Методы исследования лекарственных веществ. Методы исследования лекарственных веществ Химические методы анализа лекарственных форм

Муниципальное бюджетное образовательное учреждение

«Школа №129»

Автозаводского района г. Нижнего Новгорода

Научное общество учащихся

Анализ лекарственных препаратов.

Выполнила: Тяпкина Виктория

ученица 10 А класса

Научные руководители:

Новик И.Р. доцент кафедры химии и химического образования НГПУ им. К. Минина; к.п.н.;

Сидорова А.В . учитель химии

МБОУ «Школа № 129».

Нижний Новгород

2016 г.

Содержание

Введение……………………………………………………………………….3

Глава 1.Сведения о лекарственных веществах

    1. История применения лекарственных веществ………………………….5

      Классификация лекарственных препаратов…………………………….8

      Состав и физические свойства лекарственных веществ……………….11

      Физиологические и фармакологические свойства лекарственных веществ…………………………………………………………………….16

      Выводы к 1 главе………………………………………………………….19

Глава 2. Исследования качества лекарственных препаратов

2.1. Качество лекарственных препаратов……………………………………21

2.2. Анализ лекарственных препаратов……………………………………...25

Заключение…………………………………………………………………….31

Библиографический список…………………………………………………..32

Введение

«Лекарство твое в тебе самом, но ты этого не чувствуешь, а болезнь твоя из-за тебя же самого, но ты этого не видишь. Думаешь, что ты – это маленькое тело, а ведь в тебе таится (свернут) огромный мир»

Али ибн Абу Талиб

Лекарственное вещество - индивидуальное химическое соединение или биологическое вещество, обладающее лечебными или профилактическими свойствами.

Человечество использует лекарства еще с древних времен. Так в Китае за 3000 лет до н.э. в качестве лекарств использовали вещества растительного, животного происхождения, минералы. В Индии написана медицинская книга «Аюверда»(6-5 век до н. э),в которой даются сведения о лекарственных растениях. Древнегреческий врач Гиппократ (460-377 гг. до н.э.) в своей медицинской практике использовал свыше 230 лекарственных растений.

В эпоху Средневековья многие лекарственные средства были открыты и внедрены в медицинскую практику благодаря алхимии. В 19 веке вследствие общего прогресса естественных наук арсенал лекарственных веществ существенно расширился. Появились лекарственные вещества, полученные путем химического синтеза (хлороформ, фенол, салициловая кислота, ацетилсалициловая кислота и др.).

В 19 веке начинает развиваться химико-фармацевтическая промышленность, обеспечивающая массовый выпуск лекарственных средств. Лекарственные средства - это вещества или смеси веществ, применяемые для профилактики, диагностики, лечения заболеваний, а также для регуляции других состояний. Современные лекарственные средства разрабатываются в фармацевтических лабораториях на основе растительного, минерального и животного сырья, а также продуктов химического синтеза. Лекарственные средства проходят лабораторные клинические испытания и только после этого применяются в медицинской практике.

В настоящее время создается огромное количество лекарственных веществ, но также много и подделки. По данным Всемирной организации здравоохранения (ВОЗ), наибольший процент подделок приходится на антибиотики - 42%. В нашей стране, по информации Минздрава, фальсифицированные антибиотики составляют сегодня 47 % от общего числа препаратов – подделок, гормональные средства-1%,противогрибковые средства, анальгетики и препараты, влияющие на функцию желудочно -кишечного тракта -7%.

Тема качества лекарственных препаратов всегда будет актуальна, так как от потребления этих веществ зависит наше здоровье, потому для дальнейших исследований мы взяли именно эти вещества.

Цель исследования: познакомиться со свойствами лекарственных препаратов и установить их качество с помощью химического анализа.

Объект исследования: препарат анальгина, аспирина (ацетилсалициловой кислоты), парацетамола.

Предмет исследования: качественный состав препаратов.

Задачи:

    Изучить литературу (научную и медицинскую) с целью установления состава изучаемых лекарственных веществ, их классификации, химических, физических и фармацевтических свойств.

    Подобрать методику, подходящую для установления качества выбранных лекарственных препаратов в аналитической лаборатории.

    Провести исследование качества лекарственных препаратов по выбранной методике качественного анализа.

    Проанализировать результаты, обработать их и оформить работу.

Гипотеза: проведя анализ качества лекарственных препаратов по выбранным методикам можно определить качество подлинности препаратов и сделать необходимые выводы.

Глава 1. Сведения о лекарственных веществах

    1. История применения лекарственных веществ

Учение о лекарствах является одной из самых древних медицинских дисциплин. По-видимому, лекарственная терапия в самой примитивной форме существовала уже в первобытном человеческом обществе. Употребляя в пищу те или иные растения, наблюдая за животными, поедающими растения, человек постепенно знакомился со свойствами растений, в том числе и с их лечебным действием. О том, что первые лекарства были в основном растительного происхождения, мы можем судить по наиболее древним из дошедших до нас образцов письменности. В одном из египетских папирусов (XVII век до н. э.) описывается ряд растительных лекарственных средств; некоторые из них применяются и в настоящее время (например, масло касторовое и др.).

Известно, что в Древней Греции Гиппократ (III век до н. э.) использовал для лечения заболеваний различные лекарственные растения. При этом он рекомендовал пользоваться целыми, необработанными растениями, считая, что только в этом случае они сохраняют свою целебную силу.Позднее медики пришли к выводу, что в лекарственных растениях содержатся действующие начала, которые можно отделить от ненужных, балластных веществ. Во II веке н. э. Римский врач Клавдий Гален широко применял различные извлечения (вытяжки) из лекарственных растений. Для извлечения действующих начал из растений он использовал вина, уксусы. Спиртовые вытяжки из лекарственных растений применяют и в настоящее время. Это настойки и экстракты. В память о Галене настойки и экстракты относят к так называемым галеновым препаратам.

Большое количество лекарственных средств растительного происхождения упоминается в сочинениях крупнейшего таджикского медика эпохи Средневековья Абу Али Ибн-Сины (Авиценны), жившего в XI веке. Некоторые из этих средств используются и в настоящее время: камфора, препараты белены, ревеня, александрийского листа, спорыньи и др. Кроме лекарств растительного происхождения, медики применяли некоторые неорганические лекарственные вещества. Впервые вещества неорганической природы стал широко использовать в медицинской практике Парацельс (XV- XVI век). Он родился и получил образование в Швейцарии, был профессором в Базеле, а затем переселился в Зальцбург. Парацельс ввел в медицину многие лекарственные средства неорганического происхождения: соединения железа, ртути, свинца, меди, мышьяка, серы, сурьмы. Препараты указанных элементов назначали больным в больших дозах, и часто одновременно с лечебным эффектом они проявляли токсическое действие: вызывали рвоту, понос, слюнотечение и т. д. Это, однако, вполне соответствовало представлениям того времени о лекарственной терапии. Следует отметить, что в медицине долго удерживалось представление о болезни как о чем-то вошедшем в организм больного извне. Для «изгнания» болезни назначали вещества, вызывающие рвоту, понос, слюнотечение, обильное потоотделение, применяли массивные кровопускания. Одним из первых медиков, отказавшихся от лечения массивными дозами лекарств, был Ганеман (1755-1843). Он родился и получил медицинское образование в Германии а затем работал врачом в Вене. Ганеман обратил внимание на то, что больные, получавшие лекарства в больших дозах выздоравливают реже, чем больные, которые такого лечения не получали, поэтому он предложил резко уменьшить дозировку лекарств. Не имея для этого никаких фактических данных, Ганеман утверждал, что терапевтическое действие лекарств увеличивается с уменьшением дозы. Следуя этому принципу, он назначал больным лекарственные средства в очень малых дозах. Как показывает экспериментальная проверка, в этих случаях вещества не оказывают никакого фармакологического действия. Согласно другому принципу, провозглашенному Ганеманом и также совершенно необоснованному, всякое лекарственное вещество вызывает «лекарственную болезнь». Если «лекарственная болезнь» сходна с «натуральной болезнью», она вытесняет последнюю. Учение Ганемана получило название «гомеопатия» (homoios - одинаковый; pathos - страдание, т. е. лечение подобного подобным), а последователи Ганемана стали называться гомеопатами. За прошедший со времени Ганемана период гомеопатия мало изменилась. Принципы гомеопатического лечения не обоснованы экспериментально. Проверки гомеопатического метода лечения в клинике, проводимые при участии гомеопатов, не показали его существенного терапевтического эффекта.

Возникновение научной фармакологии относится к XIX веку, когда из растений впервые были выделены отдельные действующие начала в чистом виде, получены первые синтетические соединения и когда благодаря развитию экспериментальных методов стало возможным экспериментальное изучение фармакологических свойств лекарственных веществ. В 1806 г. из опия был выделен морфин. В 1818 г. выделен стрихнин, в 1820 г. - кофеин, в 1832 г. - атропин, в последующие годы - папаверин, пилокарпин, кокаин и др. Всего к концу XIX века было выделено около 30 подобных веществ (алкалоидов растений). Выделение чистых действующих начал растений в изолированном виде позволило точно определить их свойства. Этому способствовало появление экспериментальных методов исследования.

Первые фармакологические эксперименты были проведены физиологами. В 1819 г. известный французский физиолог Ф. Мажанди впервые исследовал на лягушке действие стрихнина. В 1856 г. другой французский физиолог Клод Бернар провел на лягушке анализ действия кураре. Почти одновременно и независимо от Клода Бернара аналогичные эксперименты были проведены в Петербурге известным русским судебным медиком и фармакологом Е. В. Пеликаном.

1.2. Классификация лечебных препаратов

Бурное развитие фармацевтической промышленности привело к созданию огромного числа лекарственных средств (в настоящее время сотни тысяч). Даже в специальной литературе появляются такие выражения, как "лавина" лекарственных препаратов или "лекарственные джунгли". Естественно, сложившаяся ситуация весьма затрудняет изучение лекарственных средств и их рациональное применение. Возникает острая необходимость в разработке классификации лекарственных средств, которая помогла бы врачам ориентироваться в массе препаратов и выбирать оптимальное для больного средство.

Лекарственный препарат - фармакологическое средство, разрешенное уполномоченным на то органом соответствующей страны в установленном порядке для применения с целью лечения, предупреждения или диагностики заболевания у человека или животного.

Лекарственные средства можно классифицировать по следующим принципам:

терапевтическое применение (противоопухолевые, антиангинальные, противомикробные средства);

фармакологические средства (вазодилаторы, антикоагументы, диуретики);

химические соединения (алкалоиды, стероиды, гликоиды, бензодиазенины).

Классификация лекарственных средств:

I . Средства, действующие на ЦНС (центральную нервную систему).

1 . Средства для наркоза;

2. Снотворные средства;

3. Психотропные препараты;

4. Противосудорожные (противоэпилептические средства);

5. Средства для лечения паркинсонизма;

6. Анальгезирующие средства и нестероидные противовоспалительные препараты;

7. Рвотные и противорвотные препараты.

II. Лекарственные средства, действующие на периферическую НС (нервную систему).

1. Средства, действующие на периферические холинергические процессы;

2. Средства, действующие на периферические адренергические процессы;

3. Дофалин и дофаминерические препараты;

4. Гистамин и антигистаминные препараты;

5. Серотинин, серотониноподобные и антисеротониновые препараты.

III . Средства, действующие преимущественно в области чувствительных нервных окончаний.

1. Местноанестезирующие препараты;

2. Обвалакивающие и адсорбирующие средства;

3. Вяжущие средства;

4. Средства, действие которых связано преимущественно с раздражением нервных окончаний слизистых оболочек и кожи;

5. Отхаркивающие средства;

6. Слабительные средства.

IV . Средства, действующие на ССС (сердечно-сосудистую систему).

1. Сердечные гликозиды;

2. Антиаритмические препараты;

3. Сосудорасширяющие и спазмолитические средства;

4. Антиангинальные препараты;

5. Препараты, улучшающие мозговое кровообращение;

6. Антигипертензивные средства;

7. Спазмолитические средства разных групп;

8. Вещества, влияющие на ангиотензиновую систему.

V. Средства, усиливающие выделительную функцию почек.

1. Диуретические средства;

2. Средства, способствующие выведения мочевой кислоты и удалению мочевых конкрементов.

VI. Желчегонные средства.

VII. Средства, влияющие на мускулатуру матки (маточные средства).

1. Средства, стимулирующие мускулатуру матки;

2. Средства, расслабляющие мускулатуру матки (токолитики).

VIII. Средства, влияющие на процессы обмена веществ.

1. Гормоны, их аналоги и антигормональные препараты;

2. Витамины и их аналоги;

3. Ферментны препараты и вещества с антиферментной активностью;

4. Средства, влияющие на свертывание крови;

5. Препараты гипохолестеринемического и гиполипопротеинемического действия;

6. Аминокислоты;

7. Плазмозамещающие растворы и средства для парентерального питания;

8. Препараты, применяемые для коррекции кислотно-щелочного и ионного равновесия в организме;

9. Разные препараты, стимулирующие метаболические процессы.

IX. Лекарственные препараты, модулирующие процессы иммунитете ("иммуномодуляторы").

1. Препараты, стимулирующие иммунологические процессы;

2. Иммунодепрессивные препараты (иммуносупресоры).

