Физика в повседневной жизни. Физика в нашей жизни презентация к уроку по физике на тему

Появилась в продаже книга Луиса Блумфилда «Как все работает. Законы физики в нашей жизни» , подготовленная к печати издательством Corpus при двойной поддержке Политехнического музея и «Книжных проектов Дмитрия Зимина». Расскажем о том, почему её стоит прочитать - особенно если физика представляется вам чем-то скучным и непонятным.

Поднимаясь утром с пружинного матраса, включая электрический чайник, согревая руки о чашку кофе и проделывая ещё десятки повседневных вещей, мы редко задумываемся о том, как именно всё это происходит. Возможно, в чьей-то памяти одиноким осколком торчит закон Ома или правило буравчика (хорошо, если вы вообще помните, что «буравчик» - это винт, а не фамилия).

Далеко не всегда ясно, в какие моменты жизни мы встречаемся с силой тока и моментом импульса.

Само собой, существуют учёные, технические специалисты и гики. Мы даже готовы поверить, что бывают люди, которые просто очень хорошо учили физику в школе (наше им уважение). Для них не составит труда рассказать, как именно работает лампа накаливания или солнечная батарея и объяснить, глядя на крутящееся велосипедное колесо, где там трение покоя, а где - трение скольжения. Однако, будем честными, большинство людей имеет обо всём этом весьма смутные представления.

Из-за этого кажется, будто природные объекты и механизмы ведут себя тем или иным образом благодаря каким-то волшебным силам. Бытовое представление о причинах и следствиях может оградить от некоторых ошибок (например, не класть обёрнутые фольгой продукты в микроволновку), однако более глубокое понимание физико-химических процессов позволяет лучше разбираться, что к чему, и аргументировать свои решения.

Луис Блумфилд - профессор Виргинского университета, исследователь атомной физики, физики конденсированного состояния и оптики.

Ещё в юности он выбрал опыты главным методом исследования мира, черпая из обыденных вещей вдохновение для занятий наукой. Стремясь сделать знания доступными для многих людей, а не горстки специалистов, Блумфилд занимается преподаванием , выступает на телевидении и пишет научно-популярные работы.

Главная задача книги «Как все работает. Законы физики в нашей жизни» - опровергнуть представление о физике как скучной и оторванной от жизни науке, и дать понять, что она описывает реальные явления, которые можно увидеть, пощупать и ощутить.

Для меня всегда было загадкой, почему физика традиционно преподается как абстрактная наука - ведь она изучает вещественный мир и законы, которыми тот управляется. Я убеждён в обратном: если лишить физику бесчисленных примеров из живого, реального мира, она не будет иметь ни основы, ни формы - словно молочный коктейль без стакана.

Луис Блумфильд

Речь идёт о движении тел, механических устройствах, тепле и многом другом. Вместо того, чтобы начинать с теории, автор идёт от окружающих нас вещей, формулируя с их помощью законы и принципы. Отправными точками служат карусели, американские горки, водопровод, тёплая одежда, аудиоплееры, лазеры и светодиоды, телескопы и микроскопы...

Вот некоторые примеры из книги, на которых автор объясняет механику простых вещей.

Почему конькобежцы быстро двигаются

Коньки - удобный способ рассказать о принципах движения. Ещё Галилео Галилей сформулировал, что тела имеют свойство двигаться равномерно и прямолинейно в отсутствие внешних сил, будь то сопротивление воздуха или трение поверхности. Коньки способны почти полностью устранить трение, так что вы легко скользите по льду. Объект в состоянии покоя стремится остаться на месте, а объект движущийся - двигаться дальше. Именно это называется инерцией.

Как режут ножницы

Сдвигая кольца ножниц, вы производите моменты сил, под действием которых лезвия смыкаются и режут бумагу. Бумага стремится раздвинуть лезвия за счет моментов сил, «разводящих» лезвия. Если вы приложите достаточно большое усилие, «сдвигающие» моменты сил возобладают над «разводящими». В результате лезвия ножниц приобретут угловое ускорение, начнут поворачиваться, сомкнутся и разрежут лист бумаги.

Что творится в шампурах

Если нагреть один конец металлического стержня, атомы в этой части стержня будут колебаться более интенсивно, чем в холодном конце, и металл начнет проводить тепло из горячего конца к холодному. Некоторая часть этого тепла передается благодаря взаимодействию соседних атомов, однако основная его часть будет передана подвижными электронами, которые переносят тепловую энергию на большие расстояния от одного атома к другому.

Как забиваются гвозди

Весь направленный вниз импульс, который вы сообщаете молотку, замахнувшись, передаётся гвоздю за время краткого удара. Поскольку время передачи импульса мало, со стороны молотка должна быть приложена очень большая сила, чтобы его импульс перешёл к гвоздю. Эта ударная сила вбивает гвоздь в доску.

