Другим видом вторичной структуры полипептидов и белков является β-структура, называемая также складчатым листом, или складчатым слоем. В складчатые листы укладываются вытянутые полипептидные цепи, связываемые множеством водородных связей между пептидными группами этих цепей (рис. 12.4). Во многих белках одновременно содержатся α-спиральные и β-складчатые структуры.

Рис. 12.4. Вторичная структура полипептидной цепи в виде складчатого листа (β-структура)

Лекция №3

Тема: «Аминокислоты – строение, классификация, свойства, биологическая роль»

Аминокислоты – азотосодержащие органические соединения, в молекулах которых содержатся аминогруппа –NH2 и карбоксильная группа -СООН

Простейшим представителем является аминоэтановая кислота H2N - CH2 - COOH

Классификация аминокислот

Существует 3 основные классификации аминокислот:

Физико-химическая – основана на различиях в физико-химических свойствах аминокислот


  • Гидрофобные аминокислоты (неполярные). Компоненты радикалов содержат обычно углеводородные группы, где равномерно распределена электронная плотность и нет никаких зарядов и полюсов. В их составе могут присутствовать и электроотрицательные элементы, но все они находятся в углеводородном окружении .

  • Гидрофильные незаряженные (полярные) аминокислоты . Радикалы таких аминокислот содержат в своем составе полярные группировки: -ОН, - SH, -CONH2

  • Отрицательно заряженные аминокислоты . Сюда относятся аспарагиновая и глутаминовая кислоты. Имеют дополнительную СООН-группу в радикале - в нейтральной среде приобретают отрицательный заряд.

  • Положительно заряженные аминокислоты : аргинин, лизин и гистидин. Имеют дополнительную NH 2 -группу (или имидазольное кольцо, как гистидин) в радикале - в нейтральной среде приобретают положительный заряд.
Биологическая классификация по возможности синтеза в организме человека

  • Незаменимые аминокислоты, их еще называют "эссенциальные". Они не могут синтезироваться в организме человека и должны обязательно поступать с пищей. Их 8 и еще 2 аминокислоты относятся к частично незаменимым.
Незаменимые: метионин, треонин, лизин, лейцин, изолейцин, валин, триптофан, фенилаланин.

Частично незаменимые : аргинин, гистидин.


  • Заменимые (могут синтезироваться в организме человека). Их 10: глутаминовая кислота, глутамин, пролин, аланин, аспарагиновая кислота, аспарагин, тирозин, цистеин, серин и глицин.
Химическая классификация - в соответствии с химической структурой радикала аминокислоты (алифатические, ароматические).

Аминокислоты классифицируют по структурным признакам.

1. В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α-, β-, γ-, δ-, ε- и т. д.

Потребность в аминокислотах снижается: При врожденных нарушениях, связанных с усваиваемостью аминокислот. В этом случае , некоторые белковые вещества могут стать причиной аллергических реакций организма, включая появление проблем в работе желудочно-кишечного тракта, зуд и тошноту.
Усваиваемость аминокислот

Скорость и полнота усвоения аминокислот зависит от типа продуктов, их содержащих. Хорошо усваиваются организмом аминокислоты, содержащиеся в белке яиц, обезжиренном твороге, нежирном мясе и рыбе.

Быстро усваиваются также аминокислоты при правильном сочетании продуктов: молоко сочетается с гречневой кашей и белым хлебом, всевозможные мучные изделия с мясом и творогом .
Полезные свойства аминокислот, их влияние на организм

Каждая аминокислота оказывает на организм свое воздействие. Так метионин особенно важен для улучшения жирового обмена в организме, используется как профилактика атеросклероза, при циррозе и жировой дистрофии печени.

При определенных нервно-психических заболеваниях используется глутамин, аминомасляные кислоты. Глутаминовая кислота также применяется в кулинарии как вкусовая добавка. Цистеин показан при глазных заболеваниях.

Три главные аминокислоты – триптофан, лизин и метионин, особенно необходимы нашему организму. Триптофан используется для ускорения роста и развития организма, также он поддерживает азотистое равновесие в организме.

Лизин обеспечивает нормальный рост организма, участвует в процессах кровеобразования .

Основные источники лизина и метионина – творог, говядина, некоторые виды рыбы (треска, судак, сельдь). Триптофан встречается в оптимальных количествах в субпродуктах, телятине и дичи.инфаркта.

Аминокислоты для здоровья, энергичности и красоты

Для успешного наращивания мышечной массы в бодибилдинге нередко используются аминокислотные комплексы, состоящие из лейцина изолейцина и валина.

Для сохранения энергичности во время тренировок спортсмены в качестве добавок к питанию используют метионин, глицин и аргинин, или продукты, их содержащие.

Для любого человека, ведущего активный здоровый образ жизни, необходимы специальные продукты питания, которые содержат ряд необходимых аминокислот для поддержания отличной физической формы, быстрого восстановления сил, сжигания лишних жиров или наращивания мышечной массы.