X. Препараты различных фармакологических групп.

1. Анорексигенные вещества (вещества, угнетающие аппетит);

2. Специфические антидоты, комплексоны;

3. Препараты для профилактики и лечения синдрома лучевой болезни;

4. Фотосенсибилизирующие препараты;

5. Специальные средства для лечения алкоголизма.

1. Химотерапевтические средства;

2. Антисептические средства.

XII. Препараты, применяемые для лечения злокачественных новоообразований.

1. Химотерапевтические средства.

2. Ферментные препараты, применяемые для лечения онкологических заболеваний;

3. Гормональные препараты и ингибиторы образования гормонов, применяемые преимущественно для лечения опухолей.

    1. Состав и физические свойства лекарственных веществ

В работе мы решили исследовать свойства лекарственных веществ, входящих в состав наиболее часто применяемых лекарственных препаратов и являющихся обязательными любой домашней аптечки.

Анальгин

В переводе, слово "анальгин" означает отсутствие боли. Трудно найти человека, который не принимал анальгин. Анальгин - главный препарат в группе ненаркотических анальгетиков - препаратов, способных уменьшать боль без влияния на психику. Уменьшение боли - не единственный фармакологический эффект анальгина. Способность уменьшать выраженность воспалительных процессов и способность снижать повышенную температуру тела - не менее ценны (жаропонижающий и противовоспалительный эффект). Тем не менее, анальгин редко используют с противовоспалительной целью, для этого есть куда более эффективные средства. А вот при лихорадке и боли он в самый раз.

Метамизол (анальгин) в течение многих десятилетий был в нашей стране препаратом скорой помощи, а не средством для лечения хронических заболеваний. Таким он и должен оставаться.

Анальгин синтезирован в 1920 г. в поисках легко растворимой формы амидопирина. Это третье основное направление в разработке болеутоляющих средств. Анальгин, как утверждает статистика, один из самых любимых препаратов, а главное - всем доступен. Хотя на самом деле ему совсем немного лет - всего около 80. Анальгин специалисты разработали специально, чтобы бороться с сильной болью. И действительно, немало людей он избавил от мучений. Применялся он в качестве доступного обезболивающего средства, поскольку широкого ассортимента средств против боли в то время не было. Конечно, использовались наркотические анальгетики, но медицина того времени уже располагала достаточными данными о , и эта группа средств применялась только в соответствующих случаях. Препарат Анальгин имеет большую популярность в медицинской практике. Уже одно название говорит о том, Анальгин от чего помогает и в каких случаях применяется. Ведь в переводе оно означает "отсутствие боли". Анальгин относится к группе безнаркотических анальгетиков, - т.е. препаратов, способных уменьшать боль без влияния на психику.

В клиническую практику анальгин (метамизол натрия) был впервые внедрен в Германии в 1922 году. Анальгин стал незаменимым для госпиталей Германии во время Второй Мировой войны. В течение многих лет он оставался очень популярным лекарственным средством, но эта популярность имела и обратную сторону: широкое и практически бесконтрольное его применение как безрецептурного препарата привело в 70-х гг. прошлого века к смертельным исходам от агранулоцитоза (иммунное заболевание крови) и шока. Это привело к тому, что анальгин был запрещен в ряде стран, в то время как в других он оставался доступным как безрецептурное средство. Риск серьезных побочных эффектов при использовании комбинированных препаратов, содержащих метамизол, выше, чем при приеме "чистого" анальгина. Поэтому в большинстве стран подобные средства были изъяты из обращения.

Торговое наименование: а нальгин.
Международное наименование: Метамизол натрий (Metamizole sodium).
Групповая принадлежность: Анальгетическое ненаркотическое средство.
Лекарственная форма: капсулы, раствор для внутривенного и внутримышечного введения, суппозитории ректальные [для детей], таблетки, таблетки [для детей].

Химический состав и физико-химические свойства анальгина

Анальгин. Analginum.

Метамизол натрий.Metamizolum natricum

Химическое название: 1-фенил–2,3-диметил-4–метил-аминопиразолон-5-N-метан - сульфат натрия

Брутто-формула: C 13 H 18 N 3 NaO 5 S

Рис.1

Внешний вид: бесцветные игольчатые кристаллы горьковатого вкуса без запаха.

Парацетамол

В 1877 году Хармон Норзроп Морз синтезировал парацетамол в Университете Джонса Хопкинса в реакции восстановления р-нитрофенола оловом в ледяной уксусной кислоте, но только в 1887 году клинический фармаколог Джозеф фон Меринг испытал парацетамол на пациентах. В 1893 году фон Меринг опубликовал статью, где сообщалось о результатах клинического применения парацетамола и фенацетина, другого производного анилина. Фон Меринг утверждал, что, в отличие от фенацетина, парацетамол обладает некоторой способностью вызывать метгемоглобинемию. Парацетамол затем был быстро отвергнут в пользу фенацетина. Продажи фенацетина начала Bayer как лидирующая в то время фармацевтическая компания. Внедрённый в медицину Генрихом Дрезером в 1899 году, фенацетин был популярен на протяжении многих десятилетий, особенно в широко рекламируемой безрецептурной «микстуре от головной боли», обычно содержащей фенацетин, аминопириновое производное аспирина, кофеин, а иногда и барбитураты.

Торговое название: Парацетамол

Международное название: парацетамол

Групповая принадлежность: анальгезирующее ненаркотическое средство.

Лекарственная форма: таблетки

Химический состав и физико-химические свойства парацетамола

Парацетамол. Paracetamolum.

Брутто - формула: C 8 H 9 NO 2 ,

Химическое название: N-(4-Гидроксифенил) ацетамид.

Внешний вид: белый или белый с кремовым или Рис.2 розовым оттенком кристаллический порошок. Легко оенш679к969 растворим в спирте, нерастворим в воде.

Аспирин (ацетисалициловая кислота)

Аспирин впервые был синтезирован в 1869 году. Это один из самых известных и широко использующихся препаратов. Оказалось, что история аспирина является типичной для многих других лекарств. Ещё в 400 году до нашей эры греческий врач Гиппократ рекомендовал пациентам для избавления от боли жевать ивовую кору. Он, конечно, не мог знать о химическом составе обезболивающих компонентов, однако это были производные ацетилсалициловой кислоты (химики выяснили это лишь двумя тысячелетиями позже). В 1890 г. Ф.Хоффман, работавший в немецкой фирме «Байер», разработал метод синтеза ацетилсалициловой кислоты – основы аспирина. На рынок аспирин был выпущен в 1899 году, а с 1915 года стал продаваться без рецептов. Механизм обезболивающего действия был открыт лишь в 1970 –ых годах. Последние годы аспирин стал средством для профилактики сердечнососудистых заболеваний.

Торговое название : Аспирин.

Международное название : ацетилсалициловая кислота.

Групповая принадлежность : нестероидный противовоспалительный препарат .

Лекарственная форма: таблетки.

Химический состав и физико-химические свойства аспирина

Ацетилсалициловая кислота. Acidum acetylsalicylicum

Брутто – формула: С 9 Н 8 О 4

Химическое название: 2-ацетокси-бензойная кислота.

Внешний вид : ч истое вещество представляет Рис.3 собой белый кристаллический порошок, почти не обладающий словарь запахом, кислый на вкус.

Дибазол

Дибазол создавался в Советском Союзе еще в середине прошлого века. Впервые данное вещество было отмечено в 1946 г. как наиболее активная в физиологическом плане соль Бензимидазола. В ходе проводившихся опытов на лабораторных животных была замечена способность нового вещества улучшать передачу нервных импульсов в спинном мозге. Эта способность подтвердилась в ходе клинических испытаний, и препарат в начале 50-х г. был внедрен в клиническую практику для лечения заболеваний спинного мозга, в частности – полиомиелита. Сейчас используется как средство для укрепления иммунитета, улучшения метаболизма и повышения выносливости.

Торговое название: Дибазол.

Международное название :Дибазол. 2-ое:Бензилбензимидазола гидрохлорид.

Групповая принадлежность : препарат группы периферических вазодилататоров.

Лекарственная форма : раствор для внутривенного и внутримышечного введения, суппозитории ректальные [для детей], таблетки.

Химический состав и физико-химические свойства: Дибазол

Хорошо растворяется в воде, но плохо растворяется в спирте.

Брутто-формула : C 14 H 12 N 2 .

Химическое название : 2-(Фенилметил)-1H-бензимидазол.

Внешний вид : производное Бензимидазола,

Рис.4 представляет собой белый, бело- желтый или

светло-серый кристаллический порошок.

    1. Физиологическое и фармакологическое действие лекарственных препаратов

Анальгин.

Фармакологические свойства:

Анальгин относится к группе нестероидных противовоспалительных препаратов, эффективность которого обусловлена активностью метамизола натрия, который:

    Блокирует прохождение болевых импульсов по пучкам Голля и Бурдаха;

    Значительно повышает теплоотдачу, что обусловливает целесообразность использования при высокой температуре Анальгина;

    Способствует увеличению порога возбудимости таламических центров болевой чувствительности;

    Оказывает слабовыраженное противовоспалительное действие;

    Способствует некоторому спазмолитическому эффекту.

Активность Анальгина развивается примерно через 20 минут после приема, достигая максимума через 2 часа.

Показания к применению

Согласно инструкции, Анальгин применяется для устранения болевого синдрома, провоцируемого такими заболеваниями, как :

    Артралгия;

    Кишечная, желчная и почечная колика;

    Ожоги и травмы;

    Опоясывающий лишай;

    Невралгия;

    Декомпрессионная болезнь;

    Миалгия;

    Альгодисменорея и др.

Эффективным является использование Анальгина для устранения зубной и головной боли, а также послеоперационного болевого синдрома. Кроме того, препарат применяется при лихорадочном синдроме, вызванном укусами насекомых, инфекционно-воспалительными заболеваниями или посттрансфузионными осложнениями.

Для устранения воспалительного процесса и снижения температуры Анальгин применяется редко, так как для этого существуют более эффективные средства.

Парацетамол

Фармакологические свойства:

парацетамол быстро и почти полностью абсорбируется из желудочно-кишечного тракта. Связывается с белками плазмы на 15 %. Парацетамол проникает через гематоэнцефалический барьер. Менее 1 % от принятой кормящей матерью дозы парацетамола проникает в грудное молоко. Парацетамол подвергается метаболизму в печени и выделяется с мочой, главным образом, в виде глюкуронидов и сульфированных конъюгатов, менее 5 % выделяется в неизменном виде с мочой.

Показания к применению

    для быстрого облегчения головной боли, включая мигренозную боль;

    зубной боли;

    невралгии;

    мышечной и ревматической боли;

    а также при альгодисменореях, боли при травмах, ожогах;

    для снижения повышенной температуры при простудных заболеваниях и гриппе.

Аспирин

Фармакологические свойства:

Ацетилсалициловая кислота (АСК) обладает обезболивающим, жаропонижающим и противовоспалительным действием, что обусловлено ингибированием энзимов циклоксигеназ, участвующих в синтезе простагландинов.

АСК в диапазоне доз от 0,3 до 1,0 г применяется для снижения температуры при таких заболеваниях, как простуда и , и для облегчения суставных и мышечных болей.
АСК ингибирует агрегацию тромбоцитов, блокируя синтез тромбоксана А
2 в тромбоцитах.

Показания к применению

    для симптоматического облегчения головной боли;

    зубной боли;

    боли в горле;

    боли в мышцах и суставах;

    боли в спине;

    повышенная температура тела при простудных и других инфекционно-воспалительных заболеваниях (у взрослых и детей старше 15 лет)

Дибазол

Фармакологические свойства

Вазодилатирующее средство; обладает гипотензивным, сосудорасширяющим действием, стимулирует функцию спинного мозга, обладает умеренной иммуностимулирующей активностью. Оказывает непосредственное спазмолитическое действие на гладкие мышцы кровеносных сосудов и внутренних органов. Облегчает синаптическую передачу в спинном мозге. Вызывает расширение (непродолжительное) мозговых сосудов и поэтому особенно показан при формах артериальной гипертензии, обусловленных хронической гипоксией мозга из-за местных нарушений кровообращения (склероз церебральных артерий). В печени дибазол подвергается метаболическим превращениям путем метилирования и карбоксиэтилирования с образованием двух метаболитов. Преимущественно выводится почками, и в меньшей степени – через кишечник.

Показания к применению

    Различные состояния, сопровождающиеся артериальной гипертензией, в т.ч. и гипертоническая болезнь, гипертонические кризы;

    Спазм гладкой мускулатуры внутренних органов (кишечная, печеночная, почечная колика);

    Остаточные явления полиомиелита, паралич лицевого нерва, полиневриты;

    Профилактика вирусных инфекционных заболеваний;

    Повышение устойчивости организма к внешним неблагоприятным воздействиям.

    1. Выводы к главе 1

1) Выявлено, что учение о лекарствах является одной из самых древних медицинских дисциплин. Лекарственная терапия в самой примитивной форме существовала уже в первобытном человеческом обществе. Первые лекарства были в основном растительного происхождения. Возникновение научной фармакологии относится к XIX веку, когда из растений впервые были выделены отдельные действующие начала в чистом виде, получены первые синтетические соединения и когда благодаря развитию экспериментальных методов стало возможным экспериментальное изучение фармакологических свойств лекарственных веществ.