Зачем воздушные шары нагревают

Чтобы заполнить воздушный шар горячим воздухом, нужно меньше частиц, чем для заполнения холодным воздухом. Дело в том, что в среднем частица горячего воздуха движется быстрее, сталкивается чаще и занимает больше места, чем частица холодного воздуха. Поэтому шар, наполненный горячим воздухом, весит меньше, чем такой же шар, наполненный холодным. Если вес шара достаточно мал, равнодействующая сила направлена вверх, и шар поднимается.

Почему воланчик летит всегда одинаково

Бадминтонный волан всегда летит головкой вперед, так как результирующая сила, вызванная давлением, приложена в его центре давления, на некотором расстоянии от центра масс. Если вдруг оперение случайно окажется впереди головки, сопротивление воздуха создаст момент силы относительно центра масс и вернет всё на свои места.

Что делает воду жёсткой

Жёсткой считается вода, в которой содержание положительно заряженных ионов кальция и магния превышает 120 мг на литр. Ионы этих и некоторых других металлов связывают отрицательные ионы мыла и создают нерастворимую пену, оседающую грязным налетом на раковине, лейке душа, ванне, в стиральной машине и на одежде. Затеяв стирку мылом в жёсткой воде, будьте готовы к неприятным сюрпризам.

Пройти курс у автора

У Луиса Блумфилда можно поучиться онлайн на курсе «Как работают вещи» : здесь он запускает машинки, отправляется на детскую площадку, чтобы поговорить о качелях, ставит опыты и рассказывает обо всём на свете.

Если даже этого вам окажется мало, и профессора захочется увидеть воочию, такая возможность тоже есть: Луис Блумфилд будет в Москве с 3 по 8 декабря.

Муниципальное бюджетное общеобразовательное учреждение

Средняя общеобразовательная школа №11

Выполнила: Ученица 10 «А» класса МБОУСОШ №11

Рябоконь Юлия Вадимовна
Возрастная группа: Средняя

Руководитель: Учитель физики МБОУСОШ №11
Глушкова Татьяна Александровна

г. Новочеркасск

2014 г.

Законы электродинамики применяются практически везде.. Например: электрический свет, транспорт, само электричество и многое другое.

Так же как и электричество, магнетизм является повседневным явлением в нашей жизни. Чаще всего из магнетизма мы встречаемся с магнитным полем , которое окружает нас повсюду. Магниты применяются в разных радио- электроприборах .

Музыкальные инструменты, акустические динамики, ультразвуковые диагностические аппараты – всего этого не было бы если бы в физике не открыли такое явление, как колебания и волны .

Даже обычный велосипед является не только средством передвижения, но и сложной механической системой, которая работает по фундаментальным законам физики. Все велосипеды, вне зависимости от типа, марки, модели и стоимости, заставляют своих наездников преодолевать различные силы. Во время езды велосипедист сталкивается с двумя основными силами – это гравитация и аэродинамика . Сила земного притяжения прижимает велосипедиста с его транспортным средством к земле. При этом вектор действия силы направлен строго перпендикулярно поверхности земли. Сила гравитации тем больше, чем тяжелее весит велосипед вместе со своим наездником. Она оказывает большое влияние на те усилия, которые приходится прикладывать велосипедисту при езде на своём двухколёсном транспортном средстве. Если масса тела и вес велосипеда меньше, то и ездить будет гораздо проще.

Второй фундаментальной физической силой, которую приходится преодолевать велосипедисту во время движения, является аэродинамика . Чем быстрее движется велосипедист, тем больше сила сопротивления воздуха. Помимо встречных воздушных потоков на велосипед могут действовать и боковые ветра, что ещё больше усложняет движение и заставляет прикладывать дополнительные силы.

Сейчас человек привязан к изобретениям на основе физики, в каждом автомобиле есть двигатель – механизм, который преобразует какой-нибудь определенный вид энергии – электрическую, гидравлическую, химическую и т. п. – в механическую. Каждый телефон использует приёмопередатчик радиодиапазона и традиционную телефонную коммутацию для осуществления телефонной связи на территории зоны покрытия сотовой сети.

Можно бесконечно перечислять приборы и устройства которые благодаря физике делают нашу жизнь лучше, но физику можно так же наблюдать и в таких простых явлениях как: образование росы, образование радуги, северного сияния, линзовидных облаков.

Образование росы

Вы, возможно, видели маленькие капли воды на траве, растениях и деревьев сияющими в ранние часы утра. Эти капли воды называются росой. Довольно часто люди думают, что капли росы, подобно каплям дождя, падают на землю с неба в течение ночи, но это не так.

Капли росы образуются в результате конденсации водяных паров. Воздух вокруг нас содержит водяные пары. Горячий воздух содержит больше влаги, чем холодный воздух. На протяжении ночи, когда горячий воздух входит в контакт с небольшой холодной поверхностью, водяной пар, присутствующий в нем, конденсируется на холодной поверхности в виде капель. Эти крошечные капли воды называются каплями росы.

