Сложные эфиры физические и химические свойства. Строение, изомерия, номенклатура, способы получения, физические свойства, химические свойства сложных эфиров карбоновых кислот

Простые эфиры (окиси алканов) можно представить как соединения, образованные замещением обоих атомов водорода молекулы воды двумя алкильными радикалами или замещением гидроксильного спирта алкильным радикалом.

Изомерия и номенклатура. Общая формула простых эфировROR(I) ((C n H 2 n +1) 2 O) илиC n H 2 n +1 OC k H 2 k +1 , гдеnk(R 1 OR 2) (II). Последние часто называют смешанными эфирами, хотя (I) частный случай (II).

Простые эфиры изомерны спиртам (изомерия функциональной группы). Приведем примеры таких соединений:

Н 3 СОСН 3 диметиловый эфир; С 2 Н 5 ОН этиловый спирт;

Н 5 С 2 ОС 2 Н 5 диэтиловый эфир; С 4 Н 9 ОН бутиловый спирт;

Н 5 С 2 ОС 3 Н 7 этилпропиловый эфир; С 5 Н 11 ОН амиловый спирт.

Кроме того, для простых эфиров распространена изомерия углеродного скелета (метилпропиловый эфир и метилизопропиловый эфир). Оптически активные эфиры немногочисленны.

Способы получения простых эфиров

1. Взаимодействие галогенпроизводных с алкоголятами (реакция Вильямсона).

С 2 Н 5 ОNa+IC 2 H 5 Н 5 С 2 ОС 2 Н 5 +NaI

2. Дегидратация спиртов в присутствии ионов водорода как катализаторов.

2С 2 Н 5 ОHН 5 С 2 ОС 2 Н 5

3. Частная реакция получения диэтилового эфира.

Первая стадия:

Вторая стадия:

Физические свойства простых эфиров

Два первых простейших представителя – диметиловый и метилэтиловый эфиры – при обычных условиях газы, все остальные – жидкости. Их Т кип много ниже, чем соответствующих спиртов. Так, температура кипения этанола – 78,3С, а Н 3 СОСН 3 – 24С, соответственно (С 2 Н 5) 2 О – 35,6С. Дело в том, что простые эфиры не способны к образованию молекулярных водородных связей, а, следовательно, и к ассоциации молекул.

Химические свойства простых эфиров

1. Взаимодействие с кислотами.

(С 2 Н 5) 2 О +HCl[(С 2 Н 5) 2 ОH + ]Cl  .

Эфир играет роль основания.

2. Ацидолиз – взаимодействие с сильными кислотами.

Н 5 С 2 ОС 2 Н 5 + 2H 2 SO 4 2С 2 Н 5 OSO 3 H

этилсерная кислота

Н 5 С 2 ОС 2 Н 5 +HIС 2 Н 5 OH+ С 2 Н 5 I

3. Взаимодействие со щелочными металлами.

Н 5 С 2 ОС 2 Н 5 + 2NaС 2 Н 5 ONa+ С 2 Н 5 Na

Отдельные представители

Этиловый эфир (диэтиловый эфир) – бецветная прозрачная жидкость, малорастворимая в воде. С этиловым спиртом смешивается в любых отношениях. Т пл =116,3С, давление насыщенного пара 2,6610 4 Па (2,2С) и 5,3210 4 Па (17,9С). Криоскопическая константа 1,79, эбулиоскопическая –1,84. Температура воспламенения – 9,4С, образует с воздухом взрывоопасную смесь при 1,71 об. % (нижний предел) – 48,0 об. % (верхний предел). Вызывает набухание резин. Широко применяется в качестве растворителя, в медицине (ингаляционный наркоз), вызывает привыкание человека, ядовит.

Сложные эфиры карбоновых кислот Получение сложных эфиров карбоновых кислот

1. Этерификация кислот спиртами.

Гидроксил кислоты выделяется в составе воды, спирт же отдает лишь атом водорода. Реакция обратима, те же катионы катализируют и обратную реакцию.

2. Взаимодействие ангидридов кислот со спиртами.

3. Взаимодействие галогенангидридов со спиртами.

Некоторые физические свойства сложных эфиров приведены в табли- це 12.

Таблица 12

Некоторые физические свойства ряда сложных эфиров

Строение радикала

Название

Плотность

метилформиат

этилформиат

метилацетат

этилацетат

н-пропилацетат

н-бутилацетат

Сложные эфиры низших карбоновых кислот и простейших спиртов – жидкости с освежающим фруктовым запахом. Употребляются как отдушки для приготовления напитков. Многие эфиры (уксусноэтиловый, уксуснобутиловый) широко применяются как растворители, особенно лаков.