Аминокислоты представляют собой структурные химические единицы или "строительные кирпичики", образующие белки. Аминокислоты на 16% состоят из азота, это является их основным химическим отличием от двух других важнейших элементов питания - углеводов и жиров. Важность аминокислот для организма определяется той огромной ролью, которую играют белки во всех процессах жизнедеятельности.

Любой живой организм от самых крупных животных до крошечных микробов состоит из белков. Разнообразные формы белков принимают участие во всех процессах, происходящих в живых организмах. В теле человека из белков формируются мышцы, связки, сухожилия, все органы и железы, волосы, ногти. Белки входят в состав жидкостей и костей. Ферменты и гормоны, катализирующие и регулирующие все процессы в организме, также являются белками. Дефицит этих элементов питания в организме может привести к нарушению водного баланса, что вызывает отеки.

Каждый белок в организме уникален и существует для специальных целей. Белки не являются взаимозаменяемыми. Они синтезируются в организме из аминокислот, которые образуются в результате расщепления белков, находящихся в пищевых продуктах. Таким образом, именно аминокислоты, а не сами белки являются наиболее ценными элементами питания. Помимо того, что аминокислоты образуют белки, входящие в состав тканей и органов человеческого организма, некоторые из них выполняют роль нейромедиаторов (нейротрансмиттеров) или являются их предшественниками.

Нейромедиаторы - это химические вещества, передающие нервный импульс от одной нервной клетки другой. Таким образом, некоторые аминокислоты необходимы для нормальной работы головного мозга. Аминокислоты способствуют тому, что витамины и минералы адекватно выполняют свои функции. Некоторые аминокислоты непосредственно снабжают энергией мышечную ткань.

В организме человека многие аминокислоты синтезируются в печени. Однако некоторые из них не могут быть синтезированы в организме, поэтому человек обязательно должен получать их с пищей. К таким незаменимым аминокислотам относятся - гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин. Аминокислоты, которые синтезируются в печен: аланин, аргинин, аспарагин, аспарагиновая кислота, цитруллин, цистеин, гамма-аминомасляную кислоту, глютамин и глютаминовая кислота, глицин, орнитин, пролин, серин, таурин, тирозин.

Процесс синтеза белков идет в организме постоянно. В случае, когда хоть одна незаменимая аминокислота отсутствует, образование белков приостанавливается. Это может привести к самым различным серьезным проблемам - от нарушения пищеварения до депрессии и замедления роста.

Как возникает такая ситуация? Легче, чем это можно себе представить. Многие факторы приводят к этому, даже, если ваше питание сбалансировано и вы потребляете достаточное количество белка. Нарушение всасывания в желудочно-кишечном тракте, инфекция, травма, стресс, прием некоторых лекарственных препаратов, процесс старения и дисбаланс других питательных веществ в организме - все это может привести к дефициту незаменимых аминокислот.

Следует иметь в виду, что все вышесказанное вовсе не означает, что потребление большого количества белков поможет решить любые проблемы. В действительности, это не способствует сохранению здоровья.

Избыток белков создает дополнительный стресс для почек и печени, которым надо перерабатывать продукты метаболизма белков, основным из них является аммиак. Он очень токсичен для организма, поэтому печень немедленно перерабатывает его в мочевину, которая затем поступает с током крови в почки, где отфильтровывается и выводится наружу.

До тех пор, пока количество белка не слишком велико, а печень работает хорошо, аммиак нейтрализуется сразу же и не причиняет никакого вреда. Но если его слишком много и печень не справляется с его обезвреживанием (в результате неправильного питания, нарушения пищеварения и/или заболеваний печени) - в крови создается токсический уровень аммиака. При этом может возникнуть масса серьезных проблем со здоровьем, вплоть до печеночной энцефалопатии и комы.

Слишком высокая концентрация мочевины также вызывает повреждение почек и боли в спине. Следовательно, важным является не количество, а качество потребляемых с пищей белков. В настоящее время можно получать незаменимые и заменимые аминокислоты в виде биологически активных пищевых добавок.

Это особенно важно при различных заболеваниях и при применении редукционных диет. Вегетарианцам необходимы такие добавки, содержащие незаменимые аминокислоты, чтобы организм получал все необходимое для нормального синтеза белков.

Имеются разные виды добавок, содержащих аминокислоты. Аминокислоты входят в состав некоторых поливитаминов, белковых смесей. Есть в продаже формулы, содержащие комплексы аминокислот или содержащие одну или две аминокислоты . Они представлены в различных формах: в капсулах, таблетках, жидкостях и порошках.

Большинство аминокислот существует в виде двух форм, химическая структура одной является зеркальным отображением другой. Они называются D- и L-формами, например D-цистин и L-цистин.

D означает dextra (правая на латыни), а L - levo (соответственно, левая). Эти термины обозначают направление вращения спирали, являющейся химической структурой данной молекулы. Белки животных и растительных организмов созданы в основном L-формами аминокислот (за исключением фенилаланина, который представлен D, L формами).