Процесс формирования росы можно увидеть на примере простого эксперимента. Возьмите стакан и поместите его на стол. Теперь положите лед или налейте ледяную воду внутрь стакана. Вы заметите, что через некоторое время на внешней поверхности стакана появились мелкие капли воды. Эти капли воды образуются в результате конденсации водяных паров, присутствующих в воздухе. Точно так же, когда деревья, растения и травы становятся холодными ночью, пары воды из воздуха конденсируется на них в виде росы.

Роса образуется больше, когда небо чистое и меньше при облачной погоде. Во время облачности деревья и растения недостаточно охлаждаются и, следовательно, меньше образуется конденсата.




Что же такое радуга?

Каждый из нас видел такое прекрасное явление природы как радуга. Первые упоминания о ней были зафиксированы в древнегреческой, древнеиндийской и скандинавской мифологии. Древние ученые пытались объяснить природу происхождения радуги. Данной тематике посветили свои научные работы такие ученые как Кутб ад-Дин аш-Ширази (1236-1311), Камал ал-Дин ал-Фариси (1260-1320), Дитер Фрейбургский и другие. Иногда данные объяснения заканчивались гибелью ученого. Так архиепископ Марк Антонио де Доминис, изложив теорию о возникновении радуги, в 1611 году был приговорен инквизицией к смертной казни. Причиной послужило то, что его теория противоречила библейскому толкованию происхождения радуги. С точки зрения библии радуга появилась после всемирного потопа, как символ союза между богом и человечеством, как символ прощения человечества. Однако развитие науки не стояло на месте и в 1927 году Исаак Ньютон, проведя эксперимент разложения солнечного света на цветовой спектр с использованием стеклянной призмы, смог дополнить теорию Декарта и де Доминиса и окончательно обосновать природу возникновения радуги.

Радуга – это атмосферное оптическое и метеорологическое явление, наблюдаемое при взаимодействии солнечного света и водяных капель
. Она представляет собой дугу, состоящую из семи цветов (в некоторых культурах упоминаются 6 цветов). Интересным фактом является то, что радуга может возникнуть не только при прямом воздействии Солнца, но в ясную ночь может быть вызвана светом, отраженным от Луны. В качестве «водяных капель» может быть как дождь или туман, так и, к примеру, разбрызгиваемая поливочным агрегатом вода.

Солнечный луч или обычный луч белого света в действительности является сочетанием цветов, каждый из которых имеет свой угол преломления при прохождении через водяную каплю. Данный параметр зависит от длины волны цвета(см.в приложении 1) В результате белый свет, при прохождении через водяную каплю, разлагается в спектр (происходит дисперсия света).

Радуга, образовавшаяся при одном внутреннем отражении света, называется первичной. При этом красный цвет находится снаружи радуги. Иногда возле первичной радуги может присутствовать вторичная, образованная светом, отраженным в каплях два раза. У такой радуги порядок расположения цветов будет противоположным (фиолетовый цвет снаружи радуги). Появление радуги более высоких порядков в естественных условиях случается чрезвычайно редко, однако вполне может быть достигнуто в лабораторных условиях.

Несмотря на то, что природа возникновения радуги давно изучена, данное явление продолжает восхищать и радовать нас, внося долю волшебства в этот век «высоких технологий».

Полярное сияние

Полярные сияния, также известные как северные и южные полярные сияния, являются естественным светом в небе, и обычно наблюдаются в ночное время. Обычно они возникают в ионосфере. Как правило, видны от 65 до 72 градусов северной и южной широт, образующих кольцо в пределах Арктики и Антарктики.

Полярное сияние образуется, когда заряженные частицы (электроны и протоны) попадают в атмосферу вблизи полюсов. Когда эти частицы сталкиваются с атомами и молекулами верхних слоев атмосферы, в первую очередь кислорода и азота, часть энергии в этих столкновений преобразуется в видимый свет, который характеризует сияние. Высокоскоростные частицы сталкиваются с атомами в атмосфере Земли на высоте где-то от 50 до нескольких сотен километров над поверхностью Земли. Частицы происходят из космоса, в частности, из солнечного ветра дующего в направлении от Солнца.Когда электроны из космоса сталкиваются с атомами или молекулами в атмосфере Земли, электрон переходит на более высокий энергетический уровень и атом находится в возбужденном состоянии. Через некоторое время, электрон в возбужденном атоме переходит на исходный низкий энергетический уровень. Он освобождает энергию как свет, вызывая свечение полярных сияний.

Цвет сияния зависит от химического состава, и каждый тип атомов производит свой ​​собственный уникальный образец цвета. Таким образом, различные цвета в полярных сияниях происходят из различных элементов в атмосфере Земли.

Два основных атмосферных газа, участвующих в полярном сиянии - кислород и азот:

· Кислород отвечает за появление двух основных цветов: желто-зеленый длина волны 557,7 нанометров (нм) является наиболее распространенным, в то время как темно-красный 630,0 нм свет встречается реже. Атомарный кислород образуется на больших высотах, поэтому красный цвет в полярном сиянии обычно располагается над зеленым.