Производные карбоновых или неорганических кислот, в которых атом водорода в гидроксильной группе замещён радикалом, называются сложными эфирами. Обычно общую формулу сложных эфиров обозначают как два углеводородных радикала, присоединённых к карбоксильной группе - C n H 2n+1 -COO-C n H 2n+1 или R-COOR’.

Номенклатура

Названия сложных эфиров составляются из названий радикала и кислоты с суффиксом «-ат». Например:

  • CH 3 COOH - метилформиат;
  • HCOOCH 3 - этилформиат;
  • CH 3 COOC 4 H 9 - бутилацетат;
  • CH 3 -CH 2 -COO-C 4 H 9 - бутилпропионат;
  • CH 3 -SO 4 -CH 3 - диметилсульфат.

Также используются тривиальные названия кислоты, входящей в состав соединения:

  • С 3 Н 7 СООС 5 Н 11 - амиловый эфир масляной кислоты;
  • HCOOCH 3 - метиловый эфир муравьиной кислоты;
  • CH 3 -COO-CH 2 -CH(CH 3) 2 - изобутиловый эфир уксусной кислоты.

Рис. 1. Структурные формулы сложных эфиров с названиями.

Классификация

В зависимости от происхождения сложные эфиры делятся на две группы:

  • эфиры карбоновых кислот - содержат углеводородные радикалы;
  • эфиры неорганических кислот - включают остаток минеральных солей (C 2 H 5 OSO 2 OH, (CH 3 O)P(O)(OH) 2 , C 2 H 5 ONO).

Наиболее разнообразны сложные эфиры карбоновых кислот. От сложности строения зависят их физические свойства. Эфиры низших карбоновых кислот - летучие жидкости с приятным ароматом, высших - твёрдые вещества. Это плохо растворимые соединения, плавающие на поверхности воды.

Виды сложных эфиров карбоновых кислот приведены в таблице.

Вид

Описание

Примеры

Фруктовые эфиры

Жидкости, молекулы которых включают не более восьми атомов углерода. Обладают фруктовым ароматом. Состоят из одноатомных спиртов и карбоновых кислот

  • CH 3 -COO-CH 2 -CH 2 -CH(CH 3) 2 - изоамиловый эфир уксусной кислоты (запах груши);
  • C 3 H 7 -COO-C 2 H 5 - этиловый эфир масляной кислоты (запах ананаса);
  • CH 3 -COO-CH 2 -CH-(CH 3) 2 - изобутиловый эфир уксусной кислоты (запах банана).

Жидкие (масла) и твёрдые вещества, содержащие от девяти до 19 атомов углерода. Состоят из глицерина и остатков карбоновых (жирных) кислот

Оливковое масло - смесь глицерина с остатками пальмитиновой, стеариновой, олеиновой, линолевой кислот

Твёрдые вещества с 15-45 атомами углерода

CH 3 (CH 2) 14 -CO-O-(CH 2) 29 CH 3 -мирицилпальмитат

Рис. 2. Воск.

Сложные эфиры карбоновых кислот - главная составляющая ароматных эфирных масел, которые содержатся в плодах, цветах, ягодах. Также входят в состав пчелиного воска.

Рис. 3. Эфирные масла.

Получение

Получают сложные эфиры несколькими способами:

  • реакцией этерификации карбоновых кислот со спиртами:

    CH 3 COOH + C 2 H 5 OH → CH 3 COOC 2 H 5 + H 2 O;

  • реакцией ангидридов карбоновых кислот со спиртами:

    (CH 3 CO) 2 O + 2C 2 H 5 OH → 2CH 3 COOC 2 H 5 + H 2 O;

  • реакцией солей карбоновых кислот с галогенуглеводородами:

    CH 3 (CH 2) 10 COONa + CH 3 Cl → CH 3 (CH 2) 10 COOCH 3 + NaCl;

  • реакцией присоединения карбоновых кислот к алкенам:

    CH 3 COOH + CH 2 =CH 2 → CH 3 COOCH 2 CH 3 + H 2 O.

Свойства

Химические свойства сложных эфиров обусловлены функциональной группой -COOH. Основные свойства сложных эфиров описаны в таблице.

Сложные эфиры используются в косметологии, медицине, пищевой промышленности в качестве ароматизаторов, растворителей, наполнителей.