Пищевые добавки, содержащие L-аминокислоты, считаются более подходящими для биохимических процессов человеческого организма.
Свободные, или несвязанные, аминокислоты представляют собой наиболее чистую форму. Поэтому при выборе добавки, содержащей аминокислоты, предпочтение следует отдавать продуктам, содержащим L-кристаллические аминокислоты, стандартизированные по Американской Фармакопее (USP). Они не нуждаются в переваривании и абсорбируются непосредственно в кровоток. После приема внутрь всасываются очень быстро и, как правило, не вызывают аллергических реакций.

Отдельные аминокислоты принимают натощак, лучше всего утром или между приемами пищи с небольшим количеством витаминов В6 и С. Если вы принимаете комплекс аминокислот, включающий все незаменимые, это лучше делать через 30 минут после или за 30 минут до еды. Лучше всего принимать и отдельные нужные аминокислоты, и комплекс аминокислот, но в разное время. Отдельно аминокислоты не следует принимать в течение длительного времени, особенно в высоких дозах. Рекомендуют прием в течение 2 месяцев с 2-месячным перерывом.

Аланин

Аланин способствует нормализации метаболизма глюкозы. Установлена взаимосвязь между избытком аланина и инфицированием вирусом Эпштейна-Барра, а также синдромом хронической усталости. Одна из форм аланина - бета-аланин является составной частью пантотеновой кислоты и коэнзима А - одного из самых важных катализаторов в организме.

Аргинин

Аргинин замедляет рост опухолей, в том числе раковых, за счет стимуляции иммунной системы организма. Он повышает активность и увеличивает размер вилочковой железы, которая вырабатывает Т-лимфоциты. В связи с этим аргинин полезен людям, страдающим ВИЧ-инфекцией и злокачественными новообразованиями.

Его также применяют при заболеваниях печени (циррозе и жировой дистрофии), он способствует дезинтоксикационным процессам в печени (прежде всего обезвреживанию аммиака). Семенная жидкость содержит аргинин, поэтому его иногда применяют в комплексной терапии бесплодия у мужчин. В соединительной ткани и в коже также находится большое количество аргинина, поэтому его прием эффективен при различных травмах. Аргинин - важный компонент обмена веществ в мышечной ткани. Он способствует поддержанию оптимального азотного баланса в организме, так как участвует в транспортировке и обезвреживании избыточного азота в организме.

Аргинин помогает снизить вес, так как вызывает некоторое уменьшение запасов жира в организме.

Аргинин входит в состав многих энзимов и гормонов. Он оказывает стимулирующее действие на выработку инсулина поджелудочной железой в качестве компонента вазопрессина (гормона гипофиза) и помогает синтезу гормона роста. Хотя аргинин синтезируется в организме, его образование может быть снижено у новорожденных. Источниками аргинина являются шоколад, кокосовые орехи, молочные продукты, желатин, мясо, овес, арахис, соевые бобы, грецкие орехи, белая мука, пшеница и пшеничные зародыши.

Люди, имеющие вирусные инфекции, в том числе Herpes simplex, не должны принимать аргинин в виде пищевых добавок и должны избегать потребления продуктов, богатых аргинином. Беременным и кормящим грудью матерям не следует употреблять пищевые добавки с аргинином. Прием небольших доз аргинина рекомендуется при заболеваниях суставов и соединительной ткани, при нарушениях толерантности к глюкозе, заболеваниях печени и травмах. Длительный прием не рекомендован.

Аспарагин

Аспарагин необходим для поддержания баланса в процессах, происходящих в центральной нервной системе: препятствует как чрезмерному возбуждению, так и излишнему торможению. Он участвует в процессах синтеза аминокислот в печени.

Так как эта аминокислота повышает жизненную силу, добавку на ее основе применяют при усталости. Она играет также важную роль в процессах метаболизма. Аспартовую кислоту часто назначают при заболеваниях нервной системы. Она полезна спортсменам, а также при нарушениях функции печени. Кроме того, он стимулирует иммунитет за счет повышения продукции иммуноглобулинов и антител.

Аспартовая кислота в больших количествах содержится в белках растительного происхождения, полученных из пророщенных семян и в мясных продуктах.

Карнитин

Строго говоря, карнитин не является аминокислотой, но его химическая структура сходна со структурой аминокислот, и поэтому их обычно рассматривают вместе. Карнитин не участвует в синтезе белков и не является нейромедиатором. Его основная функция в организме - это транспорт длинноцепочечных жирных кислот, в процессе окисления которых выделяется энергия. Это один из основных источников энергии для мышечной ткани. Таким образом, карнитин увеличивает переработку жира в энергию и предотвращает отложение жира в организме, прежде всего в сердце, печени, скелетной мускулатуре.