· Азот в ионизированном состоянии будет производить синий свет, в то время как нейтральные молекулы азота - багрово-красные цвета. Азот часто является ответственным за пурпурно-красные нижние границы и рифленые края сияния.

Смеси этих цветов образуют другие цвета.

Полярные сияния, как правило, не происходят выше 500-1000 км, так как на этой высоте атмосфера слишком тонкая, чтобы обеспечить достаточное число столкновений с входящими частицами/

Наиболее заметны ближе к полюсам из-за длительных периодов темноты и магнитного поля.

Лентикулярные (линзовидные) облака

Лентикулярные (также линзовидные) облака - уникальное природное явление. Эти облака обычно образуются вокруг холмов и гор. Выглядят они весьма своеобразно, похожи на гигантские летающие тарелки или на стопку блинов. Многие известные горы во всем мире часто фотографировали с шапкой из этих облаков, в том числе горы Шаста и Фудзи.

Лентикулярные облака образуются, когда поток влажного воздуха устремляется вверх, обтекая гору, приводя к конденсации влаги и образованию облака.

Линзовидные облака выглядят совершенно неподвижно, как будто замороженны во времени. На самом деле это не так. Облака кажутся неподвижными, так как поток влажного воздуха постоянно пополняет запасы облака с наветренной стороны, в то время как влага испаряется и исчезает с подветренной стороны, оставляя облака характерной линзовидной формы. В зависимости от силы воздушного потока и доступной влаги, ветровая волна может создать несколько лентикулярных облаков, сложенных друг на друга, как тарелки. Можно наблюдать как эти облака парят в течение нескольких часов или дней, пока не придут ветра или изменения погоды и не рассеют их.

Линзовидные облака образуются на большой высоте между 2000 и 7000 метров. Они требуют климата со постоянными, влажными быстродвижущимися ветрами для создания необходимой ветровой волны в атмосфере.

Итак, Физика нужна для объяснения природных явлений, она устанавливает законы которые помогают объяснить эти явления. Она утверждает, что человек не может познать законы природы и, следовательно, управлять ею. С развитием человеческого общества наука все глубже проникает в тайны природы, устанавливает связи между явлениями, причины их возникновения, познает окружающую природу и управляет ею. Физика составляет основу техники, которая использует физические законы для разрешения практических задач, а совершенствующаяся техника способствует и помогает развитию физики. Физику также используют на службе, например на радиоктивных станциях, в механических целях и др .

Поэтому человек в наше время вряд ли протянул бы без физики, ведь именно она объясняет большинство явлений происходящих в нашей жизни, а так же благодаря ей в нашей жизни есть столько прекрасных изобретений которые помогают нам жить лучше.
Может возникнуть вопрос, - зачем физика нужна нам? Позволим себе ответить на него опять же таки вопросом, - а зачем сороконожке ноги, птицам крылья, а растениям солнце?
Правильно, - да потому, что без всего этого им не обойтись!!! Физика сегодня необходима нам как никогда раньше. Ведь вы используете законы физики каждый день, в своей повседневной жизни- когда готовите еду, смотрите телевизор или же просто нежитесь в ванной. Законы Архимеда, законы, применяемые в оптике, или физические законы из раздела гидро-газо-динамики стали для нас чем-то на столько обыденным, что мы уже просто не обращаем на них своего внимания, а зря…
Физика – это в первую очередь, возможность человека как можно более глубже познать окружающий его мир, упорядочить систему его мировосприятия и осознать себя неотъемлемой его частью!

Физическая наука всеобъемлюща в своем стремлении охватить как можно больше и как можно более детально описать то, что попадает в поле зрения ее апологетов, и поэтому с полным правом может претендовать на почетное звание королевы наук.

Практическая часть

Анкетирование среди учащихся: ‹‹Какие физические явления вы наблюдаете в быту?»


Физика окружает нас везде, особенно дома. Мы привыкли её не замечать. Знание физических явлений и законов помогает нам в домашних делах, защищает от ошибок. Посмотрите на то, что происходит у вас дома глазами Физика, и Вы увидите много интересного и полезного!

Для того чтобы выяснить, насколько велика необходимость физических знаний для повседневной жизни и познания самого себя, я провела небольшое анкетирование среди учащихся 9-11 классов. В анкетировании принимало участие 132 человека.

Результаты анкетирования получились следующие:

1. Какие физические явления Вы замечали в быту ?

95% замечали кипение, испарение и конденсацию.

2. Приходилось ли Вам использовать в быту знания по физике?