Что мы узнали?

Из темы урока химии 10 класса узнали, что такое сложные эфиры. Это соединения, включающие два радикала и карбоксильную группу. В зависимости от происхождения могут содержать остатки минеральных или карбоновых кислот. Сложные эфиры карбоновых кислот делятся на три группы: жиры, воски, фруктовые эфиры. Это плохо растворимые в воде вещества с небольшой плотностью и приятным ароматом. Сложные эфиры реагируют со щелочами, водой, галогенами, спиртами и аммиаком.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 109.

Жиры и масла - это природные эфиры, которые образованы трехатомным спиртом – глицерином и высшими жирными кислотами с неразветвленной углеродной цепью, содержащими четное число атомов углерода. В свою очередь, натриевые или калиевые соли высших жирных кислот называются мылами.

При взаимодействии карбоновых кислот со спиртами (реакция этерификации ) образуются сложные эфиры:

Эта реакция обратима. Продукты реакции могут взаимодействовать друг с другом с образо­ванием исходных веществ - спирта и кислоты. Таким образом, реакция сложных эфиров с во­дой - гидролиз сложного эфира - обратна реак­ции этерификации. Химическое равновесие, уста­навливающееся при равенстве скоростей прямой (этерификация) и обратной (гидролиз) реакций, может быть смещено в сторону образования эфира присутствием водоотнимающих средств.

Сложные эфиры в природе и технике

Сложные эфиры широко распространены в при­роде, находят применение в технике и различных отраслях промышленности. Они являются хоро­шими растворителями органических веществ, их плотность меньше плотности воды, и они практи­чески не растворяются в ней. Так, сложные эфи­ры с относительно небольшой молекулярной мас­сой представляют собой легко воспламеняющиеся жидкости с невысокими температурами кипения, имеют запахи различных фруктов. Их применяют в качестве растворителей лаков и красок, арома­тизаторов изделий пищевой промышленности. На­пример, метиловый эфир масляной кислоты имеет запах яблок, этиловый эфир этой кислоты - за­пах ананасов, изобутиловый эфир уксусной кисло­ты - запах бананов:

Сложные эфиры высших карбоновых кислот и высших одноосновных спиртов называют восками . Так, пчелиный воск состоит главным об­
разом из эфира пальмитиновой кислоты и мирицилового спирта C 15 H 31 COOC 31 H 63 ; кашалотовый воск - спермацет - сложный эфир той же пальмитиновой кислоты и цетилового спирта C 15 H 31 COOC 16 H 33.

Жиры

Важнейшими представителями сложных эфи­ров являются жиры.

Жиры - природные соединения, которые пред­ставляют собой сложные эфиры глицерина и выс­ших карбоновых кислот.

Состав и строение жиров могут быть отражены общей формулой:

Большинство жиров образовано тремя карбоно­выми кислотами: олеиновой, пальмитиновой и сте­ариновой. Очевидно, что две из них - предельные (насыщенные), а олеиновая кислота содержит двойную связь между атомами углерода в молеку­ле. Таким образом, в состав жиров могут входить остатки как предельных, так и не­предельных карбоновых кис­лот в различных сочетаниях.

В обычных условиях жи­ры, содержащие в своем со­ставе остатки непредельных кислот, чаще всего бывают жидкими. Их называют маслами. В основ­ном это жиры растительного происхождения - льняное, конопляное, подсолнечное и другие мас­ла. Реже встречаются жидкие жиры животного происхождения, например рыбий жир. Большин­ство природных жиров животного происхождения при обычных условиях - твердые (легкоплавкие) вещества и содержат в основном остатки предель­ных карбоновых кислот, например, бараний жир. Так, пальмовое масло - твердый в обычных усло­виях жир.

Состав жиров определяет их физические и хи­мические свойства. Понятно, что для жиров, со­держащих остатки ненасыщенных карбоновых кислот, характерны все реакции непредельных соединений. Они обесцвечивают бромную воду, вступают в другие реакции присоединения. Наи­более важная в практическом плане реакция - гидрирование жиров. Гидрированием жидких жиров получают твердые сложные эфиры. Имен­но эта реакция лежит в основе получения марга­рина - твердого жира из растительных масел. Условно этот процесс можно описать уравнением реакции:

гидролизу :

Мыла

Все жиры, как и другие сложные эфиры, под­вергаются гидролизу . Гидролиз сложных эфи­ров - обратимая реакция. Чтобы сместить равно­весие в сторону образования продуктов гидролиза, его проводят в щелочной среде (в присутствии щелочей или Na 2 CO 3). В этих условиях гидролиз жиров протекает необратимо и приводит к образо­ванию солей карбоновых кислот, которые называ­ются мылами. Гидролиз жиров в щелочной среде называют омылением жиров.