2) Установлено, что лекарственные средства можно классифицировать по следующим принципам:

терапевтическое применение;

фармакологические средства;

химические соединения.

3) Рассмотрен химический состав и физические свойства препаратов анальгина, парацетамола и аспирина, являющихся незаменимыми в домашней аптечке. Установлено что лекарственные вещества данных препаратов представляют собой сложные производные ароматических углеводородов и аминов.

4) Показаны фармакологические свойства исследуемых препаратов, а также показания к их применению и физиологическое действие на организм. Чаще всего данные лекарственные вещества используются как жаропонижающие и болеутоляющие.

Глава 2. Практическая часть. Исследование качества лекарственных препаратов

2.1. Качество лекарственных препаратов

В определении Всемирной организации здравоохранения под фальсифицированным (контрафактным) лекарственным средством (ФЛС) подразумевается продукт, преднамеренно и противоправно снабженный этикеткой, неверно указывающей подлинность препарата и (или) изготовителя.

Понятия «фальсификат», «контрафакт» и «подделка» юридически имеют определенные различия, но для обычного гражданина они идентичны.. Под поддельным понимается лекарственное средство, произведенное с изменением его состава, при сохранении внешнего вида, и часто сопровождаемое ложной информацией о его составе. Контрафактным считается лекарственное средство, производство и дальнейшая продажа которого осуществляется под чужими индивидуальными признаками (товарным знаком, наименованием или местом происхождения) без разрешения патентодержателя, что является нарушением прав интеллектуальной собственности.

Фальсифицированное лекарственное средство часто расценивается как поддельное и контрафактное. В Российской Федерации фальсифицированным считается лекарственное средство, которое признается таковым Росздравнадзором после тщательной проверки с опубликованием соответствующей информации на сайте Росздравнадзора. Со дня публикации обращение ФЛС должно быть прекращено с изъятием из торговой сети и помещением вкарантинную зону отдельно от других лекарств. Перемещение данного ФЛС является нарушением.

Фальсификация лекарств считается четвертым злом здравоохранения после малярии, СПИДа и курения. В своем большинстве фальсификаты не соответствуют по качеству, эффективности или побочным действиям оригинальным препаратам, нанося непоправимый вред здоровью больного человека; производятся и распространяются без контроля соответствующих органов, причиняя огромный финансовый вред законным производителям лекарств и государству. Смерть от ФЛС входит в первую десятку причин гибели людей.

Специалисты выделяют четыре основных типа поддельных лекарств.

1-й тип - «лекарства-пустышки». В этих «лекарствах», как правило, отсутствуют основные лечебные компоненты. Принимающие их не ощущают разницы и даже на ряд пациентов прием «пустышек» может за счет плацебо- эффекта оказывать позитивное воздействие.

2-й тип - «лекарства-имитаторы». В таких «лекарствах» используются более дешевые и менее эффективные, чем в подлинном лекарственном средстве активные компоненты. Опасность заключается в недостаточной концентрации активных веществ, в которых нуждаются пациенты.

3-й тип - «измененные лекарства». В этих «лекарствах» содержится такое же активное вещество, как и в оригинальном средстве, но в больших или меньших количествах. Естественно, что применение подобных средств небезопасно, потому что может привести к усилению побочных эффектов (особенно при передозировке).

4-й тип - «лекарства-копии». Они относятся к наиболее распространенным в России типам фальсифицированных средств (до 90 % от общего числа подделок), выпускаемым обычно подпольными производствами и по тем или иным каналам попадающим в партии легальных средств. Эти препараты содержат такие же активные компоненты, как легальные средства, но при этом отсутствуют гарантии качества лежащих в их основе субстанций, соблюдения норм технологических процессов производства и пр. Следовательно, повышен риск последствий приема подобных препаратов

Правонарушители привлекаются к административной ответственности, предусмотренной ст. 14.1 КоАП РФ, либо к уголовной, ответственность за которое, в связи с отсутствием в уголовном кодексе ответственности за фальсификацию, наступает по нескольким составам преступлений и в основном квалифицируется как мошенничество (ст. 159 УК РФ) и незаконное использование товарного знака (ст. 180 УК РФ).

Федеральный закон «О лекарственных средствах» дает правовое основание для изъятия и уничтожения ФЛС как производимых в России и 15ввозимых из-за рубежа, так и находящихся в обращении на отечественном фармрынке.

Часть 9 статьи 20, устанавливает запрет на ввоз на территорию России лекарственных средств, являющихся подделками, незаконными копиями или фальсифицированными лекарственными средствами. Таможенные органы обязаны конфисковать и уничтожить их в случае обнаружения.

Ст. 31, устанавливает запрет на продажу лекарственных, пришедших в негодность, имеющих истекший срок годности или признанных фальсифицированными. Они также подлежат уничтожению. Минздрав России своим приказом от 15.12.2002 г. № 382 утвердил Инструкцию о порядке уничтожения лекарственных средств, пришедших в негодность, лекарственных средств с истекшим сроком годности и лекарственных средств, являющихся подделками или незаконными копиями. Но в инструкцию до сих пор не внесли изменения в соответствии с дополнениями в ФЗ «О лекарственных средствах» от 2004 г. о фальсифицированных и недоброкачественных лекарственных средств, где теперь дано определение и указано на запрет их обращения и изъятие из оборота, а также предложено государственным органам привести нормативные правовые акты в соответствие с данным законом.

Росздравнадзор издал письмо № 01И-92/06 от 08.02.2006 «Об организации работы территориальных Управлений Росздравнадзора с информацией о недоброкачественных и фальсифицированных лекарственных средствах», которое противоречит правовым нормам Закона о лекарственных средствах и сводит на нет борьбу с фальсификатом. Закон предписывает изымать из обращения и уничтожать фальсифицированные лекарственные средства, а Росздравнадзор (абзац 4 п. 10) предлагает территориальным Управлениям контролировать изъятие из обращения и уничтожение фальсифицированных лекарственных средств. Предлагая 16 осуществлять контроль только за возвратом собственнику или владельцу для дальнейшего уничтожения, Росздравнадзор разрешает продолжить обращение фальсифицированных лекарственных средств и вернуть их собственнику, то есть самому преступнику-фальсификатору, что грубо нарушает Закон и Инструкцию по уничтожению. При этом часто идут ссылки на Федеральный закон от 27.12.2002 г. № 184-ФЗ «О техническом регулировании», в ст. 36-38 которого установлен порядок возврата изготовителю либо продавцу продукции, не соответствующей требованиям технического регламента. Однако необходимо иметь в виду, что этот порядок не распространяется на фальсифицированные лекарственные средства, которые производятся без соблюдения технического регламента, неизвестно кем и где.

С 1 января 2008 г. в соответствии со ст. 2 Федерального закона от 18.12.2006 г. № 231-ФЗ «О введении в действие части четвертой Гражданского кодекса Российской Федерации» вступило в силу новое законодательство о защите интеллектуальной собственности, к объектам которой относятся средства индивидуализации, в том числе и товарные знаки, с помощью которых производители лекарственных средств, защищают права на свою продукцию. В Четвертой части Гражданского Кодекса РФ (ч. 4 ст. 1252) дано определение контрафактным материальным носителям результатов интеллектуальной деятельности и средств индивидуализации

Фармацевтическая отрасль России сегодня нуждается в тотальном научно-техническом перевооружении, так как ее основные фонды изношены. Необходимо внедрение новых стандартов, в том числе и ГОСТ Р 52249- 2004, без которых производство высококачественных лекарственных средств не возможно.

2.2. Качество лекарственных препаратов.

Для анализа лекарственных препаратов нами были использованы методики определения наличия в них аминогрупп (лигниновая проба) фенольный гидроксил, гетероциклов, карбоксильную группу и другие. (Методики мы взяли из методических разработок для учащихся в медицинских колледжах и в Интернете).

Реакции с препаратом анальгин.

Определение растворимости анальгина.

1 .Растворили 0,5 таблетки анальгина (0,25 г) в 5 мл воды, а вторую половину таблетки в 5 мл этилового спирта.


Рис.5 Взвешивание препарата Рис.6 Измельчение препарата

Вывод: анальгин хорошо растворился в воде, однако практически не растворился в спирте.

Определение наличия группы СН 2 SO 3 Na .

    Нагрели 0,25 г препарата (полтаблетки) в 8 мл разбавленной соляной кислоты.

Рис.7 Нагревание препарата

Обнаружили: сначала запах сернистого ангидрида, затем формальдегида.

Вывод: данная реакция позволяет доказать, что в состав анальгина входит группа формальдегидсульфоната.

    Определение свойств хамелеона

1 мл полученного раствора анальгина добавляли 3-4 капли 10 % раствора хлорида железа (III ). При взаимодействии анальгина с Fe 3+ образуются продукты окисления,

окрашенные в синий цвет, который потом переходит в темно-зеленый, а далее оранжевый, т.е. проявляет свойства хамелеона. Это означает, что препарат качественный.

Для сравнения мы взяли препараты с разными сроками годности и выявили, с помощью указанной выше методики качество препаратов.


Рис.8 Появление свойства хамелеона

Рис.9 Сравнение образцов препаратов

Вывод: реакция с препаратом более позднего срока производства протекает по принципу хамелеона, что свидетельствует о его качестве. А препарат более раннего производства не проявил это свойство, из этого следует, что данный препарат использовать по назначению нельзя.

4.Реакция анальгина с гидроперитом.(«Дымовая шашка»)

реакция идет сразу по двум местам: по сульфогруппе и метиламиниловой группировке. Соответственно, по сульфогруппе может образоываться сероводород, а также вода и кислород

-SO3 + 2H2O2 = H2S + H2O + 3O2.

Образующаяся вода приводит к частичному гидролизу по связи С - N и отщепляется метиламин, и тоже образуется вода и кислород:

-N(CH3) + H2O2 = H2NCH3 + H2O +1/2 O2

И наконец становится понятным, что за дым получается в этой реакции:

Сероводород взаимодействует с метиламином и получается гидросульфид метиламмония:

H2NCH3 + H2S = HS.

И взвесь его мелких кристалликов в воздухе и создает визуальное ощущение "дыма".

Рис. 10 Реакция анальгина с гидроперитом

Реакции с препаратом парацетамол.

Определение уксусной кислоты


Рис.11 Нагревание раствора парацетамола с соляной кислотой Рис.12 Охлаждение смеси

Вывод: появившийся запах уксусной кислоты означает, что данный препарат действительно является парацетамолом.

Определение фенолпроизводного парацетамола.

    К 1 мл раствора парацетамола добавили несколько капель 10 % -ного раствора хлорида железа (III ).

Рис.13 Появление синего окрашивания

Наблюдали: синее окрашивание, свидетельствует о наличии в составе вещества фенолпроизводного.

    0,05 г вещества вскипятили с 2 мл разбавленной соляной кислоты в течение 1 минуты и прибавили 1 каплю раствора дихромата калия.


Рис.14 Кипячение с соляной кислотой Рис.15 Окисление дихроматом калия

Наблюдали: появление сине-фиолетового окрашивания ,не переходящее в красное.

Вывод: в ходе проведенных реакций был доказан качественный состав препарата парацетамола, и установлено, что он является производным анилина.

Реакции с препаратом аспирин.

Для проведения опыта мы использовали таблетки аспирина изготовленные производственной фармацевтической фабрикой «Фармстандарт-Томскхимфарм». Годен до мая 2016 года.

Определение растворимости аспирина в этаноле.

Внесли в пробирки по 0,1 г лекарственных препаратов и добавили 10 мл этанола. При этом наблюдали частичную растворимость аспирина. Нагрели на спиртовке пробирки с веществами. Сравнили растворимость лекарственных препаратов в воде и этаноле.

Вывод: Результаты эксперимента показали, что аспирин лучше растворяется в этаноле, чем в воде, но выпадает в осадок в виде игольчатых кристаллов. Поэтому недопустимо применение аспирина совместно с этанолом. Следует сделать вывод о недопустимости применения алкогольсодержащих лекарств совместно с аспирином, а тем более с алкоголем.

Определение фенолпроизводного в аспирине.

В стакане смешали 0,5 г ацетилсалициловой кислоты, 5 мл раствора гидроксида натрия и прокипятили смесь в течение 3 минут. Реакционную смесь охладили и подкислили разбавленным раствором серной кислоты до выпадения белого кристаллического осадка. Отфильтровали осадок, часть его перенесли в пробирку, прилили к нему 1 мл дистиллированной воды и добавили 2-3 капли раствора хлорида железа.

Гидролиз сложноэфирной связи приводит к образованию фенолпроизводного, которое с хлоридом железа (3) дает фиолетовое окрашивание.


Рис.16 Кипячение смеси аспирина Рис.17 Окисление раствором Рис.18 Качественная реакция

с гидроксидом натрия серной кислоты на фенолпроизводное

Вывод: при гидролизе аспирина образуется фенолпроизводное, которое дает фиолетовое окрашивание.

Фенолпроизводное - это очень опасное для здоровья человека вещество, которое влияет на появление побочных эффектов на организм человека, при приеме ацетилсалициловой кислоты. Поэтому необходимо строго соблюдать инструкции по применению(данный факт упоминался еще в 19 веке).