76% дали утвердительный ответ

3. Попадали ли Вы в неприятные бытовые ситуации:

Ожог паром или о горячие части посуды

Удар током

Короткое замыкание

Включили прибор в розетку, и он сгорел

4. Могло ли вам помочь знание физики избежать неприятных ситуаций

88% дали утвердительный ответ

5. Интересуетесь ли Вы при покупке бытовых приборов их :
техническими характеристиками

техникой безопасности

правилами эксплуатации

возможным негативным действием на здоровье

Заключение


Анализ результатов тестирования

При изучении физики в школе надо больше внимания уделять вопросам практического применения физических знаний в быту(см. приложение 2) . В школе следует знакомить учащихся с физическими явлениями, лежащими в основе работы бытовых приборов. Особое внимание надо уделять вопросам возможного негативного воздействия бытовых приборов на организм человека. На уроках физики учащихся надо учить пользоваться инструкциями к электроприборам. Перед тем, как позволить ребёнку пользоваться бытовым электроприбором, взрослые должны убедиться в том, что ребёнок твёрдо усвоил правила безопасности при обращении с ним. Для того чтобы избежать большинство неприятных бытовых ситуаций нам необходимы физические знания!

Насколько человек интересуется физикой в 21 веке?

Физика наука точная и сложная. Поэтому возникает вопрос, есть ли кому в 21 веке продвигаться в этой науке дальше, изучать её более глубже и уделять особое внимание?
Думаю что скамья запасных еще не опустела, есть множество ВУЗов с факультетами изучающими этот предмет, а значит и людей которые занимаются данной наукой, конечно не каждому хочется связать свою жизнь именно с физикой, но при получении образования или уже выбора профессии физика может являться весомым фактором, которая определит кем тебе быть в дальнейшем. Ведь физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке.

10) Я. Перельман Занимательная механика РИМИС, 2010
фамилия,инициалы,название, выход.данные,год издания кол-во стр.

Приложение 1

У красного цвета угол преломления составляет 137°30’, а у фиолетового - 139°20’. Остальные цвета (оранжевый, желтый, зеленый, голубой и синий) имеют некоторое промежуточное значение.

Приложение 2

Чтобы стеклянный стакан не лопнул, когда в него наливают кипяток, в него кладут металлическую ложку.

Ежедневно мы кипятим воду

Из двух чашек от кипятка не лопнет та, у которой стенка тоньше, так как она быстрее равномерно прогреется.

Когда мы моемся в ванной, запотевание зеркала и стен происходит в результате конденсации водяного пара.

Если в чашку налить горячую воду и накрыть крышкой, то водяной пар конденсируется на крышке.

Кран с холодной водой всегда можно отличить по капелькам воды, которые образовались на нём при конденсации водяного пара.

Заваривание чая

Засолка огурцов, грибов, рыбы и т.д.

Распространение запахов

Чай всегда заваривают кипятком, так как при этом диффузия происходит быстрее

Нельзя стирать вместе цветные и белые вещи!

Ручки у кастрюль делают из материалов, плохо проводящих тепло, чтобы не обжечься

Если у крышки кастрюли ручка металлическая, а прихватки под рукой нет, то можно воспользоваться прищепкой или вставить в отверстие пробку.

Нельзя открывать крышку кастрюли заглядывать в неё, когда в ней кипит вода.

Ожог паром очень опасен!

Внутренняя стеклянная колба термоса имеет двойные стенки, между которыми вакуум. Это позволяет предотвратить потерю тепла в результате теплопроводности. Колба имеет серебристый цвет, чтобы предотвратить потерю тепла излучением.

Пробка препятствует потере тепла путём конвекции. Кроме того, она имеет плохую теплопроводность.Корпус защищает колбу от повреждений.

Если нет термоса, то банку с супом можно завернуть в фольгу и газету или шерстяной платок, а кастрюлю с супом можно накрыть пуховым или ватным одеялом.

Дерево имеет плохую теплопроводность, поэтому деревянный паркет теплее, чем другие покрытия.

Ковер имеет плохую теплопроводность, поэтому ногам на нём теплее.

В стеклопакетах между стёклами находится воздух (иногда его даже откачивают).Его плохая теплопроводность препятствует теплообмену между холодным воздухом на улице и тёплым воздухом в комнате. Кроме того, стеклопакеты снижают уровень шума.

Батареи в квартирах располагают внизу, так как горячий воздух от них в результате конвекции поднимается вверх и обогревает комнату.

Вытяжку располагают над плитой, так как горячие пары и испарения от еды поднимаются вверх.

При традиционном обогреве комнаты самым холодным местом в комнате является пол, а теплее всего у потолка.

В отличии от конвекции, прогрев комнаты излучением от пола происходит снизу вверх, и ноги не мёрзнут!

Магнитные застежки на сумках и куртках.

Декоративные магниты.

Магнитные замки на мебели.

Для увеличения давления мы затачиваем ножницы и ножи, используем тонкие иголки.

рычаг, винт, ворот, клин

В быту мы часто используем простые механизмы:

Чтобы увеличить трение, мы носим обувь на рельефной подошве.

Коврик в прихожей делают на резиновой основе.

На зубных щетках и ручках используют специальные резиновые накладки.