При омылении жиров образуются глицерин и мыла - натриевые или калиевые соли высших карбоновых кислот:

Шпаргалка

Если исходная кислота многоосновная, то возможно образование либо полных эфиров – замещены все НО-группы, либо кислых эфиров – частичное замещение. Для одноосновных кислот возможны только полные эфиры (рис.1).

Рис. 1. ПРИМЕРЫ СЛОЖНЫХ ЭФИРОВ на основе неорганической и карбоновой кислоты

Номенклатура сложных эфиров.

Название создается следующим образом: вначале указывается группа R, присоединенная к кислоте, затем – название кислоты с суффиксом «ат» (как и в названиях неорганических солей: карбонат натрия, нитрат хрома). Примеры на рис. 2

Рис. 2. НАЗВАНИЯ СЛОЖНЫХ ЭФИРОВ . Фрагменты молекул и соответствующие им фрагменты названий выделены одинаковым цветом. Сложные эфиры обычно рассматривают как продукты реакции между кислотой и спиртом, например, бутилпропионат можно воспринимать как результат взаимодействия пропионовой кислоты и бутанола.

Если используют тривиальное (см . ТРИВИАЛЬНЫЕ НАЗВАНИЯ ВЕЩЕСТВ) название исходной кислоты, то в название соединения включают слово «эфир», например, С 3 Н 7 СООС 5 Н 11 – амиловый эфир масляной кислоты.

Классификация и состав сложных эфиров.

Среди изученных и широко применяемых сложных эфиров большинство представляют соединения, полученные на основе карбоновых кислот. Сложные эфиры на основе минеральных (неорганических) кислот не столь разнообразны, т.к. класс минеральных кислот менее многочисленен, чем карбоновых (многообразие соединений – один из отличительных признаков органической химии).

Когда число атомов С в исходных карбоновой кислоте и спирте не превышает 6–8, соответствующие сложные эфиры представляют собой бесцветные маслянистые жидкости, чаще всего с фруктовым запахом. Они составляют группу фруктовых эфиров. Если в образовании сложного эфира участвует ароматический спирт (содержащий ароматическое ядро), то такие соединения обладают, как правило, не фруктовым, а цветочным запахом. Все соединения этой группы практически нерастворимы в воде, но легко растворимы в большинстве органических растворителей. Интересны эти соединения широким спектром приятных ароматов (табл. 1), некоторые из них вначале были выделены из растений, а позже синтезированы искусственно.

Табл. 1. НЕКОТОРЫЕ СЛОЖНЫЕ ЭФИРЫ , обладающие фруктовым или цветочным ароматом (фрагменты исходных спиртов в формуле соединения и в названии выделены жирным шрифтом)
Формула сложного эфира Название Аромат
СН 3 СООС 4 Н 9 Бутил ацетат грушевый
С 3 Н 7 СООСН 3 Метил овый эфир масляной кислоты яблочный
С 3 Н 7 СООС 2 Н 5 Этил овый эфир масляной кислоты ананасовый
С 4 Н 9 СООС 2 Н 5 Этил малиновый
С 4 Н 9 СООС 5 Н 11 Изоамил овый эфир изовалериановой кислоты банановый
СН 3 СООСН 2 С 6 Н 5 Бензил ацетат жасминовый
С 6 Н 5 СООСН 2 С 6 Н 5 Бензил бензоат цветочный

При увеличении размеров органических групп, входящих в состав сложных эфиров, до С 15–30 соединения приобретают консистенцию пластичных, легко размягчающихся веществ. Эту группу называют восками, они, как правило, не обладают запахом. Пчелиный воск содержит смесь различных сложных эфиров, один из компонентов воска, который удалось выделить и определить его состав, представляет собой мирициловый эфир пальмитиновой кислоты С 15 Н 31 СООС 31 Н 63 . Китайский воск (продукт выделения кошенили – насекомых Восточной Азии) содержит цериловый эфир церотиновой кислоты С 25 Н 51 СООС 26 Н 53 . Кроме того, воски содержат и свободные карбоновые кислоты и спирты, включающие большие органические группы. Воски не смачиваются водой, растворимы в бензине, хлороформе, бензоле.