Карнитин снижает вероятность развития осложнений сахарного диабета, связанных с нарушениями жирового обмена, замедляет жировое перерождение печени при хроническом алкоголизме и риск возникновения заболеваний сердца. Он обладает способностью снижать уровень триглицеридов в крови, способствует снижению массы тела и повышает силу мышц у больных с нервно-мышечными заболеваниями и усиливает антиоксидантное действие витаминов С и Е.

Считается, что некоторые варианты мышечных дистрофий связаны с дефицитом карнитина. При таких заболеваниях люди должны получать большее количество этого вещества, чем это положено по нормам.

Он может синтезироваться в организме при наличии железа, тиамина, пиридоксина и аминокислот лизина и метионина. Синтез карнитина осуществляется в присутствии также достаточного количества витамина С. Недостаточное количество любого из этих питательных веществ в организме приводит к дефициту карнитина. Карнитин поступает в организм с пищей, прежде всего с мясом и другими продуктами животного происхождения.

Большинство случаев дефицита карнитина связано с генетически обусловленным дефектом в процессе его синтеза. К возможным проявлениям недостаточности карнитина относятся нарушения сознания, боли в сердце, слабость в мышцах, ожирение.

Мужчинам вследствие большей мышечной массы требуется большее количество карнитина, чем женщинам. У вегетарианцев более вероятно возникновение дефицита этого питательного вещества, чем у невегетарианцев, в связи с тем, что карнитин не встречается в белках растительного происхождения.

Более того, метионин и лизин (аминокислоты, необходимые для синтеза карнитина) также не содержатся в растительных продуктах в достаточных количествах.

Для получения необходимого количества карнитина вегетарианцы должны принимать пищевые добавки или есть обогащенные лизином продукты, такие как кукурузные хлопья.

Карнитин представлен в биологически активных пищевых добавках в различных формах: в виде D, L-карнитина, D-карнитина, L-карнитина, ацетил-L-карнитина.
Предпочтительнее принимать L-карнитин.

Цитруллин

Цитруллин преимущественно находится в печени. Он повышает энергообеспечение, стимулирует иммунную систему, в процессе обмена веществ превращается в L-аргинин. Он обезвреживает аммиак, повреждающий клетки печени.

Цистеин и цистин

Эти две аминокислоты тесно связаны между собой, каждая молекула цистина состоит из двух молекул цистеина, соединенных друг с другом. Цистеин очень нестабилен и легко переходит в L-цистин, и, таким образом, одна аминокислота легко переходит в другую при необходимости.

Обе аминокислоты относятся к серосодержащим и играют важную роль в процессах формирования тканей кожи, имеют значение для дезинтоксикационных процессов. Цистеин входит в состав альфа-кератина - основного белка ногтей, кожи и волос. Он способствует формированию коллагена и улучшает эластичность и текстуру кожи. Цистеин входит в состав и других белков организма, в том числе некоторых пищеварительных ферментов.

Цистеин помогает обезвреживать некоторые токсические вещества и защищает организм от повреждающего действия радиации. Он представляет собой один из самых мощных антиоксидантов, при этом его антиоксидантное действие усиливается при одновременном приеме с витамином С и селеном.

Цистеин является предшественником глютатиона - вещества, оказывающего защитное действие на клетки печени и головного мозга от повреждения алкоголем, некоторых лекарственных препаратов и токсических веществ, содержащихся в сигаретном дыме. Цистеин растворяется лучше, чем цистин, и быстрее утилизируется в организме, поэтому его чаще используют в комплексном лечении различных заболеваний. Это аминокислота образуется в организме из L-метионина, при обязательном присутствии витамина В6.

Дополнительный прием цистеина необходим при ревматоидном артрите, заболеваниях артерий, раке. Он ускоряет выздоровление после операций, ожогов, связывает тяжелые металлы и растворимое железо. Эта аминокислота также ускоряет сжигание жиров и образование мышечной ткани.

L-цистеин обладает способностью разрушать слизь в дыхательных путях, благодаря этому его часто применяют при бронхитах и эмфиземе легких. Он ускоряет процессы выздоровления при заболеваниях органов дыхания и играет важную роль в активизации лейкоцитов и лимфоцитов.

Так как это вещество увеличивает количество глютатиона в легких, почках, печени и красном костном мозге, оно замедляет процессы старения, например, уменьшая количество старческих пигментных пятен. N-ацетилцистеин более эффективно повышает уровень глютатиона в организме, чем цистин или даже сам глютатион.

Люди с сахарным диабетом должны быть осторожны при приеме добавок с цистеином, так как он обладает способностью инактивировать инсулин. При цистинурии, редком генетическом состоянии, приводящем к образованию цистиновых камней, принимать цистеин нельзя.

Диметилглицин

Диметилглицин - это производная глицина - самой простой аминокислоты. Он является составным элементом многих важных веществ, таких как аминокислоты метионин и холин, некоторых гормонов, нейромедиаторов и ДНК.