Чистые и сухие волосы при расчесывании пластмассовой расческой притягиваются к ней, так как в результате трения расчёска и волосы приобретают заряды, равные по величине и противоположные по знаку. Металлическая расчёска такого эффекта не даёт, так как является хорошим проводником

При включении и работе телевизора у экрана создается сильное электрическое поле. Мы его обнаружили с помощью гильзы, изготовленной из фольги. Из-за электростатического поля к экрану телевизора прилипает пыль, поэтому его надо регулярно протирать! Нельзя во время работы телевизора находиться на расстоянии менее 0,5 мот его задней и боковых панелей. Сильное магнитное поле катушек, управляющих электронным лучом, плохо влияет на организм человека!

В представленных электроприборах используется тепловое действие тока.

Чтобы не было перегрузок и короткого замыкания, не включайте несколько мощных приборов в одну розетку!

Выключая прибор из розетки, не тяните за провод! Не берите электроприборы мокрыми руками!

Не включайте в сеть неисправные электроприборы! Следите за исправностью изоляции электропроводки! Уходя из дома, выключайте все электроприборы!

Для защиты приборов от короткого замыкания и скачков напряжения используйте стабилизаторы напряжения!

Для подключения приборов большой мощности (электроплиты, стиральные машины),должны быть установлены специальные розетки!

Система электроснабжения квартиры

Приборы, которые излучают

По мобильному телефону можно разговаривать не более 20 мин. в день!

Приборы, требующие особой осторожности при использовании

Диапазоны электромагнитного излучения разных бытовых электроприборов

Старайтесь не подвергаться длительному воздействию сильных ЭМП. При необходимости установите полы с электро подогревом, выбирайте системы с пониженным уровнем магнитного поля.

План правильного расположения электротехники в квартире

.

Физика окружает нас везде, особенно
дома. Мы привыкли её не замечать.
Знание физических явлений и законов
помогает нам в домашних делах,
защищает от ошибок.
Посмотрите на то, что происходит у
вас дома глазами физика, и Вы увидите
много интересного и полезного!

Результаты анкетирования

Вопросы
Учащиеся
Взрослые
1.


конденсацию
2.

по физике?

3.


98 %
удар током
35%
42 %
короткое замыкание
30%
45%

23%
62 %
4.

неприятных ситуаций
88%
73 %
5.


30%
100%
техникой безопасности
47%
100%
правилами эксплуатации
12%
96%

43%
77%

во
ду
пя
ти
м
ки
ы
м
ев
но
Еж
ед
н
Чтобы стеклянный стакан
не лопнул, когда в него
наливают кипяток, в него
кладут металлическую
ложку.
Из двух чашек от кипятка
не лопнет та, у которой
стенка тоньше, так как она
быстрее равномерно прогреется.

Когда мы
моемся в ванной,
Если в чашку
запотевание
налить
зеркала и стен
горячую воду
происходит в
и накрыть
результате
Кран с холодной водой всегда
крышкой,
конденсации
можно отличить по
то водяной пар
водяного пара.
капелькам воды,
которые образовались на нём конденсируется
на крышке.
при конденсации водяного пара.

Нельзя стирать
вместе цветные
и белые вещи!
Заваривание чая
Чай всегда заваривают
Засолка огурцов,
кипятком, так как при этом грибов, рыбы и т.д.
Распространение запахов
диффузия происходит
быстрее

Ручки у кастрюль делают из
материалов, плохо проводящих
тепло, чтобы не обжечься
Нельзя открывать крышку кастрюли
и заглядывать в неё,
когда в ней кипит вода.
Ожог паром очень опасен!
Если у крышки кастрюли
ручка металлическая,
а прихватки под рукой нет,
то можно воспользоваться
прищепкой или вставить в
отверстие пробку.

можно использовать для хранения
горячих и холодных продуктов
Внутренняя стеклянная колба термоса имеет
двойные стенки, между которыми вакуум. Это
позволяет предотвратить потерю тепла в
результате теплопроводности.
Колба имеет серебристый цвет, чтобы
предотвратить потерю тепла излучением.
Если нет термоса, то
банку с супом можно
завернуть в фольгу и
газету или шерстяной
платок, а кастрюлю
с супом можно накрыть
пуховым или ватным
Корпус защищает колбу
одеялом.
от повреждений.
Пробка препятствует
потере тепла путём
конвекции. Кроме того,
она имеет плохую
теплопроводность.

Ковер имеет плохую
теплопроводность,
поэтому ногам на нём теплее.
Дерево имеет плохую
теплопроводность, поэтому
деревянный паркет теплее,
чем другие покрытия.
В стеклопакетах
между стёклами
находится воздух
(иногда его даже
откачивают).
Его плохая
теплопроводность
препятствует
теплообмену
между холодным
воздухом на улице
и тёплым воздухом
в комнате.
Кроме того,
стеклопакеты
снижают уровень
шума.

10.

Батареи в квартирах
располагают внизу, так как
горячий воздух от них
в результате конвекции
поднимается вверх и
обогревает комнату.
Вытяжку располагают
над плитой, так как
горячие пары и испарения
от еды поднимаются вверх.

11.

При традиционном обогреве
комнаты самым холодным
местом в комнате является
пол, а теплее всего у потолка.
В отличии от конвекции,
прогрев комнаты излучением
от пола происходит снизу
вверх, и ноги не мёрзнут!