Третья группа – жиры. В отличие от предыдущих двух групп на основе одноатомных спиртов ROH, все жиры представляют собой сложные эфиры, образованные из трехатомного спирта глицерина НОСН 2 –СН(ОН)–СН 2 ОН. Карбоновые кислоты, входящие в состав жиров, как правило, имеют углеводородную цепь с 9–19 атомами углерода. Животные жиры (коровье масло, баранье, свиное сало) – пластичные легкоплавкие вещества. Растительные жиры (оливковое, хлопковое, подсолнечное масло) – вязкие жидкости. Животные жиры, в основном, состоят из смеси глицеридов стеариновой и пальмитиновой кислоты (рис. 3А,Б). Растительные масла содержат глицериды кислот с несколько меньшей длиной углеродной цепи: лауриновой С 11 Н 23 СООН и миристиновой С 13 Н 27 СООН. (как и стеариновая и пальмитиновая – это насыщенные кислоты). Такие масла могут долго храниться на воздухе, не меняя своей консистенции, и потому называются невысыхающими. В отличие от них, льняное масло содержит глицерид ненасыщенной линолевой кислоты (рис. 3В). При нанесении тонким слоем на поверхность такое масло под действием кислорода воздуха высыхает в ходе полимеризации по двойным связям, при этом образуется эластичная пленка, не растворимая в воде и органических растворителях. На основе льняного масла изготавливают натуральную олифу.

Рис. 3. ГЛИЦЕРИДЫ СТЕАРИНОВОЙ И ПАЛЬМИТИНОВОЙ КИСЛОТЫ (А И Б) – компоненты животного жира. Глицерид линолевой кислоты (В) – компонент льняного масла.

Сложные эфиры минеральных кислот (алкилсульфаты, алкилбораты, содержащие фрагменты низших спиртов С 1–8) – маслянистые жидкости, эфиры высших спиртов (начиная с С 9) – твердые соединения.

Химические свойства сложных эфиров.

Наиболее характерно для эфиров карбоновых кислот гидролитическое (под действием воды) расщепление сложноэфирной связи, в нейтральной среде оно протекает медленно и заметно ускоряется в присутствии кислот или оснований, т.к. ионы Н + и НО – катализируют этот процесс (рис. 4А), причем гидроксильные ионы действуют более эффективно. Гидролиз в присутствии щелочей называют омылением. Если взять количество щелочи, достаточное для нейтрализации всей образующейся кислоты, то происходит полное омыление сложного эфира. Такой процесс проводят в промышленном масштабе, при этом получают глицерин и высшие карбоновые кислоты (С 15–19) в виде солей щелочных металлов, представляющих собой мыло (рис. 4Б). Содержащиеся в растительных маслах фрагменты ненасыщенных кислот, как и любые ненасыщенные соединения, могут быть прогидрированы, водород присоединяется к двойным связям и образуются соединения, близкие к животным жирам (рис. 4В). Этим способом в промышленности получают твердые жиры на основе подсолнечного, соевого или кукурузного масла. Из продуктов гидрирования растительных масел, смешанных с природными животными жирами и различными пищевыми добавками, изготавливают маргарин.

Основной способ синтеза – взаимодействие карбоновой кислоты и спирта, катализируемое кислотой и сопровождаемое выделением воды. Эта реакция обратна показанной на рис. 3А. Чтобы процесс шел в нужном направлении (синтез сложного эфира), из реакционной смеси дистиллируют (отгоняют) воду. Специальными исследованиями с применением меченых атомов удалось установить, что в процессе синтеза атом О, входящий в состав образующейся воды, отрывается от кислоты (отмечено красной пунктирной рамкой), а не от спирта (нереализующийся вариант выделен синей пунктирной рамкой).

По такой же схеме получают сложные эфиры неорганических кислот, например, нитроглицерин (рис. 5Б). Вместо кислот можно использовать хлорангидриды кислот, метод применим как для карбоновых (рис. 5В), так и для неорганических кислот (рис. 5Г).

Взаимодействие солей карбоновых кислот с галоидалкилами RCl также приводит к сложным эфирам (рис. 5Г), реакция удобна тем, что она необратима – выделяющаяся неорганическая соль сразу удаляется из органической реакционной среды в виде осадка.

Применение сложных эфиров.

Этилформиат НСООС 2 Н 5 и этилацетат Н 3 СООС 2 Н 5 используются как растворители целлюлозных лаков (на основе нитроцеллюлозы и ацетилцеллюлозы).