В небольших количествах диметилглицин встречается в мясных продуктах, семенах и зернах. Хотя с дефицитом диметилглицина не связано никаких симптомов, прием пищевых добавок с диметилглицином оказывает целый ряд положительных эффектов, включая улучшение энергообеспечения и умственной деятельности.

Диметилглицин также стимулирует иммунитет, уменьшает содержание холестерина и триглицеридов в крови, помогает нормализации артериального давления и уровня глюкозы, а также способствует нормализации функции многих органов. Его также применяют при эпилептических припадках.

Гамма-аминомасляная кислота

Гамма-аминомасляная кислота (GABA) выполняет в организме функцию нейромедиатора центральной нервной системы и незаменима для обмена веществ в головном мозге. Образуется она из другой аминокислоты - глютаминовой. Она уменьшает активность нейронов и предотвращает перевозбуждение нервных клеток.

Гамма-аминомасляная кислота снимает возбуждение и оказывает успокаивающее действие, ее можно принимать также как транквилизаторы, но без риска развития привыкания. Эту аминокислоту используют в комплексном лечении эпилепсии и артериальной гипертензии. Так как она оказывает релаксирующее действие, ее применяют при лечении нарушений половых функций. Кроме того, GABA назначают при синдроме дефицита внимания. Избыток гамма-аминомасляной кислоты, однако, может увеличить беспокойство, вызывает одышку, дрожание конечностей.

Глютаминовая кислота

Глютаминовая кислота является нейромедиатором, передающим импульсы в центральной нервной системе. Эта аминокислота играет важную роль в углеводном обмене и способствует проникновению кальция через гематоэнцефалический барьер.

Эта аминокислота может использоваться клетками головного мозга в качестве источника энергии. Она также обезвреживает аммиак, отнимая атомы азота в процессе образования другой аминокислоты - глютамина. Этот процесс - единственный способ обезвреживания аммиака в головном мозге.

Глютаминовую кислоту применяют при коррекции расстройств поведения у детей, а также при лечении эпилепсии, мышечной дистрофии, язв, гипогликемических состояний, осложнений инсулинотерапии сахарного диабета и нарушений умственного развития.

Глютамин

Глютамин - это аминокислота, наиболее часто встречающаяся в мышцах в свободном виде. Он очень легко проникает через гематоэнцефалический барьер и в клетках головного мозга переходит в глютаминовую кислоту и обратно, кроме того увеличивает количество гамма-аминомасляной кислоты, которая необходима для поддержания нормальной работы головного мозга.

Эта аминокислота также поддерживает нормальное кислотно-щелочное равновесие в организме и здоровое состояние желудочно-кишечного тракта, необходим для синтеза ДНК и РНК.

Глютамин - активный участник азотного обмена. Его молекула содержит два атома азота и образуется из глютаминовой кислоты путем присоединения одного атома азота. Таким образом, синтез глютамина помогает удалить избыток аммиака из тканей, прежде всего из головного мозга и переносить азот внутри организма.

Глютамин находится в больших количествах в мышцах и используется для синтеза белков клеток скелетной мускулатуры. Поэтому пищевые добавки с глютамином применяются культуристами и при различных диетах, а также для профилактики потери мышечной массы при таких заболеваниях, как злокачественные новообразования и СПИД, после операций и при длительном постельном режиме.

Дополнительно глютамин применяют также при лечении артритов, аутоиммунных заболеваниях, фиброзах, заболеваниях желудочно-кишечного тракта, пептических язвах, заболеваниях соединительной ткани.

Эта аминокислота улучшает деятельность мозга и поэтому применяется при эпилепсии, синдроме хронической усталости, импотенции, шизофрении и сенильной деменции. L-глютамин уменьшает патологическую тягу к алкоголю, поэтому применяется при лечении хронического алкоголизма.

Глютамин содержится во многих продуктах как растительного, так и животного происхождения, но он легко уничтожается при нагревании. Шпинат и петрушка являются хорошими источниками глютамина, но при условии, что их потребляют в сыром виде.

Пищевые добавки, содержащие глютамин, следует хранить только в сухом месте, иначе глютамин переходит в аммиак и пироглютаминовую кислоту. Не принимают глютамин при циррозе печени, заболеваниях почек, синдроме Рейе.

Глютатион

Глютатион, так же как и карнитин, не является аминокислотой. По химической структуре это трипептид, получаемый в организме из цистеина, глютаминовой кислоты и глицина.

Глютатион является антиоксидантом. Больше всего глютатиона находится в печени (некоторое его количество высвобождается прямо в кровоток), а также в легких и желудочно-кишечном тракте.

Он необходим для углеводного обмена, а также замедляет старение за счет влияния на липидный обмен и предотвращает возникновения атеросклероза. Дефицит глютатиона сказывается прежде всего на нервной системе, вызывая нарушения координации, мыслительных процессов, тремор.

Количество глютатиона в организме уменьшается с возрастом. В связи с этим пожилые люди должны получать его дополнительно. Однако предпочтительнее употреблять пищевые добавки, содержащие цистеин, глютаминовую кислоту и глицин - то есть вещества, синтезирующие глютатион. Наиболее эффективным считается прием N-ацетилцистеина.