2.3. Выводы к главе 2

1) Установлено, что в настоящее время создается огромное количество лекарственных веществ, но также много подделки. Тема качества лекарственных препаратов всегда будет актуальна, так как от потребления этих веществ зависит наше здоровье. Качество лекарственных препаратов определено ГОСТ Р 52249 – 09. В определении Всемирной организации здравоохранения под фальсифицированным (контрафактным) лекарственным средством (ФЛС) подразумевается продукт, преднамеренно и противоправно снабженный этикеткой, неверно указывающей подлинность препарата и (или) изготовителя.

2) Для анализа лекарственных препаратов нами были использованы методики определения наличия в них аминогрупп (лигниновая проба) фенольный гидроксил, гетероциклов, карбоксильную группу и другие. (Методики мы взяли из учебно-методического пособия для студентов химических и биологических специальностей).

3) В ходе проведенного эксперимента был доказан качественный состав препаратов анальгина, дибазола, парацетамола, аспирина и количественный состав анальгина. Результаты и более подробные выводы приведены в тексте работы в главе 2.

Заключение

Целью данного исследования было познакомиться со свойствами некоторых лекарственных веществ и установить их качество с помощью химического анализа.

Я провела анализ литературных источников с целью установления состава изучаемых лекарственных веществ, входящих в состав анальгина, парацетамола, аспирина, их классификации, химических, физических и фармацевтических свойств. Нами была подобрана методика, подходящая для установления качества выбранных лекарственных препаратов в аналитической лаборатории. Проведены исследования качества лекарственных препаратов по выбранной методике качественного анализа.

На основе проделанной работы было выяснено, что все лекарственные вещества соответствуют качеству ГОСТ.

Конечно, невозможно рассмотреть все многообразие лекарственных средств, их действие на организм, особенности применения и лекарственные формы этих препаратов, являющихся обычными химическими веществами. Более подробное знакомство с миром лекарств ждет тех, кто в дальнейшем будет заниматься фармакологией и медициной.

Также хочется добавить, что несмотря на бурное развитие фармакологической индустрии, учёным до сих пор не удалось создать ни одного лекарства без побочных эффектов. Об этом надо помнить каждому из нас: потому что, почувствовав недомогание, мы в первую очередь идём к врачу, потом – в аптеку, и начинается процесс лечения, который часто выражается в бессистемном приёме лекарств.

Поэтому в заключение хочется привести рекомендации по применению лекарственных препаратов:

    Лекарственные препараты необходимо правильно хранить, в специальном месте, подальше от источников света и тепла, согласно температурному режиму, который обязательно указывается производителем (в холодильнике или при комнатной температуре).

    Лекарственные препараты необходимо хранить в недоступных для детей местах.

    В аптечке не должно оставаться неизвестное лекарство. Каждая баночка, коробочка или пакетик должны быть подписаны.

    Нельзя использовать лекарства, если у них истек срок годности.

    Не принимайте препараты, назначенные другому человеку: хорошо переносимые одними, они могут вызвать лекарственную болезнь (аллергию) у других.

    Строго соблюдайте правила приема препарата: время приема (до или после еды), дозировки и интервал между приемами.

    Принимайте только те лекарства, которые вам прописал лечащий врач.

    Не спешите начинать с лекарств: иногда достаточно выспаться, отдохнуть, подышать свежим воздухом.

Соблюдая даже эти немногие и несложные рекомендации по применению лекарственных препаратов, Вы сможете сохранить главное – здоровье!

Библиографический список.

1) Аликберова Л.Ю.Занимательная химия: Книга для учащихся, учителей и родите-лей. –М.:АСТ-ПРЕСС, 2002.

2) Артеменко А.И. Применение органических соединений. – М.: Дрофа, 2005.

3) Машковский М.Д. Лекарственные средства. М.: Медицина, 2001.

4) Пичугина Г.В.Химия и повседневная жизнь человека. М.: Дрофа, 2004.

5) Справочник Видаль: Лекарственные препараты в России: Справочник.- М.: Астра-ФармСервис.- 2001.- 1536 с.

6) Тутельян В.А. Витамины: 99 вопросов и ответов.- М.- 2000.- 47 с.

7) Энциклопедия для детей, том 17. Химия. - М. Аванта+, 200.-640с.

8) Регистр лекарственных средств России "Энциклопедия лекарств".- 9-й вып.- ООО М; 2001.

9) Машковский М.Д. Лекарства ХХ века. М.: Новая волна, 1998, 320 с.;

10) Дайсон Г., Мей П. Химия синтетических лекарственных веществ. М.: Мир, 1964, 660 с.

11)Энциклопедия лекарств 9 выпуск 2002 года. Лекарственные средства М.Д. Машковский 14 издание.

12) http :// www . consultpharma . ru / index . php / ru / documents / proizvodstvo /710- gostr -52249-2009- part 1? showall =1

Широкое внедрение принципов медицины, основанной на доказательствах, в клиническую практику во многом обусловлено экономическим аспектом. От того, насколько убедительны научные данные о клинической и экономической эффективности методов диагностики, лечения и профилактики, зависит правильность распределения финансовых средств. В клинической практике конкретные решения следует принимать не столько на основании личного опыта или мнения экспертов, сколько исходя из строго доказанных научных данных. Следует обратить внимание не только на бесполезность, но и на отсутствие научно-обоснованных доказательств пользы применения различных методов лечения и профилактики. В настоящее время это положение приобретает особую актуальность, так как клинические исследования финансируются преимущественно производителями медицинских товаров и услуг.

Понятие «evidence-based medicine», или «медицина, основанная на доказательствах», было предложено канадскими учеными из университета Мак Мастера в Торонто в 1990 году. Доказательная медицина- это не новая наука, а скорее новый подход, направление или технология сбора, анализа, обобщения и интерпретации научной информации. Необходимость в медицине, основанной на доказательствах, возникла, прежде всего, в связи с увеличением объема научной информации, в частности в области клинической фармакологии. Ежегодно в клиническую практику внедряются все новые и новые лекарственные средства. Они активно изучаются в многочисленных клинических исследованиях, результаты которых нередко оказываются неоднозначными, а иногда и прямо противоположными. Чтобы использовать полученную информацию, ее необходимо не только тщательно проанализировать, но и обобщить.

Для рационального применения новых лекарственных средств, достижения их максимального терапевтического действия и предупреждения их нежелательных реакций необходимо уже на стадии испытаний получить всестороннюю характеристику препарата, данные обо всех его лечебных и возможных отрицательных свойствах. Одним из основных путей получения новых лекарственных средств является скрининг биологически активных веществ. Следует отметить, что такой путь поиска и создания новых препаратов очень трудоемок - в среднем один заслуживающий внимания препарат приходится на 5-10 тысяч исследованных соединений. Путем скрининга и случайных наблюдений в свое время были найдены ценные препараты, вошедшие в медицинскую практику. Однако случайность не может быть основным принципом отбора новых лекарственных средств. По мере развития науки стало совершенно очевидным, что создание лекарственных препаратов должно базироваться на выявлении биологически активных веществ, участвующих в процессах жизнедеятельности, изучении патофизиологических и патохимических процессов, лежащих в основе развития различных заболеваний, а также углубленном исследовании механизмов фармакологического действия. Достижения медико-биологических наук позволяют все шире проводить направленный синтез веществ с улучшенными свойствами и определенной фармакологической активностью.

Доклиническое изучение биологической активности веществ принято разделять на фармакологическое и токсикологическое. Такое разделение условно, поскольку указанные исследования взаимозависимы и строятся на одних и тех же принципах. Результаты изучения острой токсичности лекарственных соединений дают информацию для последующих фармакологических исследований, которые, в свою очередь, определяют интенсивность и продолжительность изучения хронической токсичности вещества.

Цель фармакологических исследований – определение терапевтической активности препарата, а также его влияния на основные анатомические и физиологические системы организма. В процессе изучения фармакодинамики вещества устанавливают не только его специфическую активность, но и возможные побочные реакции, связанные с фармакологическим эффектом. Действие исследуемого препарата на больной и здоровый организмы может различаться, поэтому фармакологические испытания должны проводиться на моделях соответствующих заболеваний или патологических состояний.

При токсикологических исследованиях устанавливают характер и выраженность возможного повреждающего действия препаратов на экспериментальных животных. В токсикологических исследованиях выделяют три этапа:

    изучение острой токсичности вещества при однократном введении;

    определение хронической токсичности соединения, которое включает в себя повторное применение препарата на протяжении 1 года, а иногда и более;

    установление специфической токсичности препарата – онкогенности, мутагенности, эмбриотоксичности, включая тератогенное действие, сенсибилизирующих свойств, а также способности вызывать лекарственную зависимость.

Изучение повреждающего действия исследуемого препарата на организм экспериментальных животных позволяет определить, какие органы и ткани наиболее чувствительны к данному веществу и на что следует обратить особое внимание при клинических исследованиях.

Цель клинических исследований - оценка терапевтической или профилактической эффективности и переносимости нового фармакологического средства, установление наиболее рациональных доз и схем его применения, а также сравнительная характеристика с уже существующими лекарственными средствами. При оценке результатов клинических исследований следует учитывать следующие их характеристики: наличие контрольной группы, ясные критерии включения и исключения пациентов, включение пациентов в исследования до выбора лечения, случайный (слепой) выбор лечения, адекватный метод рандомизации, слепой контроль, слепая оценка результатов лечения, информация об осложнениях и побочных эффектах, информация о качестве жизни пациентов, информация о числе больных выбывших из исследования, адекватный статистический анализ с указанием названий использованных текстов и программ, статистическая сила, информация о размере выявленного эффекта.

Программы клинических исследований разных групп препаратов могут значительно различаться. Однако некоторые значительные положения должны быть всегда отражены. Четко следует сформулировать цели и задачи испытания; определить критерии отбора больных; указать метод распределения больных на основную и контрольную группы и число больных в каждой группе; метод установления эффективных доз препарата, длительность исследования; метод контроля (открытый, слепой, двойной и др.), препарат сравнения и плацебо, методы количественного анализа действия исследуемых препаратов (подлежащие регистрации показатели); методы статической обработки данных.

При оценке публикаций, посвященных методам лечения, следует помнить, что критерии исключения больных из исследования указываются достаточно часто, а критерии включения – реже. Если не ясно, на каких пациентах изучался препарат, то трудно оценить информативность полученных данных. Большая часть исследований проводиться в специализированных университетских больницах или научных центрах, где больные, конечно же, отличаются от больных в районных поликлиниках. Поэтому после первичных испытаний проводят все новые и новые исследования. Сначала – многоцентровые, когда благодаря привлечению разных больниц и амбулаторной особенности каждой из них сглаживаются. Затем – открытые. С каждым этапом уверенность в том, что результаты исследований будут применимы для любого стационара, увеличиваются.

Весьма важным и сложным является вопрос об установлении дозы и режима применения исследуемого препарата. Существуют только самые общие рекомендации, в основном сводящиеся к тому, что следует начинать с низкой дозы, которую постепенно увеличивают, пока не будет получен желаемый или побочный эффект. При разработке рациональных доз и схем применения исследуемого препарата, желательно установить широту его терапевтического действия, диапазон между минимальной и максимальной безопасной терапевтическими дозами. Длительность применения исследуемого препарата не должна превышать длительность токсикологических испытаний на животных.

В процессе клинических исследований новых лекарственных средств выделяют 4 взаимосвязанные фазы (этапы).

Фазу первых клинических испытаний называют “пристрелочной”, или “клинико-фармакологической”. Цель ее - установить переносимость исследуемого препарата и наличие у него терапевтического действия.

В фазу II клинические исследования проводят на 100-200 больных. Необходимое условие – наличие контрольной группы, существенно не отличающейся по составу и численности от основной группы. Больные опытной группы (основной) и контрольной, должны быть одинаковыми по полу, возрасту, исходному фоновому лечению (его желательно прекратить за 2-4 недели до начала исследования). Группы формируются случайным образом путем использования таблиц случайных чисел, в которых каждая цифра или каждая комбинация цифр имеет равную вероятность отбора. Рандомизация, или случайное распределение, - основной способ обеспечения сопоставимости групп сравнения.

В клинических исследованиях новые препараты стараются сравнивать с плацебо, что позволяет оценить реальную эффективность терапии, например, ее влияние на продолжительность жизни больных по сравнению с отсутствием лечения. Необходимость двойного слепого метода определяется тем, что если врачи знают, какое лечение получает больной (активный препарат или плацебо), то они могут непроизвольно выдать желаемое за действительное.

Необходимым условием проведения адекватных клинических исследований является рандомизация. Из рассмотрения нужно сразу исключать статьи об исследованиях, в которых распределение пациентов на группы сравнения было не неслучайным, или метод распределения был неудовлетворительным (например, делили пациентов по дням недели поступления в стационар) или вообще отсутствует информация о нем. Еще менее информативными являются исследования с историческим контролем (когда для сравнения используются полученные ранее данные или результаты исследований, проводившихся в других лечебных учреждениях). В международной литературе о рандомизации сообщается в 9/10 статей, посвященным проблемам фармакотерапии, но только в 1/3 статей уточняется метод рандомизации. Если качество рандомизации вызывает сомнение, то опытная и контрольная группы, вероятнее всего, не сравнимы, и необходимо искать другие источники информации.