Сложные эфиры на основе низших спиртов и кислот (табл. 1) используют в пищевой промышленности при создании фруктовых эссенций, а сложные эфиры на основе ароматических спиртов – в парфюмерной промышленности.

Из восков изготавливают политуры, смазки, пропиточные составы для бумаги (вощеная бумага) и кожи, они входят и в состав косметических кремов и лекарственных мазей.

Жиры вместе с углеводами и белками составляют набор необходимых для питания пищевых продуктов, они входят в состав всех растительных и животных клеток, кроме того, накапливаясь в организме, играют роль энергетического запаса. Из-за низкой теплопроводности жировой слой хорошо предохраняет животных (в особенности, морских – китов или моржей) от переохлаждения.

Животные и растительные жиры представляют собой сырье для получения высших карбоновых кислот, моющих средств и глицерина (рис. 4), используемого в косметической промышленности и как компонент различных смазок.

Нитроглицерин (рис. 4) – известный лекарственный препарат и взрывчатое вещество, основа динамита.

На основе растительных масел изготавливают олифы (рис. 3), составляющие основу масляных красок.

Эфиры серной кислоты (рис. 2) используют в органическом синтезе как алкилирующие (вводящие в соединение алкильную группу) реагенты, а эфиры фосфорной кислоты (рис. 5) – как инсектициды, а также добавки к смазочным маслам.

Михаил Левицкий

Сложные эфиры чаще всего получают ацилированием гидрокси- производных карбоновыми кислотами, их хлорангидридами и ангидридами, а также кетенами (см. ниже); достаточно широко используется взаимодействие солей карбоновых кислот с галогенидами и тозилатами по Б^-механизму (стр. 112). Из других способов можно отметить присоединение карбоновых кислот к ацетилену (стр. 142, ч. 1), перегруппировку Байера-Виллигера (стр. 35), реакцию Тищенко (стр. 41). Для получения метиловых эфиров используют реакцию карбоновых кислот с диазометаном (будет рассмотрено позднее).

Названия сложных эфиров R-CO-OR 1 обычно складываются из названия радикала R 1 и названия кислоты с прибавлением окончания am: этиловый эфир уксусной кислоты - этилацетат; пропиловый эфир бензойной кислоты - пропилбензоат ; диметиловый эфир щавелевой кислоты - диметил оксалат.

Химические свойства

Свойства сложных эфиров обнаруживают, с одной стороны, определенное сходство со свойствами ранее рассмотренных производных - хлорангидридов и ангидридов, с другой - заметное своеобразие; в частности, появляются новые типы реакций, такие, как ацилоиновая конденсация, пиролиз и другие.

Химические реакции сложных эфиров можно разделить на следующие группы: I. Нуклеофильные реакции карбонильной группы ; II. Реакции расщепления связи О-алкил; III. Реакции восстановления ; IV. Реакции пиролитического отщепления. Весьма важные реакции a-положения отдельно не рассматриваются; часть материала (сложноэфирная конденсация) будет рассмотрена в разделе «Нуклеофильные реакции карбонильной группы», а часть - в специальном разделе, посвященном метиленактивным соединениям.

I.Нуклеофильные реакции карбонильной группы.

Наиболее характерными реакциями этой группы являются взаимодействие сложных эфиров с О- и N-нуклеофилами и металлорганическими соединениями, а также реакции конденсации с карбанионами.

Сложные эфиры, как и предыдущие типы производных, подвергаются гидролизу и ацилируют О- и N-нуклеофилы по общей схеме:

Для группы -OR"* донорный +М-эффект заметно превосходит акцептор- малоактивна по отношению к нуклеофилам (примерно на уровне активности карбонильной группы самих карбоновых кислот). Сложные эфиры не относятся к активным ацилирующим реагентам; при взаимодействии со слабыми нуклеофилами (вода, спирты) требуется катализ.