Глицин

Глицин замедляет дегенерацию мышечной ткани, так как является источником креатина - вещества, содержащегося в мышечной ткани и используемого при синтезе ДНК и РНК. Глицин необходим для синтеза нуклеиновых кислот, желчных кислот и заменимых аминокислот в организме.

Он входит в состав многих антацидных препаратов, применяемых при заболеваниях желудка, полезен для восстановления поврежденных тканей, так как в больших количествах содержится в коже и соединительной ткани.

Эта аминокислота необходима для нормального функицонирования центральной нервной системы и поддержки хорошего состояния предстательной железы. Он выполняет функцию тормозного нейромедиатора и, таким образом, может предотвратить эпилептические судороги.

Глицин применяют в лечении маниакально-депрессивного психоза, он также может быть эффективен при гиперактивности. Избыток глицина в организме вызывает чувство усталости, но адекватное количество обеспечивает организм энергией. При необходимости глицин в организме может превращаться в серин.

Гистидин

Гистидин - это незаменимая аминокислота, способствующая росту и восстановлению тканей, которая входит в состав миелиновых оболочек, защищающих нервные клетки, а также необходима для образования красных и белых клеток крови. Гистидин защищает организм от повреждающего действия радиации, способствует выведению тяжелых металлов из организма и помогает при СПИДе.

Слишком высокое содержание гистидина может привести к возникновению стресса и даже психических нарушений (возбуждения и психозов).

Неадекватное содержание гистидина в организме ухудшает состояние при ревматоидном артрите и при глухоте, связанной с поражением слухового нерва. Метионин способствует понижению уровня гистидина в организме.

Гистамин, очень важный компонент многих иммунологических реакций, синтезируется из гистидина. Он также способствует возникновению полового возбуждения. В связи с этим одновременный прием биологически активных пищевых добавок, содержащих гистидин, ниацин и пиридоксин (необходимых для синтеза гистамина), может оказаться эффективным при половых расстройствах.

Так как гистамин стимулирует секрецию желудочного сока, применение гистидина помогает при нарушениях пищеварения, связанных с пониженной кислотностью желудочного сока.

Люди, страдающие маниакально-депрессивным психозом, не должны принимать гистидин, за исключением случаев, когда дефицит этой аминокислоты точно установлен. Гистидин находится в рисе, пшенице и ржи.

Изолейцин

Изолейцин - одна из аминокислот BCAA и незаменимых аминокислот, необходимых для синтеза гемоглобина. Также стабилизирует и регулирует уровень сахара в крови и процессы энергообеспечения.Метаболизм изолейцина происходит в мышечной ткани.

Совместный прием с изолейцином и валином (BCAA) увеличиваtт выносливость и способствуют восстановлению мышечной ткани, что особенно важно для спортсменов.

Изолейцин необходим при многих психических заболеваниях. Дефицит этой аминокислоты приводит к возникновению симптомов, сходных с гипогликемией.

К пищевым источниками изолейцина относятся миндаль, кешью, куриное мясо, турецкий горох, яйца, рыба, чечевица, печень, мясо, рожь, большинство семян, соевые белки.

Имеются биологически активные пищевые добавки, содержащие изолейцин. При этом необходимо соблюдать правильный баланс между изолейцином и двумя другими разветвленными аминокислотами BCAA - лейцином и валином.

Лейцин

Лейцин - незаменимая аминокислота, вместе с изолейцином и валином относящаяся к трем разветвленным аминокислотам BCAA . Действуя вместе, они защищают мышечные ткани и являются источниками энергии, а также способствуют восстановлению костей, кожи, мышц, поэтому их прием часто рекомендуют в восстановительный период после травм и операций.

Лейцин также несколько понижает уровень сахара в крови и стимулирует выделение гормона роста. К пищевым источникам лейцина относятся бурый рис, бобы, мясо, орехи, соевая и пшеничная мука.

Биологически активные пищевые добавки, содержащие лейцин, применяются в комплексе с валином и изолейцином. Их следует принимать с осторожностью, чтобы не вызвать гипогликемии. Избыток лейцина может увеличить количество аммиака в организме.

Лизин

Лизин - незаменимая аминокислота, входящая в состав практически любых белков. Он необходим для нормального формирования костей и роста детей, способствует усвоению кальция и поддержанию нормального обмена азота у взрослых.

Эта аминокислота участвует в синтезе антител, гормонов, ферментов, формировании коллагена и восстановлении тканей. Лизин применяют в восстановительный период после операций и спортивных травм. Он также понижает уровень триглицеридов в сыворотке крови.

Лизин оказывает противовирусное действие, особенно в отношении вирусов, вызывающих герпес и острые респираторные инфекции. Прием добавок, содержащих лизин в комбинации с витамином С и биофлавоноидами, рекомендуется при вирусных заболеваниях.