Большое значение имеет клиническая значимость и статистическая достоверность результатов лечения. Результаты клинического испытания или популяционного исследования представляются в виде сведений о частоте исходов и статистической достоверности различий между группами пациентов. Не представляет ли автор статистически достоверные, но малые различия как клинически значимые? Статистически значимо то, что действительно существует с высокой вероятностью. Клинически значимо то, что своими размерами (например, величиной снижения смертности) убеждает врача в необходимости изменить свою практику в пользу нового метода лечения.

Методы, критерии оценки эффективности препарата, время измерения соответствующих показателей должны быть согласованы перед началом испытания. Критерии оценки бывают клиническими, лабораторными, морфологическими и инструментальными. Нередко об эффективности исследуемого препарата судят по уменьшению дозы других лекарственных средств. Для каждой группы препаратов существуют обязательные и дополнительные (факультативные) критерии.

Целью фазы III клинических испытаний является получение дополнительных сведений об эффективности и побочном действии фармакологического средства, уточняются особенности действия препарата и определяются относительно редко встречающиеся нежелательные реакции. Изучаются особенности препарата у больных с нарушением кровообращения, функции почек и печени, оценивается взаимодействие с другими средствами. Результаты лечения заносятся в индивидуальные регистрационные карты. В конце исследования полученные результаты суммируются, обрабатываются статистически и оформляются в виде отчета. Соответствующие показатели, полученные за один и тот же период времени в основной и контрольной группах, сопоставляются статически. Для каждого показателя вычисляется средняя разность за изучаемый промежуток времени (по сравнению с исходным уровнем до лечения) и оценивается достоверность отмечено динамики внутри каждой группы. Затем сравниваются средние разности величин конкретных показателей контрольной и опытной групп, для оценки различия в действии исследуемого средства и плацебо или препарата сравнения. Отчет о результатах клинических испытаний нового лекарственного средства оформляется в соответствии с требованиями Фармакологического комитета и представляется в комитет с конкретными рекомендациями. Рекомендация к клиническому применению считается обоснованной, если новый препарат:

    Более эффективен, чем известные препараты аналогичного действия;

    Обладает лучшей переносимостью, чем известные препараты (при одинаковой переносимости);

    Эффективен в тех случаях, когда лечение известными препаратами безуспешно;

    Более выгоден экономически, имеет простую методику лечения или более удобную лекарственную форму;

    При комбинированной терапии повышает эффективность уже существующих лекарственных средств, не увеличивая их токсичности.

После разрешения применения нового препарата в ветеринарной практике и его внедрения начинается фаза IV исследований – действие лекарственного средства изучается в разнообразных ситуациях на практике.

Лекция №2
по курсу «Анализ и контроль
качества лекарственных средств»
1

Краткий план лекции

1. Классификация ЛВ. Общая характеристика
фармакопейного анализа ЛВ. Реактивы, используемые в
фармакопейном анализе.
2. Физико-химические свойства лекарственных веществ
(агрегатное состояние, внешний вид, окраска, кристалличность,
полиморфизм и методы его исследования. Растворимость.
Кислотно-основные свойства лекарственных веществ).
3. Физические константы лекарственных средств и методы
их определения.
4. Методы идентификации лекарственных средств
5. Примеси в лекарственных средствах, классификация,
методы идентификации и анализа. Понятие о стрессовых
испытаниях
6. Методы количественного анализа лекарственных
средств
2

Классификация ЛВ

1. Неорганические вещества (производные s-, p- и dэлементов).
2. Органические вещества
2.1. Алифатические соединения (алканы,
галогеналканы, спирты, альдегиды, простые эфиры,
углеводы, аминокислоты, карбоновые кислоты)
2.2. Ароматические соединения (фенолы,
ароматические карбоновые кислоты, ароматические
аминокислоты, фенилалкиламины,
сульфаниламиды);
2.3. Стероидные соединения, простагландины
3

Классификация ЛВ (продолжение)

2.3. Гетероциклические соединения
2.3.1. Соединения, содержащие один гетероатом
(производные фурана, бензофурана, пиридина,
хинолина, изохинолина и др.);
2.3.2. Соединения содержащие два и более
одинаковых гетероатома (производные пиразола,
имидазола, бензимидазола, пурина, птеридина и
др.).
2.3.3. Соединения содержащие два и более разных
гетероатомов (производные тиазола, бензотиазола,
оксазолидины и др.).
2.4. Элементорганические вещества.
3. Радиофармацевтические препараты.
4. Биотехнологические (высокомолекулярные)
лекарственные вещества
4

Фармацевтический анализ (анализ ЛВ и ЛС)

Фармацевтический анализ – это раздел науки о
химической характеристике и измерении БАВ на всех
этапах производства – от контроля сырья до оценки
качества полученного ЛВ, изучения его стабильности
(установления сроков годности) и стандартизации ЛФ и
ЛС.
Особенности:
1. Проводится анализ совершенно различных по
природе, структуре и свойствам веществ
2. Измеряемые концентрации (содержания) находятся в
диапазоне от 10-9 (1 ppb) до 100%.
3. Анализируются не только индивидуальные ЛВ, но и их
5
смеси.

Фармацевтический анализ (классификации)

В зависимости от поставленных задач:
1. Фармакопейный анализ
2. Постадийный контроль производства ЛВ и ЛС
3. Анализ индивидуальных ЛС
4. Аптечный экспресс-анализ
5. Биофармацевтический анализ
В зависимости от результата:
1. Качественный
2. Количественный
3. Полуколичественный (предельные испытания)
6

Критерии фармацевтического анализа

1. Избирательность (специфичность, селективность) –
способность однозначно оценивать определяемый
компонент выбранным методом независимо от других
присутствующих веществ (примесей, продуктов распада и
др.) в испытуемом образце в пределах заданного
диапазона применения.
2. Чувствительность
2.1. Предел обнаружения
2.2. Предел определения
3. Правильность – отражение разницы между истинным
содержанием определяемого компонента и
экспериментальным результатом анализа.
4. Воспроизводимость (прецизионность) –
характеристика «рассеивания» результатов возле
среднего значения определяемой величины.
5. Робастность – характеристика устойчивость методики
во времени.
Эти критерии устанавливаются в процессе валидации 7
методов (методик)

Фармакопейный анализ ЛВ (общая структура)

агрегатное состояние,
внешний вид,
окраска, кристалличность,
полиморфизм
Подлинность
Первая идентификация
(специфичный метод)
Вторая идентификация
(потверждение)
Определение
физических
констант,
ф/х свойств
Фармакопейный
анализ ЛВ
(общая структура)
температура плавления, температура
затвердевания, температура каплепадения,
температурные пределы перегонки
температура кипения,
плотность и вязкость жидкостей, удельное
вращение и показатель преломления
растворимость, pH
Определение
примесей
Количественное
определение
Показатели микробной чистоты,
стерильность, апирогенность, отсутствие вирусных тел
8

Химическое название

Используется номенклатура IUPAC
(International Union Pure Applied Chemistry) – Международный союз
чистой и прикладной химии)
(гораздо реже – тривиальные названия)
1) определяют тип номенклатуры (заместительная, радикальнофункциональная);
2) определяют тип характеристической группы, которую следует принять
за главную;
3) определяют родоначальную структуру (главную цепь, старшую
циклическую систему);
4) дают название исходной структуре и основным группам;
5) дают название префиксам;
6) проводят нумерацию;
7) объединяют частичные названия в общее полное название,
придерживаясь алфавитного порядка для всех определяемых префиксов.
Помимо названия указывают структурную химическую формулу
и брутто-формулу.
9

10. Пример оформления

2-(нафтален-1-илметил)-4,5-дигидро-1Н-имидазола
гидрохлорид
10

11. Пример построения химического названия органического ЛВ

Выбор нумерации: от атома азота,
ближайшего к старшему заместителю
(С=О-группе).
Установление родоначальной
структуры: 1,4-бензодиазепин;
Название с учетом заместителей: 2,3дигидро-2Н-1,4-бензодиазепин-2-он;
Перечисление заместителей: по
алфавиту – 7-Cl-1-Me-5-Ph
Итого:
7-хлор-1-метил-5-фенил-2,3дигидро-2Н-1,4-бензодиазепин-2-он
H3C
O
N
Cl
N
11

12. Пример построения химического названия органического ЛВ (2)

2-метил-3-гидрокси4,5-ди
(гидроксиметил)пиридин
HO
OH
4
3
5
2
HO
6
N
1
12

13. Описание ЛВ

1. Агрегатное состояние (жидкость, газ, твердое
вещество, кристалличность), цвет, запах, особые
свойства (гигроскопичность, легкая окисляемость на
воздухе и др.), размер частиц (для тв. веществ).
2. Полиморфизм – явление, характерное для
твердых веществ – способность вещества в твердом
состоянии существовать в различных
кристаллических формах при одном и том же
химическом составе.
При описании сольватов (гидратов) используется
термин «псевдополиморфизм» (изменчивость
состава сольвата или гидрата).
13

14. Описание ЛВ - полиморфизм

Полиморфные формы проявляют
одинаковые химические свойства
в растворах и расплавах, но в
твердом состоянии их физические
(плотность, Т плавл, сжимаемость)
и физико-химические свойства
(растворимость и как следствие
биодоступность) могут
существенно различаться.
Та из полиморфных форм,
которая имеет меньшее значение
свободной энтальпии, является
наиболее термодинамически
стабильной, а остальные формы
могут находиться в т.н.
«метастабильном» состоянии. 14

15. Полиморфизм (примеры)

Аллотропные формы углерода: a) лонсдейлит; б) алмаз;
в) графит; г) аморфный углерод; д) C60 (фуллерен);
е) графен; ж) однослойная нанотрубка
15

16. Полиморфизм (примеры)

Нимесулид (на формуле показаны торсионные вращения и
упаковка, соответствующая полиморфной форме I)
16

17. Полиморфизм (примеры)

Нимесулид (на формуле показаны суммарные торсионные
вращения и упаковка, соответствующая полиморфной форме II)
17

18. Полиморфизм (примеры)

Данные
рентгеновской
дифракции для
форм I и II
нимесулида
18

19. Полиморфизм (примеры)

Дифференциальная сканирующая калориметрия
(DSC) полиморфных форм нимесулида
19

20. Полиморфизм и биодоступность

Кинетика растворения двух полиморфных
форм нимесулида (37С, рН 7,5)
20

21. Методы исследования полиморфных форм

1. Рентгеновская дифракция (порошок и
кристаллы)
2. Дифференциальная сканирующая
калориметрия, микрокалориметрия
3. Термогравиметрия
4. Анализ поглощения влаги
5. ИК-Фурье-спектроскопия
6. Рамановская спектроскопия
7. Изучение растворимости (кинетики
растворения)
21

22. Размер частиц (порошки, пеллеты)

Для определения размера
частиц использую наборы
сит с квадратными
отверстиями,
изготовленные из инертных
материалов. Степень
измельчения указывается с
использованием номера
сита (размер стороны
отверстия в мкм).
Современные методы – методы
лазерного сканирования
22

23. Растворимость

Данные о растворимости вещества означают
приблизительную растворимость при температуре
20°С, если нет других указаний. Выражение
«растворим в стольких-то частях» следует понимать
как указание на число миллилитров растворителя
(представленное указанным числом частей), в
которых растворим 1 г твердого вещества.
Иногда для обозначения растворимости вещества
используются описательные термины (легко, плохо,
трудно и т.д.).
Классическое описание растворимости (справочники)
– 1 г вещества растворяется в Х г растворителя при
температуре Т.
23

24. Растворимость

24

25. Кислотно-основные свойства

Не приводятся в нормативных документах по
контролю качества ЛВ, но имеют решающее
значение при проведении испытаний,
растворимости в водных средах, выборе
методик и методов анализа, а также
всасыванию, распределению,
биодоступности ЛВ.
По кислотно-основным свойствам все
вещества делятся на неионогенные (не
кислота/не основание) и ионогенные –
кислоты (проявляющие в основном
кислотные свойства), основания, амфолиты.
25

26. Методы определения физических констант

1. Гравиметрия
2. Рефрактометрия
3. Поляриметрия
4. Вискозиметрия (капиллярная,
ротационная)
5. Термометрия
26

27. Относительная плотность (d20)

Относительная плотность d представляет собой отношение
массы определенного объема вещества к массе равного его
объема воды при температуре 20оС.
Относительную плотность d определяют с помощью
пикнометра, плотномера, гигростатических весов или ареометра
с точностью до десятичных знаков, обозначенных в частной
статье. Атмосферное давление при взвешивании не учитывают,
так как связанная с ним ошибка не превышает единицы в
третьем десятичном знаке.
Кроме того, обычно используют два других определения.
Относительная плотность вещества представляет собой
отношение массы определенного объема вещества при
температуре 20оС к массе равному ему объема воды при
температуре 4оС.
Плотность ρ20 - это отношение массы вещества к его объему
при температуре 20оС. Плотность выражают в килограммах на
кубический метр (1 кг/м3 = 10 –3 г/см3). Чаще всего измерение
плотности выражается в граммах на кубический сантиметр
27
(г/см3).

28. Относительная плотность

28

29.

29

30. Показатель преломления

30

31. Рефрактометры

31

32.

32

33. Оптическое вращение

33

34. Оптическое вращение

34

35.