12.

Магнитные застежки на сумках и куртках.
Декоративные магниты.
Магнитные замки на мебели.

13.

Для увеличения давления мы затачиваем
ножницы и ножи, используем тонкие иголки.

14.

В быту мы часто используем
простые механизмы:
рычаг, винт, ворот, клин

15.

16.

Чтобы увеличить трение, мы носим
обувь на рельефной подошве.
Коврик в прихожей делают на
резиновой основе.
На зубных щетках и ручках
используют специальные
резиновые накладки.

17.

Чистые и сухие волосы
при расчесывании пластмассовой расческой
притягиваются к ней, так как в результате трения
расчёска и волосы приобретают заряды,
равные по величине и противоположные
по знаку. Металлическая расчёска
такого эффекта не даёт, так как
является хорошим проводником

18.

При включении и работе телевизора
у экрана создается сильное
электрическое поле.
Мы его обнаружили с помощью
гильзы, изготовленной из фольги.
Из-за электростатического поля
к экрану телевизора прилипает пыль,
поэтому его надо регулярно протирать!
Нельзя во время работы телевизора
находиться на расстоянии менее 0,5 м
от его задней и боковых панелей.
Сильное магнитное поле катушек,
управляющих электронным лучом,
плохо влияет на организм человека!

19.

Комнатный
термометр
Часы
Тер
мом
етр
Барометр
Весы
Тонометр
Мензурка

20.

В представленных электроприборах
используется тепловое действие тока.

21.

Чтобы не было перегрузок и короткого
замыкания, не включайте несколько
мощных приборов в одну розетку!

22.

Выключая прибор из розетки,
не тяните за провод!
Не берите электроприборы
мокрыми руками!
Не включайте в сеть
неисправные электроприборы!
Следите за исправностью
изоляции электропроводки!
Уходя из дома, выключайте
все электроприборы!

23. Для защиты приборов от короткого замыкания и скачков напряжения используйте стабилизаторы напряжения!

Для подключения приборов
большой мощности
(электроплиты,
стиральные машины),
должны быть установлены
специальные розетки!

24. Система электроснабжения квартиры

25. Приборы, которые излучают

По мобильному телефону можно
разговаривать не более 20 мин. в день!

26. Приборы, требующие особой осторожности при использовании

27.

28.

Диапазоны электромагнитного излучения
разных бытовых электроприборов
Старайтесь не подвергаться длительному воздействию сильных ЭМП.
При необходимости установите полы с электроподогревом,
выбирайте системы с пониженным уровнем магнитного поля.

29. План правильного расположения электротехники в квартире

30. Результаты анкетирования

Вопросы
Учащиеся
Взрослые
1.
Какие физические явления Вы замечали в быту?
95% замечали кипение, испарение и
конденсацию
2.
Приходилось ли Вам использовать в быту знания
по физике?
76% дали утвердительный ответ
3.
Попадали ли Вы в неприятные бытовые ситуации:
ожог паром или о горячие части посуды
98 %
удар током
35%
42 %
короткое замыкание
30%
45%
включили прибор в розетку, и он сгорел
23%
62 %
4.
Могло ли Вам помочь знание физики избежать
неприятных ситуаций
88%
73 %
5.
Интересуетесь ли Вы при покупке бытовых приборов их:
техническими характеристиками
30%
100%
техникой безопасности
47%
100%
правилами эксплуатации
12%
96%
возможным негативным действием на здоровье
43%
77%

31. Анализ результатов опроса

При изучении физики в школе надо больше внимания
уделять вопросам практического применения физических
знаний в быту.
В школе следует знакомить учащихся с физическими
явлениями, лежащими в основе работы бытовых приборов.
Особое внимание надо уделять вопросам возможного
негативного воздействия бытовых приборов на организм
человека.
На уроках физики учащихся надо учить пользоваться
инструкциями к электроприборам.
Перед тем, как позволить ребёнку пользоваться бытовым
электроприбором, взрослые должны убедиться в том, что
ребёнок твёрдо усвоил правила безопасности при
обращении с ним.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Роль физики в нашей жизни

1. Что такое Физика

Фи м зика -- область естествознания. Наука о простейших и вместе с тем наиболее общих законах природы, о материи, её структуре и движении. Законы физики лежат в основе всего естествознания

Термин «физика» впервые появился в сочинениях одного из величайших мыслителей древности -- Аристотеля, жившего в IV веке до нашей эры. Первоначально термины «физика» и «философия» были синонимичны, поскольку в основе обеих дисциплин лежало стремление объяснить законы функционирования Вселенной. Однако в результате научной революции XVI века физика выделилась в отдельное научное направление.

В русский язык слово «физика» было введено М. В. Ломоносовым, В современном мире значение физики чрезвычайно велико. Всё то, чем отличается современное общество от общества прошлых веков, появилось в результате применения на практике физических открытий. Так, исследования в области электромагнетизма привели к появлению телефонов и позже мобильных телефонов, открытия в термодинамике позволили создать автомобиль, развитие электроники привело к появлению компьютеров.