Гидролиз сложных эфиров проходит под действием водных растворов кислот или оснований (обычно щелочей). Гидролиз с кислотным катализом приводит к образованию соответствующих карбоновой кислоты и спирта; механизмы гидролиза обратны механизмам кислотно-катализируемой этерификации; в зависимости от строения эфиров и условий это могут быть механизмы Аде2 или А ас 1 (см. стр. НО, 111). Гидролиз под действием щелочей, естественно, приводит к образованию солей карбоновых кислот: R"CO-OR 2 + Na + OH -> R"-CO-CTNa + + R 2 -OH Механизм здесь иной: это типичный механизм взаимодействия производных карбоновых кислот с анионными нуклеофилами (был рассмотрен выше на примере ацил галогенидов). В данном случае он выглядит так:

Вначале происходит присоединение анионного нуклеофила - гидроксид- аниона, затем - выталкивание алкоксид-аниона, который, естественно, депро- тонирует возникающую при этом кислоту с образованием спирта и более устойчивого карбоксилат-аниона. Поскольку скоростьопределяющая стадия здесь бимолекулярна , механизм обозначается как Вдс2, т.е. бимолекулярная реакция ацильных производных, катализируемая основаниями (В - Base). В отличие от кислотного гидролиза, щелочной гидролиз практически необратим ., т.к. соли карбоновых кислот пассивны по отношению к нуклеофилам.

Г идролиз циклических эфиров - лактонов - приводит к образованию гид- роксикислот (при кислотном гидролизе) или их солей (при щелочном гидролизе):

Ацилирование спиртов сложными эфирами приводит к образованию новых сложных эфиров со спиртами-реагентами с вытеснением «исходных» спиртов:

Эту реакцию иначе называют переэтсрификациеи (иногда, особенно в биохимии, используется термин «трансэстерификация») или алкоголизом сложных эфиров (по аналогии с гидролизом). Реакция протекает обычно при кислотном катализе по механизму А Л с2:

Механизм полностью аналогичен механизму этерификации (стр. 110). Реакция микроскопически обратима и ее можно сдвинуть как в одну, так и в дру-

гую сторону, используя избыток спирт используют в качестве растворителя.

r 2 -oh

либо R ОН: обычно избыточный

Переэтерификация происходит и при действии на сложные эфиры алкого- лятов других спиртов:

Реакция идет по механизму Вдс2, аналогично щелочному гидролизу, с той разницей, что здесь не образуется соль кислоты, и реакция обратима.

Реакции переэтерификации используют как для синтеза, так и для расщепления сложных эфиров. В частности, метиловые эфиры природных жирных кислот (удобные формы для хромато-масс-спектрометрического анализа) можно получать из природных сложных эфиров этих кислот при обработке избытком метанола в присутствии H2SO4. Алкоголиз используется при синтезе полиэфиров (будет расмотрено позднее). Некоторые биохимические реакции также относятся к переэтерификации; в частности, так образуются в организме сложные эфиры холестерина.

Алкоголиз лактонов приводит к сложным эфирам гидроксикислот:

Помимо алкоголиза существует еще один вариант переэтерификации - ацидолиз ; это - обменная реакция с молекулой карбоновой кислоты, причем образуется эфир этой новой кислоты, а «старая» кислота вытесняется:

Ацилирование N-нуклеофилов сложными эфирами приводит к образованию амидов (при ацилировании аммиака, первичных и вторичных аминов), гидразидов (при ацилировании гидразина и его замещенных), гидро- ксамовых кислот (при ацилировании гидроксиламина):

Используемые N-нуклеофилы (особенно гидразин и гидроксиламин) более активны, чем О-нуклеофилы, поэтому их взаимодействие со сложными эфирами может проходить без катализа, хотя в ряде случаев используют основный или кислотный катализ. Механизм некаталитического взаимодействия - частный случай механизмов реакций производных кислот с реагентами типа H-Y:


Для получения алш*)0в_ацилирование сложными эфирами используется реже, чем ацилирование хлорангидридами и ангидридами, но все же известно достаточно много примеров таких синтезов. Для получения гидразидов и гидроксамовых кислот ацилирование сложными эфирами является наилучшим методом , т.к. гидразин и гидроксиламин - сильные нуклеофилы, и при их взаимодействии с энергичными ацилирующими реагентами - ацилгалоге- нидами и ангидридами - реакции могут протекать слишком бурно и приводить к продуктам диацилирования, а для гидразина - также три- и тетраацилирования.

Взаимодействие сложных эфиров с металлорганическими соединениями, как и для ацилгалогенидов, может приводить к кетонам или идти дальше - до образования третичных спиртов. При взаимодействии с ли- тийалкилами реакцию можно в определенных условиях остановить на стадии образования кетона:

При взаимодействии с реактивами Гриньяра реакция, как правило, не останавливается на стадии образования кетона и идет дальше, до образования третичного спирта:

Реакции конденсации с участием карбонильной группы сложных эфиров имеют большое препаративное значение. Одна из них - конденсация сложных эфиров с кетонами (выступающими в роли метиленовой компоненты):

Реакция была рассмотрена ранее (стр. 27); в результате образуются 1,3- дикетоны, широко используемые в органическом синтезе.