35

36. Поляриметрия (оборудование)

36

37. Вязкость

Вязкость (внутреннее трение) – свойство текучих тел оказывать
сопротивление передвижению одной их части относительно
другой.
Текучие тела могут иметь ньютоновский тип течения.
Ньютоновскими жидкостями называют системы, вязкость которых
не зависит от напряжения сдвига и является постоянной
величиной в соответствии с законом Ньютона.
Для ньютоновских жидкостей различают динамическую,
кинематическую, относительную, удельную, приведенную и
характеристическую вязкости. Для неньютоновских жидкостей
характерна, главным образом, структурная вязкость.
Динамическая вязкость или коэффициент вязкости η – это
тангенциальная сила, приходящаяся на единицу поверхности,
которая также называется напряжением сдвига t , выраженная в
паскалях (Па), которую необходимо приложить для того, чтобы
переместить слой жидкости площадью 1 м2 со скоростью (v) 1
метр в секунду (м.с-1), находящийся на расстоянии (х) 1 метр
относительно другого слоя, параллельно площади скольжения.
37

38. Вязкость (капиллярный метод)

Методика. Испытуемую жидкость,
имеющую температуру 20оС, если в
частной статье не обозначена другая
температура, заливают в вискозиметр
через трубку (L) в таком количестве, чтобы
заполнить расширение (А), но при этом
уровень жидкости в расширении (В) должен
остаться ниже выхода к вентиляционной
трубке (М). Вискозиметр в вертикальном
положении погружают в водяную баню при
температуре (20+/-0,1)оС, если в частной
статье не указана другая температура,
удерживая его в этом положении не менее
30 минут для установления температурного
равновесия. Трубку (М) закрывают и
повышают уровень жидкости в трубке (N)
таким образом, чтобы она находилась
примерно на 8 мм выше метки (Е).
Удерживают жидкость на этом уровне,
закрыв трубку (N) и открыв трубку (М).
Затем открывают трубку (N) и измеряют
время, за которое уровень жидкости
снизится от метки (Е) до метки (F),
секундомером с точностью до одной пятой
секунды.
38

39. Температурные пределы перегонки

39

40. Температура плавления

1. Капиллярный метод определения температуры
плавления. Температура плавления, определенная
капиллярным методом, представляет собой температуру, при
которой последняя твердая частичка уплотненного столбика
вещества в капиллярной трубке переходит в жидкую фазу.
2. Открытый капиллярный метод - применяют для
веществ, имеющих аморфную структуру, не растирающихся в
порошок и плавящихся ниже температуры кипения воды,
таких как жиры, воск, парафин, вазелин, смолы.
3. Метод мгновенного плавления - применяют для твердых
веществ, легко превращаемых в порошок.
4. Температура каплепадения - температура, при которой в
условиях, приведенных ниже, первая капля расплавленного
испытуемого вещества падает из чашечки (жиры, воски,
масла).
5. Температура затвердевания – максимальная температура,
при которой происходит затвердевание переохлажденной жидкости.
40

41. Определение температуры плавления (инструментальное)

Видео процесса плавления
Цветное видео высокого разрешения позволяет изучать
вещества, которые плавятся с разложением или имеют
окраску. С помощью приборов можно также изучать явления
41
термохромизма.

42. Подлинность (методы)

1. Химические реакции подлинности:
А. Общие реакции на подлинность по
функциональным группам (первичные
ароматические амины, алкалоиды,
сложные эфиры и др.)
Б. Специфичные реакции на ионы
В. Специфичные реакции на
органические вещества
42

43. Примеры реакций идентификации по функциональным группам

Реакция на первичную ароматическую аминогруппу:
43

44. Примеры реакций идентификации по функциональным группам

Реакция на первичную аминогруппу
(нингидриновая реакция):
44

45. Специфические реакции на ионы

45

46. Специфические реакции на ионы

46

47. Специфические реакции на ионы

Специфические реакции на ионы
подразделяются:
1. Реакции осаждения
2. ОВ реакции
3. Реакции разложения
4. Реакции комплексообразования
47

48. Специфические реакции подлинности

48

49.

49

50.

50

51.

51

52.

52

53.

53

54.

54

55.

55

56.

56

57. Подлинность (методы)

2. Инструментальные методы
2.1. ИК-спектроскопия (ИК-Фурье)
2.2. Абсорционная спектрофотометрия
в УФ и/или видимой области спектра
2.3. Хроматографические методы (ТСХ,
ГХ, ЖХ)
2.4. Электрофорез, капиллярный
электрофорез (включая пептидное
картирование)
57

58. Подлинность (методы)

3. Физические методы (определение
физических констант):
3.1. Температура плавления, кипения,
температурные пределы перегонки.
3.2. Относительная плотность.
3.3. Показатель преломления.
3.4. Угол оптического вращения.
3.5. Определение вязкости.
58

59. Подлинность (доказательство)

Установление подлинности ЛВ проводится
как минимум 2 методами!
Первая идентификация – специфичный
инструментальный метод (как правило ИКспектрометрия) + дополнительныйметод
(например, хроматографический или
химический метод)
Вторая идентификация – подтверждение
подлинности (используются определение
физических констант, дополнительных
химических методов, абсорбционная
спектрофотометрия и др.).
59

60. Примеси (классификация)

1. Общие технологические примеси – попадающие в процессе
производства.
1.1. Реагентные примеси (SO42-,Cl-, сульфатная зола и др.)
1.2. Примеси от контакта с технологическим оборудованием (HM,
As, Pb, Cd, Fe и др.)
1.3. Остаточные органические растворители
1.4. Вода, влага
2. Специфические примеси – характерны для конкретного ЛВ и
включают:
2.1. Полупродукты синтеза и специфические реагенты
2.2. Побочные продукты синтеза
2.3. Сопутствующие примеси (химически родственные аналоги и
остаточные кол-ва пестицидов и супертоксикантов – для ЛВ
природного происхождения)
2.4. Стереоизомеры-примеси (примеси энантиомеров)
2.5. Продукты разложения и взаимодействия с технологическими
примесями, влагой, кислородом воздуха, органическими
растворителями и др.
3. Механические примеси
60

61. Примеси

1. Летучие (характеризуются потерей в массе при
высушивании).
2. Неорганические (устанавливаются при определении
сульфатной золы, тяжелых металлов и т.д.).
3. Родственные по структуре примеси (определяются
хроматографическими методами или электрофорезом).
Отдельно классифицируют токсичные
(оказывают влияние на фармакологический
эффект – т.е. являются недопустимыми) и
нетоксичные (указывают на степень очистки
ЛВ) примеси.
61

62. Потеря в массе при высушивании (метод гравиметрии)

Является суммарным неспецифичным показателем,
характеризующим наличие воды (влаги), остаточных 62
органических растворителей в ЛВ

63. Определение воды

1. Дистилляция (отгонка) – для жидкостей
2. Титриметрический метод (метод К.
Фишера, микрометод) – для твердых веществ
63

64. Физические и химические свойства, характеризующие чистоту

Прозрачность и степень мутности. Прозрачные растворы –
при освещении их электролампой на черном фоне не
наблюдается присутствие нерастворенных частиц. Степень
мутности устанавливают путем сравнения испытуемого
вещества с эталоном (или с растворителем).
Окраску жидкостей устанавливают путем сравнения
испытуемых растворов с равным объем одного из эталонов при
дневном освещении на матово-белом фоне.
Адсорбционная способность – устанавливается по
обесцвечиванию красителя (метиленовый синий) в растворе ЛВ
определенной концентрации.
Примеси окрашенных веществ (светопоглощающие примеси)
– для неокрашенных веществ определяется абсорбция
раствора ЛВ в воде или органическом растворителе в видимой
области спектра.
64

65. Определение золы

Метод гравиметрии
1. Общая зола (ЛРС, ряд органических
ЛВ) – сжигание навески (1.0000 г)
испытуемого образца в тигле при Т
около 500оС (30 мин), после
охлаждения определяют массу остатка.
2. Сульфатная зола - навеску
смачивают 1 мл Н2SO4 и далее
поступают как при определении общей
золы.
65

66. Определение «тяжелых» металлов

А. Стадия пробоподготовки:
1. Растворение в воде (для ЛВ, хорошо растворимых в воде) или
в смеси с органическими растворителями (ацетон, диоксан);
2. «Мокрая» минерализация (для органических веществ) –
2.1. сжигание ЛВ со смесью MgSO4 и H2SO4 (Т=800оС).
2.2. минерализация смесью H2SO4 и HNO3 (нагревание до
200оC).
2.3. минерализация с использованием СВЧ-нагревания
(тефлоновые сосуды, 2,5 ГГц).
3. «Сухая» минерализация – сплавление с MgO (Т=600оС).
Б. Качественный и/или полуколичественный анализ
(химическая реакция с сульфид-ионом):
1. Качественный – безэталонный (отсутствие окраски с
реагентом)
2. Полуколичественный анализ – сравнение окраски с эталоном,
содержащим предельное количество ионов свинца (эталона).
66
В. Количественный анализ – метод ААС или АЭС.

67. Остаточные органические растворители (классификация)

В основе классификации лежит потенциальная
опасность растворителей для организма человека и
окружающей среды.
Класс 1. Растворители, использования которых
следует избегать (канцерогенные вещества и
супертоксиканты окружающей среды – бензол, ТХУ,
1,2-дихлорэтан, 1,1-дихлорэтен, 1,1,1-трихлорэтан).
Класс 2. Растворители, использование которых
следует ограничивать (негенотоксичные
канцерогены, вещества с существенной
токсичностью) – ацетонитрил, гексан, диоксан,
ксилол, метанол, нитрометан, пиридин, хлороформ,
толуол, этилеггликоль и др.
67

68. Остаточные органические растворители (классификация, продолжение)

Класс 3. Малотоксичные растворители (с
низким потенциалом токсичности у человека,
не требуют установления предельных
содержаний – менее 5000 ppm (мкг/г) или
0,5%) – ацетон, бутанол-1, бутанол-2, гептан,
ДМСО, пентан, уксусная кислота, пропанол-1,
пропанол-2, этанол, ТГФ, пентан и др.
Класс 4. Растворители, для которых
отсутствуют необходимые данные о
токсичности (изооктан, петролейный эфир,
трифторуксусная кислота и др.).
68

69. Остаточные органические растворители

Метод газовой хроматографии (ГХскрининг)
А. Подготовка образца и раствора
сравнения
1. Растворение навески испытуемого образца
в воде (для ЛВ, растворимых в воде).
2. Растворение навески испытуемого образца
в диметилформамиде (ДМФА).
3. Растворение навески испытуемого образца
в 1,3-диметил-2-имидазолидиноне.
Поскольку большинство органических растворителей
«включены» в кристаллическую решетку (или в
структуру в виде сольватов) ЛВ, пробоподготовка
должна включать полное растворение образца с
«разрушением» решетки и возможных сольватов.
CH3
H
N
CH3
O
CH3
N
O
N
CH3
69

70. Остаточные органические растворители (анализ)

Б. Парофазовая пробоподготовка –
проводится для перевода ООР из раствора в
парогазовую фазу (нагревание в герметично
укупоренном сосуде).
В. Газохроматографический анализ парогазовой фазы (полуколичественный анализ с
разделением на капиллярной колонке средней
полярности).
70

71. Специфические примеси

1. Полупродукты синтеза и специфические реагенты
(включая катализаторы)
1.1. Неорганические вещества – катионы, анионы,
комплексные соединения
1.2. Органические вещества
1.3. Генетически-модифицированные микроорганизмы,
вирусы и др.
O
N
N
HN
N
N
N
CH3
Ирбесартан (примесь азид-иона)
71

72. Специфические примеси

Наибольшая группа примесей в органических ЛВ –
родственные по химической структуре химические
вещества (число их ограничено пока только
возможностями методов разделения и детекции). Чем
сложнее хим. структура – тем большее количество
примесей необходимо нормировать.
O
H3C
H3C
CH3
O
H
H
CH3
H
O
H
H3C
O
O
CH3
O
H
H
S
O
H
O
S
H
H
Br
O
H
CH3
O
CH3
H
O
S
H
O
O
H3C
CH3
CH3
Спиронолактон
H3C
O
H
H
O
CH3
H3C
O
CH3
H
H
H
O
O
H
H
H
H
O
72
O

73. Специфические примеси

OH
OH
O
Парацетамол
O2N
H3C
N
H
OH
HO
H2N
O
Побочные
продукты
синтеза
Cl
H3C
O
N
H
OH
O
H3C
H3C
N
H
Промежуточные
продукты
синтеза
N
H
Cl
OH
O
H3C
N
H
73

74. Специфические примеси

Сопутствующие примеси в ЛВ природного
происхождения:
А. химически родственные аналоги
(обладают биологической (фармакологической)
активностью, могут быть потенциально опасны
для организма)
Б. остаточные кол-ва пестицидов и
супертоксикантов (полихлордиоксины,
полихлорбифенилы), продукты
жизнедеятельности микроорганизмов
(афлатоксины) – безусловные токсические
вещества, жестко нормируемые на уровне ppm и
ppb (мкг/г или нг/г)
74

75. Сопутствующие примеси в ЛВ природного происхождения (пример)

OH
O
OH
OH
O
H
H
H
HO
H
OH
H
OH
cholic acid
H
HO
O
H
OH
ursodeoxycholic acid
H
Урсодезоксихолевая кислота
(выделяется из медвежьей желчи)
H
H
OH
OH
chenodeoxycholic acid
75

76. Специфические примеси

Продукты разложения и взаимодействия:
1. с технологическими примесями (тяжелыми металлами
(d-элементы являются катализаторами многих ОВреакций, в том числе с участием O2), ионами железа,
остатками реагентов с реакционоспособными
функциональными группами),
2. с влагой (возможны реакции гидролиза (сложные
эфиры, амиды, карбаматы и др.), поглощение влаги
всегда связано с уменьшением содержания активного
вещества),
3. с кислородом воздуха (кислородочувстивительные
вещества, например, полиненасыщенные жирные
кислоты, сильные восстановители),
4. с остаточными органическими растворителями (ряд
органических растворителей – этиленоксид, дихлорметан,
дихлорэтан, уксусная кислота и др. – достаточно
реакционоспособны и реагируют с ЛВ при хранении).
76

77. Стрессовые испытания -

Стрессовые испытания Испытания устойчивости ЛВ под
воздействием ряда факторов
(температура, реагенты, освещение) с
целью доказательства селективности
методов оценки примесей, изучения
образования и идентификации
примесей, дополнительного изучения
стабильности ЛВ при хранении.
77

78. Стрессовые испытания (условия)

1. Температура – последовательное
повышение температуры при хранении
образца ЛВ на 10оС (50, 60 и т.д.);
2. Влажность (повышение отн. влажности
воздуха при хранении образца ЛВ до 75% и
выше).
3. Реагенты – растворы кислот (1М HCl),
щелочей (1М или 0,1М NaOH), H2O2 (3-30%)
при нагревании.
4. Воздействие света (УФ-свет,
интенсивность - не менее 200 Вт.ч/м2)
78

79. Количественное определение

Методы анализа (классификация,
краткая характеристика, применение
для анализа ЛВ и ЛС, сравнительная
оценка) – это тема следующих как
минимум 3 лекций!
Благодарю за внимание!