Дефицит этой незаменимой аминокислоты может привести к анемии, кровоизлияниям в глазное яболко, ферментным нарушениям, раздражительности, усталости и слабости, плохому аппетиту, замедлению роста и снижению массы тела, а также к нарушениям репродуктивной системы.

Пищевыми источниками лизина являются сыр, яйца, рыба, молоко, картофель, красное мясо, соевые и дрожжевые продукты.

Метионин

Метионин - незаменимая аминокислота, помогающая переработке жиров, предотвращая их отложение в печени и на стенках артерий. Синтез таурина и цистеина зависит от количества метионина в организме. Эта аминокислота способствует пищеварению, обеспечивает дезинтоксикационные процессы (прежде всего обезвреживание токсичных металлов), уменьшает мышечную слабость, защищает от воздействия радиации, полезна при остеопорозе и химической аллергии.

Эту аминокислоту применяют в комплексной терапии ревматоидного артрита и токсикоза беременности. Метионин оказывает выраженное антиоксидантное действие, так как является хорошим источником серы, инактивирующей свободные радикалы. Его применяют при синдроме Жильбера, нарушениях функции печени. Метионин также необходим для синтеза нуклеиновых кислот, коллагена и многих других белков. Его полезно принимать женщинам, получающим оральные гормональные контрацептивы. Метионин понижает уровень гистамина в организме, что может быть полезно при шизофрении, когда количество гистамина повышено.

Метионин в организме переходит в цистеин, который является предшественником глютатиона. Это очень важно при отравлениях, когда требуется большое количество глютатиона для обезвреживания токсинов и защиты печени.

Пищевые источники метионина: бобовые, яйца, чеснок, чечевица, мясо, лук, соевые бобы, семена и йогурт.

Орнитин

Орнитин помогает высвобождению гормона роста, который способствует сжиганию жиров в организме. Этот эффект усиливается при применении орнитина в комбинации с аргинином и карнитином. Орнитин также необходим для иммунной системы и работы печени, участвуя в дезинтоксикационных процессах и восстановлении печеночных клеток.

Орнитин в организме синтезируется из аргинина и, в свою очередь, служит предшественником для цитруллина, пролина, глютаминовой кислоты. Высокие концентрации орнитина обнаруживаются в коже и соединительной ткани, поэтому эта аминокислота способствует восстановлению поврежденных тканей.

Нельзя давать биологически активные пищевые добавки, содержащие орнитин, детям, беременным и кормящим матерям, а также лицам с шизофренией в анамнезе.

Фенилаланин

Фенилаланин - это незаменимая аминокислота. В организме она может превращаться в другую аминокислоту - тирозин, которая, в свою очередь, используется в синтезе двух основных нейромедиаторов: допамина и норадреналина. Поэтому эта аминокислота влияет на настроение, уменьшает боль, улучшает память и способность к обучению, подавляет аппетит. Его используют в лечении артрита, депрессии, болей при менструации, мигрени, ожирения, болезни Паркинсона и шизофрении.

Фенилаланин встречается в трех формах: L-фенилаланин (естественная форма и именно она входит в состав большинства белков человеческого тела), D-фенилаланин (синтетическая зеркальная форма, обладает анальгирующим действием), DL-фенилаланин (объединяет полезные свойства двух предыдущих форм, ее обычно применяют при предменструальном синдроме.

Биологически активные пищевые добавки, содержащие фенилаланин, не дают беременным женщинам, лицам с приступами беспокойства, диабетом, высоким артериальным давлением, фенилкетонурией, пигментной меланомой.

Пролин

Пролин улучшает состояние кожи, за счет увеличения продукции коллагена и уменьшения его потери с возрастом. Помогает в восстановлении хрящевых поверхностей суставов, укрепляет связки и сердечную мышцу. Для укрепления соединительной ткани пролин лучше применять в комбинации с витамином С.

Пролин поступает в организм преимущественно из мясных продуктов.

Серин

Серин необходим для нормального обмена жиров и жирных кислот, роста мышечной ткани и поддержания нормального состояния иммунной системы.

Серин синтезируется в организме из глицина. В качестве увлажняющего вещества входит в состав многих косметических продуктов и дерматологических препаратов.

Таурин

Таурин в высокой концентрации содержится в сердечной мышце, белых клетках крови, скелетной мускулатуре, центральной нервной системе. Он участвует в синтезе многих других аминокислот, а также входит в состав основного компонента желчи, которая необходима для переваривания жиров, абсорбции жирорастворимых витаминов и для поддержания нормального уровня холестерина в крови.

Поэтому таурин полезен при атеросклерозе, отеках, заболеваниях сердца, артериальной гипертонии и гипогликемии. Таурин необходим для нормального обмена натрия, калия, кальция и магния. Он предотвращает выведение калия из сердечной мышцы и потому способствует профилактике некоторых нарушений сердечного ритма. Таурин оказывает защитное действие на головной мозг, особенно при дегидратации. Его применяют при лечении беспокойства и возбуждения, эпилепсии, гиперактивности, судорог.