Другая чрезвычайно важная реакция - конденсация двух молекул сложного эфира в присутствии сильного основания (сложноэфирная конденсация или конденсация Клаизена ):

Реакция аналогична предыдущей, с той разницей, что в роли метиленовой компоненты выступает не кетон, а вторая молекула сложного эфира. Продуктами реакции являются эфиры p-оксокарбоновых кислот. Широко используется вариант конденсации двух одинаковых молекул сложного эфира (R i= CH2R R 2 =R 4), т.е. самоконденсации сложных эфиров при действии сильных оснований. Простейший и известнейший пример - конденсация двух молекул этилацетата с образованием ацетоуксусного эфира (622) - одного из наиболее широко используемых в органическом синтезе веществ:


В ряде случаев используют конденсацию разных эфиров (перекрестная конденсация); в этих случаях необходимо, чтобы один из эфиров (карбонильная компонента) не содержал а-метиленовой группы и при этом его карбонильная группа имела повышенную активность (чтобы подавить самоконденса- цию метиленовой компоненты). Таким эфиром, в частности, является диэти- ловый эфир щавелевой кислоты (диэтилоксалат) (623), один из типичных партнеров в реакциях перекрестной конденсации:

Важным частным случаем сложноэфирной конденсации является внутримолекулярная конденсация сложных эфиров дикарбоновых кислот; при этом замыкается карбоциклическая структура; образуется 2-алкоксикарбонильное производное циклического кетона:


Этот вариант часто называют конденсацией Дикмана наиболее успешно она протекает при образовании 5- и 6- членных циклов (п=3, 4). Конденсация Дикмана - один из классических методов карбоциклизации.

Для проведения сложноэфирной конденсации необходимо использовать сильное основание , ибо только с его помощью можно генерировать карбанион из a-положения сложного эфира (a-положение сложных эфиров имеет меньшую СН-кислотность, чем а-положение карбонильных соединений, т.к. группа COOR является менее электроноакцепторной, чем карбонильная группа альдегидов и кетонов). Наиболее часто в качестве основания используют алкоголят того спирта, который образует исходный сложный эфир [если использовать алкоголят другого спирта, реакция будет осложняться переэтерификацией (см. выше)]. Иногда используют амиды металлов, а в отдельных случаях такое супероснование, как фениллитий. Механизм сложноэфирной конденсации вполне аналогичен рассмотренному ранее механизму конденсации сложных эфиров с кетонами:


Здесь сочетаются механизм, аналогичный альдольной конденсации (образование карбаниона и его атака на карбонильную группу), и механизм типа В ас -2 (внутримолекулярное вытеснение алкоксид-аниона).

II. Реакции расщепления связи О-алкил.

В реакциях, описанных в предыдущем разделе, расщепляется связь О-ацил. В то же время ряд реакций, приводящих к аналогичным результатам, протекает с расщеплением связи О-алкил. Это - реакции нуклеофильного замещения при алкильном атоме углерода, где нуклеофуг вытесняется в виде карбоновой кислоты или карбоксилат-аниона.

Характерным примером таких реакций является кислотный гидролиз сложных эфиров третичных, бензиловых и аллиловых спиртов:

Ключевой стадией реакции является диссоциация протонированного эфира (624), содержащего «хорошую» уходящую группу; диссоциация облегчается устойчивостью третичных, аллильных и бензильных катионов (625). Это - типичная S N 1 - реакция, обозначаемая здесь как A al 1; она обратна этерификации по механизму A al 1 (стр. 111).

Своеобразным вариантом расщепления связи О-алкил является превращение фенолфталеина (620) в щелочной среде:


Под действием щелочи вначале образуется фенолят-дианион (626); далее происходит внутримолекулярная 8^-реакция с вытеснением карбоксилатаниона и с образованием соединения (627), содержащего хиноидную структуру и поэтому интенсивно окрашенного. При подкислении лактонный цикл замыкается, и регенерируется бесцветное соединение (620). И прямая и обратная реакции очень быстро протекают при комнатной температуре, что и позволяет использовать фенолфталеин в качестве кислотно-основного индикатора.

III. Восстановление сложных эфиров.

Наиболее распространенные реакции этой группы - восстановление сложных эфиров до первичных спиртов и альдегидов, а также их восстановительное сочетание, называемое ацилоиновой конденсацией.