В настоящее время для количественного определения лекарственных веществ в нормативной документации (ГФ ЧЙЙ) достаточно широко применяются классические (титриметрические) методы анализа, но в этом случае определение ведется не по фармакологически активной части молекулы.

Нитрометрия - метод титриметрического анализа, при котором в качестве реактива для титрования используется раствор натрия нитрита.

Применяется для количественного определения соединений, содержащих первичную или вторичную ароматическую аминогруппу, для определения гидразинов, а также ароматических нитросоединений после предварительного восстановления нитрогруппы до аминогруппы. Точную навеску образца лекарственного средства, указанную в частной фармакопейной статье, растворяют в смеси 10 мл воды и 10 мл хлористоводородной кислоты, разведенной 8,3%. Прибавляют воду до общего объема 80 мл, 1 г калия бромида и при постоянном перемешивании титруют 0,1 М раствором натрия нитрита. В начале титрования прибавляют раствор натрия нитрита со скоростью 2 мл/мин., а в конце (за 0,5 мл до эквивалентного количества) - 0,05 мл/мин.

Титрование проводят при температуре раствора 15-20°C, однако в некоторых случаях требуется охлаждение до 0-5°C.

Точку эквивалентности определяют электрометрическими методами (потенциометрическое титрование, амперометрическое титрование) или с помощью внутренних индикаторов.

При потенциометрическом титровании в качестве индикаторного применяют платиновый электрод, при этом в качестве электродов сравнения используют хлорсеребряный или насыщенный каломельный электрод.

На электроды накладывают разность потенциалов 0,3-0,4 В, если не указано иначе в частной фармакопейной статье.

В качестве внутренних индикаторов используют тропеолин 00 (4 капли раствора), тропеолин 00 в смеси с метиленовым синим (4 капли раствора тропеолина 00 и 2 капли раствора метиленового синего), нейтральный красный (2 капли в начале и 2 капли в конце титрования).

Титрование с тропеолином 00 проводят до перехода окраски от красной к желтой, со смесью тропеолина 00 с метиленовым синим - от красно-фиолетовой к голубой, с нейтральным красным - от красно-фиолетовой к синей. Выдержку в конце титрования с нейтральным красным увеличивают до 2 мин. Параллельно проводят контрольный опыт.

С помощью нитрометрии определяют: левомицетин , новокаина гидрохлорид , парацетамол , сульфадиметоксин . Определение ведется по ароматической аминогруппе.

Методом неводного титрования определяют арбидол , артикаина гидрохлорид , атенолол , ацикловир , диазолин , димедрол , дроперидол , дротаверина гидрохлорид , изониазид , кетамина гидрохлорид , клотримазол , клофелина гидрохлорид , кодеин , кодеина фосфат , кофеин , кофеин безводный , метронидазол , натрия диклофенак , никотинамид , нитразепам , папаверина гидрохлорид , пиридоксина гидрохлорид , пироксикам , фенпивериния бромид , хлоропирамина гидрохлорид , верапамила гидрохлорид , галоперидол , гликлазид , диазепам , итраконазол , клемастина фумарат , мелоксикам , мельдоний , метформина гидрохлорид , натрия кромогликат , тиамина хлорид , тинидазол , тиоридазин , тиоридазина гидрохлорид , феназепам . С помощью данного метода проводят количественное определение более чем половины лекарственных веществ, включенных в ГФ ЧЙЙ . Недостатком этого метода является то, что продукты разложения ЛВ, которые обладают основными свойствами, так же могут титроваться хлорной кислотой наряду с неразложившимися ЛВ.

Количественное определение анальгина по ГФ ЧЙЙ проводят йодометрическим методом. Около 0,15 г (точная навеска) субстанции помещают в сухую колбу, прибавляют 20 мл спирта 96%, 5 мл 0,01 М раствора хлористоводородной кислоты и тотчас титруют 0,1 М раствором йода при перемешивании до появления желтой окраски, не исчезающей в течение 30 с. . В основе методики - окисление серы плюс 4 до серы плюс 6. Недостатком метода является то, что определение проводится не по фармакологически активной части молекулы (1-фенил-2,3-диметил-4-метиламино пиразолон-5).

Методом алкалиметрии определяют кислоту ацетилсалициловую , кислоту глутаминовую , доксазозина мезилат , метилурацил , напроксен , кислоту никотиновую , питофенона гидрохлорид , теофиллин , фуросемид - точка эквивалентности устанавливается при помощи индикатора. Бромгексина гидрохлорид , лидокаина гидрохлорид , лизиноприл , ранитидина гидрохлорид - с потенциометрическим окончанием. Стандартизация этих веществ проводится в основном по НСl, которая не является фармакологически активным веществом.

Метод ВЭЖХ ГФ ЧЙЙ рекомендует использовать для определения гвайфенезина , карбамазепина , кеторолака , рибоксина , симвастатина , ондансетрона гидрохлорида . Определение проводят по фармакологически активной части молекулы лекарственного вещества.

Спектрофотометрическим методом определяют гидрокортизона ацетат , спиронолактон , фуразолидон . Метод недостаточно селективен, так как продукты разложения и исследуемое вещество могут иметь одни и те же максимумы светопоглощения.

На современном этапе развития фармацевтической химии физико-химические методы анализа имеют ряд преимуществ перед классическими, так как основаны на использовании, как физических, так и химических свойств лекарственных веществ и в большинстве случаев отличаются экспрессностью, избирательностью, высокой чувствительностью, возможностью унификации и автоматизации .

Метод ГЖХ универсален, высокочувствителен, надежен. Данный метод для качественного и количественного определения мази димексида 50% использовали М.В. Гаврилин, Е.В. Компанцева и другие .

А.Г. Витенбергом в ходе изучения хлорированной водопроводной воды выяснено, что содержание примесей летучих галогенпроизводных углеводородов не остается постоянным, возрастает в процессе нахождения воды в водопроводной системе. Это говорит о незавершенности химических превращений гуминового вещества после хлорирования воды. Существующие аттестованные методики, основанные на парофазном газохроматографическом анализе, не учитывают данную особенность, предусматривают определение только свободных галогенпроизводных углеводородов. Была проведена сравнительная оценка официальных методик, выявлены источники погрешностей, превышающие допустимые значения. Предложены пути оптимизации всех стадий анализа для создания методик, обеспечивающих минимум погрешности и достоверную информацию о содержании летучих галогенпроизводных углеводородов в водопроводных и сточных водах .

Газовая хроматография была применена для определения в моче амфетаминов, барбитуратов, бензодиазепинов, опиатов методом высокотемпературной твердофазной микроэкстракции лекарственных веществ .

Ионную хроматографию использовал Siang De-Wen для определения анионитов в питьевой воде. Метод оказался простым, быстрым и точным (все анионы детектируются одновременно со среднеквадратичным отклонением?3%, регенерация 99,7% и 102%). Анализ длился 15 минут .

Ряд авторов рассчитали: разности газохроматографических индексов удерживания продуктов хлорирования алифатических кетонов и исходных карбонильных соединений постоянны. Численные значения их зависят от числа и положения атомов хлора в молекуле. Разработали вариант аддитивных схем оценки индексов удерживания для идентификации хлорпроизводных карбонильных соединений. И.Г. Зенкевич установил порядок хроматографического элюирования диастомерных б-б"-дихлор-К-алканов (К?2) .

И.В. Груздьев и соавторы изучали 2- и 4-хлоранилин, 2,4- и 2,6-дихлоранилин, 2,4,5- и 2,4,6-трихлоранилин и незамещенный анилин, разработали методики определения их микро количеств в питьевой воде, включающие получение бромопроизводных, жидкостную экстракцию толуолом, а так же для определения дифенгидрамина гидрохлорида и его основания в присутствии продуктов разложения .

В.Г. Амелин и другие применили метод газовой хроматографии с времяпролетным масс-спектрометрическим детектором для идентификации и определения пестицидов и полициклических ароматических углеводородов (46 ингредиентов) в воде и пищевых продуктах.

Потапова Т.В., Щеглова Н.В. при изучении равновесных реакций образования циклогексадиаминтетраацетатных, этилендиаминтетраацетатных, диэтилентриаминпентаацетатных комплексов некоторых металлов применили метод ионообменной хроматографии .

Посредством аналитических систем (жидкостная хроматография, масс-спектрометрия) Sony Weihua и ряд авторов установили, что в процессах с участием ОН-радикалов активных электролитов фармацевтические препараты деструктировались почти полностью.

Витальев А.А. и другие изучили условия изолирования кеторолака и диклофенака из биологических жидкостей. Предложили метод экстракции органическими растворителями при разных рН. Применили метод ТСХ для идентификации анализируемых веществ.

Использование планарной хроматографии на примере аминокислот и амлодипина продемонстрировали Pakhomov V.P., Checha O.A. для изучения и разделения оптически-активных лекарственных веществ на индивидуальные стереоизомеры с последующей идентификацией.

Методом капиллярной газовой хроматографии в сочетании с масс-спектрофотомерией показано, что экстракция из крови стероидов была наиболее полноценной (~100%).

С помощью рециркуляционной ВЭЖХ учеными было выделено восемь нецитотоксичных бактериальных модификаций лекарственной устойчивости .

Н.Н. Дементьева, Т.А. Завражская использовали газохроматографические методы анализа различных лекарственных средств в растворах для инъекций и глазных каплях .

С помощью жидкостной хроматографии определяли гиперацин и псевдогиперацин в фармацевтических препаратах с флуоресцентным детектированием . Этим же методом идентифицирована вальпроевая кислота в сыворотке крови человека, предел чувствительности 700 ммоль/л . Метод ВЭЖХ применили для определения динатрия кромогликата в фармацевтических средствах. С помощью данного метода удавалось открывать 98,2-100,8% добавленного к пробе анализируемого вещества.

М.Е. Евгеньев с сотрудниками установили влияние природы и полярности элюента, содержания водной фазы в водно-неводной смеси и ее рН на подвижность 5,7-динитробензофуразиновых производных ряда ароматических аминов в условиях УФ-ВЭЖХ. В колонке ZORBAX SB-C18 разработана методика разделения смеси шести ароматических аминов.

При разработке методов оценки качества новокаина, циклометазидина, сиднокарба А.С. Квач и соавторы применили методы ВЭЖХ и микроколоночной адсорбционной хроматографии в сочетании с фотометрическим методом анализа, позволяющим проводить количественное определение новокаина в субстанции и жидких лекарственных формах по фармакологически-активной части молекулы .

И.А. Колычев, З.А. Темердашев, Н.А. Фролова разработали метод ВЭЖХ определения двенадцати фенольных соединений в растительных материалах методом обращено-фазовой ВЭЖХ с УФ-детектированием и элюентным режимом элюирования. Изучили влияние различных факторов разделения галловой, транс-феруловой, протокатехиновой, транс-кофейной кислот, кверцетина, рутина, дигидрокверцетина и эпикатехина .

Н.А. Эпштейн использовал метод ВЭЖХ для одновременного определения лекарственных веществ в суспензиях. Ряд авторов применили данный метод для определения в плазме людей одновременного содержания пароксетина, рисперидона и 9-гидроксирепиредона (с кулонометрическим детектированием. С помощью ВЭЖХ с УФ-детектором в режиме перезагрузки колонки описан метод определения клотримазола и мометазона фурата в широком диапазоне концентраций.

А.М. Мартынов, Е.В. Чупарина разработали недеструктивную методику рентген флуоресцентного анализа ионов в растениях на спектрометре. Установили, что снижение массы растения с 6 до 1 грамма увеличивает чувствительность определения элементов. С помощью данной методики установили элементный состав фиалок, используемых в медицине.