Биологически активные пищевые добавки с таурином дают детям с синдромом Дауна и мышечной дистрофией. В некоторых клиниках эту аминокислоту включают в комплексную терапию рака молочной железы. Избыточное выведение таурина из организма встречается при различных состояниях и нарушениях обмена.

Аритмии, нарушения процессов образования тромбоцитов, кандидозы, физический или эмоциональный стресс, заболевания кишечника, дефицит цинка и злоупотребление алкоголем приводят к дефициту таурина в организме. Злоупотребление алкоголем к тому же нарушает способность организма усваивать таурин.

При диабете увеличивается потребность организма в таурине, и наоборот, прием БАД, содержащих таурин и цистин, уменьшает потребность в инсулине. Таурин находится в яйцах, рыбе, мясе, молоке, но не встречается в белках растительного происхождения.

Он синтезируется в печени из цистеина и из метионина в других органах и тканях организма, при условии достаточного количества витамина В6. При генетических или метаболических нарушениях, мешающих синтезу таурина, необходим прием БАД с этой аминокислотой.

Треонин

Треонин - это незаменимая аминокислота, способствующая поддержанию нормального белкового обмена в организме. Она важна для синтеза коллагена и эластина, помогает работе печени и участвует в обмене жиров в комбинации с аспартовой кислотой и метионином.

Треонин находится в сердце, центральной нервной системе, скелетной мускулатуре и препятствует отложенную жиров в печени. Эта аминокислота стимулирует иммунитет, так как способствует продукции антител. Треонин очень в незначительных количествах содержится в зернах, поэтому у вегетарианцев чаще возникает дефицит этой аминокислоты.

Триптофан

Триптофан - это незаменимая аминокислота, необходимая для продукции ниацина. Он используется для синтеза в головном мозге серотонина, одного из важнейших нейромедиаторов. Триптофан применяют при бессоннице, депрессии и для стабилизации настроения.

Он помогает при синдроме гиперактивности у детей, используется при заболеваниях сердца, для контроля за массой тела, уменьшения аппетита, а также для увеличения выброса гормона роста. Помогает при мигренозных приступах, способствует уменьшению вредного воздействия никотина. Дефицит триптофана и магния может усиливать спазмы коронарных артерий.

К наиболее богатым пищевым источникам триптофана относятся бурый рис, деревенский сыр, мясо, арахис и соевый белок.

Тирозин

Тирозин является предшественником нейромедиаторов норэпинефрина и допамина. Эта аминокислота участвует в регуляции настроения; недостаток тирозина приводит к дефициту норадреналина, что, в свою очередь, приводит к депрессии. Тирозин подавляет аппетит, способствует уменьшению отложения жиров, способствует выработке мелатонина и улучшает функции надпочечников, щитовидной железы и гипофиза.

Тирозин также участвует в обмене фенилаланина. Тиреоидные гормоны образуются при присоединении к тирозину атомов йода. Поэтому неудивительно, что низкое содержание тирозина в плазме связано с гипотиреозом.

Симптомами дефицита тирозина также являются пониженное артериальное давление, низкая температура тела и синдром беспокойных ног.

Биологически активные пищевые добавки с тирозином используют для снятия стресса, полагают, что они могут помочь при синдроме хронической усталости и нарколепсии. Их используют при тревоге, депрессии, аллергиях и головной боли, а также при отвыкании от лекарств. Тирозин может быть полезен при болезни Паркинсона. Естественные источники тирозина - миндаль, авокадо, бананы, молочные продукты, семечки тыквы и кунжут.

Тирозин может синтезироваться из фенилаланина в организме человека. БАД с фенилаланином лучше принимать перед сном или вместе с продуктами питания, содержащими большое количество углеводов.

На фоне лечения ингибиторами моноаминоксидазы (обычно их назначают при депрессии) следует практически полностью отказаться от продуктов, содержащих тирозин, и не принимать БАД с тирозином, так как это может привести к неожиданному и резкому подъему артериального давления.

Валин

Валин - незаменимая аминокислота, оказывающая стимулирующее действие, одна из аминокислот BCAA, поэтому может быть использована мышцами в качестве источника энергии. Валин необходим для метаболизма в мышцах, восстановления поврежденных тканей и для поддержания нормального обмена азота в организме.

Валин часто используют для коррекции выраженных дефицитов аминокислот, возникших в результате привыкания к лекарствам. Его чрезмерно высокий уровень в организме может привести к таким симптомам, как парестезии (ощущение мурашек на коже), вплоть до галлюцинаций.
Валин содержится в следующих пищевых продуктах: зерновые, мясо, грибы, молочные продукты, арахис, соевый белок.

Прием валина в виде пищевых добавок следует сбалансировать с приемом других разветвленных аминокислот BCAA - L-лейцина и L-изолейцина.