А.С. Саушкина, В.А. Беликов произвели спектрофотомерию для идентификации левомицетина в лекарственных формах. С помощью метода УФ-спектрофотомерии предложена методика количественного определения парацетамола и мефенамовой кислоты в таблетках. Установлены оптимальные условия спектрофотометрического анализа метазида, фтивазида, изониазида, левомицетина и синтомицина на основе исследования УФ-спектров. При спектрофотометрическом определении кеторолака относительная ошибка составляет ±1,67% .

В.И. Вершинин с соавторами выявили отклонения от аддитивности светопоглощающих смесей и спрогнозировали с помощью статистических моделей, полученных в ходе полного факторного эксперимента. Модели связывают отклонения и состав смесей, что позволяет оптимизировать методики спектрофотометрического анализа.

Ж.А. Кормош в соавторстве определили пироксикам на основе экстракции его ионного ассоциата с полиметиновым красителем методом СФМ. Максимальное извлечение толуолом достигается при рН=8,0-12,0 водной фазы. Для контроля качества лекарственных препаратов, содержащих пироксикам, разработана методика экстракционно-спектрофотометрического определения.

Перспективным методом исследования лекарственного вещества является экстракционная фотометрия . Этот метод характеризуется высокой чувствительностью за счет образования продуктов взаимодействия с реагентами, приводящими к появлению дополнительных хромофоров, увеличению сопряжения, а так же за счет концентрирования продуктов реакции в органической фазе. Достаточная точность, сравнительная простота выполнения и возможность определения действующего вещества по фармакологически-активной части молекулы является еще одним достоинством экстракционной фотометрии.

Е.Ю. Жарская, Д.Ф. Нохрин, Т.П. Чурина применили экстракционную фотометрию для определения верапамила гидрохлорида, мезапама по фармакологически-активной части молекулы на основе реакции с салицилатным комплексом меди (ЙЙ) .

Н.Т. Бубон с соавторами в качестве реагента на лекарственные вещества применили бромкрезоловый пурпуровый. На основе данной реакции были разработаны экстракционно-фотометрические методы определения фторацизина и ацефена в таблетках.

Г.И. Лукьянчикова и коллеги использовали экстракционную фотометрию в анализе ацеклидина, оксилидина по фармакологически активной части молекулы на основе реакции с бромтимоловым синим. Ряд авторов применили экстракционно-фотометрический метод для количественного определения метамизила в 0,25% инъекционном растворе.

Изучая влияние рН среды и температуры на устойчивость водных растворов спазмолитина, Г.И. Олешко разработал экстракционно-фотометрический метод его анализа по фармакологически активной части молекулы на основе реакции комплексообразования с бромталлиевой кислотой.

А.А. Литвин с соавторами разработал экстракционно-фотометрический метод анализа новокаина в инъекционных растворах, мазях и изучил возможность использования его при исследовании лекарственных препаратов, содержащих новокаин, в процессе хранения .

Т.А. Смолянюк предложила методику экстракционно-фотометрического определения дифенгидрамина гидрохлорида с помощью тропеолина 000-1, которая позволяет анализировать его в присутствии примесей .

В практической фармации широко используется фотометрия и турбидиметрия . Л.В. Каджонян, И.А. Кондратенко количественно определили фотометрическим методом по фармакологически активной части молекулы дифенгидрамина гидрохлорид и тримекаин . В.А. Попков и другие применили дифференциальную сканирующую колориметрию в фарманализе для кислоты никотиновой, изониазида, фтивазида. А.И. Сичко использовал фототурбидиметрию для количественного определения тетурама . Недостатком фотометрических методов является то, что они не всегда позволяют определить действующее вещество в присутствии продуктов деструкции.

Для количественного определения лекарственных веществ также был применен флуориметрический метод . В.М. Иванов, О.А. Григорьев, А.А. Хабаров использовали флуоресцентный анализ в контроле качества лекарственных средств, содержащих фурокумарины группы псоралена и фолиевую кислоту. Широко также применяется колоночная хроматография . Д.Э. Бодрина, С.К. Еремин, Б.Н. Изотов применили микроколонку на жидкостном хроматографе «Мелихром» для определения бензодиазепинов в биологических объектах.

В последнее время широкое распространение получил хромато-спектрофотометрический метод для количественного определения вещества по фармакологически активной части молекулы. Он сочетает в себе высокую чувствительность ультрафиолетовой спектроскопии и разделительную способность тонкослойной хроматографии. С.А. Валевко, М.В. Мишустина разработали методику хромато-спектрофотометрического определения папаверина гидрохлорида, а Д.С. Лазарян и Е.В. Компанцева применили его для определения хлорпропамида в присутствии продуктов их распада.

Спектрофотометрический метод не всегда позволяет объективно контролировать количественное содержание активного компонента. Это связано с тем, что продукты распада иногда имеют максимум поглощения в той же области спектра, что и лекарственные препараты.

Большие возможности в анализе лекарственного вещества и его конформаций открывают масс-спектрометрия , атомноабсорбционная спектрофотометрия, ЯМР-, ИК-, ПМР- спектроскопия . Для идентификации дифенгидрамина гидрохлорида был использован хромато-масс-спектрометрический метод . Установлено, что в лекарственном веществе присутствуют четыре примеси: бензофенон, 9-метиленфлуорен, 9-флуоренилдиметил-аминоэтиловый эфир и дифенилметиловый эфир. Содержание дифенгидрамина составило 96,80%.

Описан метод определения атропина в экстрактах красавки с помощью масс-спектрометрии с химической ионизацией при атмосферном давлении. В качестве внутреннего стандарта использовали тербутамин . Л.В. Адеишвили с соавторами исследовали спектры дифенгидрамина гидрохлорида и мебедрола, и предложили их использовать для идентификации препаратов .

В.С. Карташов для идентификации лекарственных средств, производных хинолина и изохинолина, применили метод ЯМР. Характерные сигналы в спектрах ЯМР лекарственных средств позволяют осуществлять их надежную идентификацию с помощью персонального компьютера.

ПМР-спектроскопию с высокой напряженностью магнитного поля использовали для количественного определения пропранолола.

Т.С. Чмиленко, Е.А. Галимбиевская, Ф.А. Чмиленко показали, что при взаимодействии фенолового красного с хлоридом полигексаметиленгуанидиния образуется ионный ассоциат и несколько форм агрегатов, состав которых установлен спектрофотометрическим, турбидиметрическим, рефрактометрическим и кондуктометрическим методами . Происходит перераспределение полос поглощения, наблюдаются экстремальные точки, которые соответствуют областям максимального накопления образующихся агрегатов. Разработана методика определения ПГМГ в дезинфицирующем средстве «Биопаг-Д» с использованием экстремальных точек.

Методы исследования лекарственных веществ подразделяются на:

1. физические,

2. химические,

3. физико-химические,

4. биологические.

Физические методы анализа предусматривают изучение физических свойств вещества, не прибегая к химическим реакциям. К ним относятся: определение растворимости, прозрачности или степени мутности, цветности; определение плотности (для жидких веществ), влажности, температуры плавления, затвердевания, кипения.

Химические методы исследования основаны на химических реакциях. К ним относятся: определение зольности, реакции среды (рН), характерных числовых показателей масел и жиров (кислотное число, йодное число, число омыления и т. д.). Для целей идентификации лекарственных веществ используют только такие реакции, которые сопровождаются наглядным внешним эффектом, например изменением окраски раствора, выделением газов, выпадением или растворением осадков и т. п. К химическим методам исследования относятся также весовые и объемные методы количественного анализа, принятые в аналитической химии (метод нейтрализации, осаждения, редокс-методы и др.). В последние годы в фармацевтический анализ вошли такие химические методы исследования, как титрование в неводных средах, комплексометрия. Качественный и количественный анализ органических лекарственных веществ, как правило, проводят по характеру функциональных групп в их молекулах.

С помощью физико-химических методов изучают физические явления, которые происходят в результате химических реакций. Например, в колориметрическом методе измеряют интенсивность окраски в зависимости от концентрации вещества, в кондуктометрическом анализе - измерение электропроводности растворов и т. д.

К физико-химическим методам относятся: оптические (рефрактометрия, поляриметрия, эмиссионный и флюоресцентный методы анализа, фотометрия, включающая фотоколориметрию и спектрофотометрию, нефелометрия, турбодиметрия), электро - химические (потенциометрический и полярографический методы), хроматографические методы.

Биологическое это исследование на животных (лягушках, голубей, кошек). Определяются в ЕД. Подвергаются: ЛРС, содержащие сердечные гликозиды, ЛС, содержащие гормоны, ферменты, витамины, антибиотики.

Оформление экстемпоральные ЛП, ВАЗ, ВАФ осуществляют согласно приказу МЗ РФ № 376 и методические указания о единым оформление.

Этикетки для оформления лекарств, приготовляемых индивидуально и в порядке внутриаптечной заготовки и фасовки, в зависимости от способа их применения, подразделяются на:

ü этикетки для лекарств внутреннего употребления с надписью "Внутреннее", "Внутреннее детское";

ü этикетки для лекарств наружного применения с надписью "Наружное";

ü этикетки на лекарства для парентерального введения с надписью "Для инъекций";

ü этикетки на глазные лекарства с надписью "Глазные капли", "Глазная мазь".

На всех этикетках для оформления лекарств, приготовленных индивидуально и в порядке внутриаптечной заготовки и фасовки, должны быть типографским способом отпечатаны предупредительные надписи, соответствующие каждой лекарственной форме:

ü для микстур - "хранить в прохладном и защищенном от света месте", "перед употреблением взбалтывать";

ü для мазей, глазных мазей и глазных капель - "хранить в прохладном и защищенном от света месте";

ü для капель внутреннего употребления - "хранить в защищенном от света месте";

ü для инъекций - "стерильно".

Все этикетки обязательно должны содержать предупредительную надпись "беречь от детей".

Лекарственная форма указывается от руки.

На всех этикетках для оформления лекарств, приготовляемых в порядке внутриаптечной заготовки и фасовки, должны быть следующие обозначения:

ü эмблема (чаша со змеей);

ü местонахождение аптечного учреждения (предприятия);

ü наименование аптечного учреждения (предприятия);

ü способ применения (внутреннее, наружное, для инъекций) или лекарственной формы (мазь, глазные капли, капли в нос и т.д.);

ü дата приготовления...;

ü годен до...;

ü серия...;

ü "беречь от детей".

Текст аптечных этикеток, предназначенных для оформления лекарств, приготовляемых индивидуально, а также способ применения должны быть напечатаны на русском или местном языке.

Текст аптечных этикеток, предназначенных для оформления лекарств, приготовляемых в порядке внутриаптечной заготовки и фасовки, а также их наименования и необходимые предупредительные надписи рекомендуется печатать типографским способом.

Предупредительные надписи, наклеиваемые на лекарства, имеют следующий текст и сигнальные цвета:

ü "перед употреблением взбалтывать" - на белом фоне зеленый шрифт;

ü "хранить в защищенном от света месте" - на синем фоне белый шрифт;

ü "хранить в прохладном месте" - на голубом фоне белый шрифт;

ü "детское" - на зеленом фоне белый шрифт;

ü "для новорожденных" - на зеленом фоне белый шрифт;

ü "обращаться с осторожностью" - на белом фоне красный шрифт;

ü "сердечное" - на оранжевом фоне белый шрифт;

ü "беречь от огня" - на красном фоне белый шрифт.

Особо ядовитые вещества (<...>, цианид и оксицианид ртути) оформляются одной предупредительной этикеткой черного цвета с обозначением белым шрифтом названия ядовитого лекарственного средства на русском (или местном) языке с изображением скрещенных костей и черепа и надписью "яд" и "обращаться осторожно" в соответствии с действующим приказом.

Оформление лекарств, приготовляемых в аптечных учреждениях (предприятиях) различных форм собственности, в соответствии с представленными Едиными правилами оформления лекарств способствует улучшению культуры лекарственного обеспечения населения, усилению контроля за сроками годности приготовленных лекарств и их ценой, привлечению к ним внимания с целью исключения возможных ошибок при их использовании.

Определение тарифов

В оплату включается:

1. Стоимость ЛС

2. Стоимость вспомогательных материалов

3. Стоимость посуды

4. Издержки

Утверждается тарифы приказом аптеки.

Исходными данными для определения издержек производства служат данные бухгалтерского учета и отчетности аптеки за истекший месяц.

Количество условных производственных единиц отражает полную трудоемкость работы по изготовлению одной единицы лекарственного средства и ИМН.

За одну производственную единицу условно принята работа, выполняемая в течении 10 мин.

За одну единицу изготовления стерильных и жидких лекарственных форм, мазей принимается лекарственное средство, полностью оформленное в соответствии с действующими документами и предназначенное для отпуска.

К стерильным лекарственным формам относятся растворы для инъекционного применения, инфузнные растворы, офтальмологические растворы для орошения, растворы и масла для новорожденных.

К ЖЛФ относятся растворы и капли для внутреннего употребления и наружного применения, масла, очищенная вода.

К мазям относятся пасты, линименты, пластыри жидкие, суспензии, эмульсии.

За одну единицу порошков и суппозиториев условно принята лекарственная форма с расфасовкой на 10 доз.


Похожая информация.