Физическое понимание процессов, происходящих в природе, постоянно развивается. Большинство новых открытий вскоре получают применение в технике и промышленности. Однако новые исследования постоянно поднимают новые загадки и обнаруживают явления, для объяснения которых требуются новые физические теории. Несмотря на огромный объём накопленных знаний, современная физика ещё очень далека от того, чтобы объяснить все явления природы.

2. Физика в современной жизни

Говоря о роли физики, выделим три основных момента. Во-первых, физика является для человека важнейшим источником знаний об окружающем мире. Во-вторых, физика, непрерывно расширяя и многократно умножая возможности человека, обеспечивает его уверенное продвижение по пути технического прогресса. В-третьих, физика вносит существенный вклад в развитие духовного облика человека, формирует его мировоззрение, учит ориентироваться в шкале культурных ценностей. Поэтому будем говорить соответственно о научном, техническом и гуманитарном потенциалах физики.

Эти три потенциала содержались в физике всегда. Но особенно ярко и весомо они проявились в физике XX столетия, что и предопределило ту исключительно важную роль, какую стала играть физика в современном мире.

3. Физика как важнейший исто чник знаний об окружающем мире

Как известно, физика исследует наиболее общие свойства и формы движения материи. Она ищет ответы на вопросы: как устроен окружающий мир; каким законам подчиняются происходящие в нем явления и процессы? Стремясь познать «первоначала вещей» и «первопричины явлений», физика в процессе своего развития сформировала сначала механическую картину мира (XVII1--XIX вв.), затем электромагнитную картину (вторая половина XIX -- начало XX в.) и, наконец, современную физическую картину мира (середина XX в.).

В начале нашего столетия была создана теория относительности -- сначала специальная, а затем общая. Ее можно рассматривать как великолепное завершение комплекса интенсивно проводившихся в XIX столетии исследований, которые привели к созданию так называемой классической физики. Известный американский физик В. Вайскопф так охарактеризовал теорию относительности: «Это совершенно новый набор концепций, в рамках которых находят объединение механика, электродинамика и гравитация. Они принесли с собой новое восприятие таких понятий, как пространство и время. Эта совокупность идей в каком-то смысле является вершиной и синтезом физики XIX в. Они органически связаны с классическими традициями»

Тогда же, в начале века начала создаваться, а к концу первой трети столетия обрела достаточную стройность другая фундаментальная физическая теория XX в.-- квантовая теория. Если теория относительности эффектно завершала предшествовавший этап развития физики, то квантовая теория, решительно порывая с классической физикой, открывала качественно новый этап в познании человеком материи. «Для квантовой теории характерен именно разрыв с классикой,-- писал Вайскопф.-- Это шаг в неизведанное, в мир явлений, которые не умещались в рамки идей физики XIX в. Надо было создать новые приемы мышления, чтобы понять мир атомов и молекул с его дискретными энергетическими состояниями и характерными особенностями спектров и химических связей»

Используя квантовую теорию, физики совершили в XX в. в буквальном смысле слова прорыв в понимании вопросов, касающихся моля и вещества, строения и свойств кристаллов, молекул, атомов, атомных ядер, взаимопревращений элементарных частиц. Возникли новые разделы физики, такие, как физика твердого тела, физика плазмы, атомная и молекулярная физика, ядерная физика, физика элементарных частиц. А в традиционных разделах, например оптике, появились совершенно новые главы: квантовая оптика, нелинейная оптика, голография и др.

Физика исследует фундаментальные закономерности явлений; это предопределяет ее ведущую роль во всем цикле естественно-математических наук. Ведущая роль физики особенно ярко выявилась именно в XX в. Один из наиболее убедительных примеров -- объяснение периодической системы химических элементов на основе квантовомеханических представлений. На стыке физики и других естественных наук возникли новые научные дисциплины.

Химическая физика исследует электронное строение атомов и молекул, физическую природу химических связей, кинетику химических реакций.

Астрофизика изучает многообразие физических явлений во Вселенной; на широко применяет методы спектрального анализа и радиоастрономических наблюдений. В отдельные разделы астрофизики выделены: физика Солнца, физика планет, физика межзвездной среды и туманностей, физика звезд, космология. Биофизика рассматривает физические и физико-химические явления в живых организмах, влияние различных физических факторов на живые системы. В настоящее время из биофизики выделились самостоятельные направления биоэнергетика, фотобиология, радиобиология.

Геофизика исследует внутреннее строение Земли, физические процессы, происходящие в ее оболочках. Различают физику твердой Земли, физику моря и физику атмосферы.

Отметим также агрофизику, изучающую физические процессы в почве и растениях и разрабатывающую способы регулирования физических условий жизни сельскохозяйственных культур; петрофизику, исследующую связь физических свойств горных пород с их структурой и историей формирования; психофизику, р ассматривающую количественные отношения между силой и характером раздражителя, с одной стороны, и интенсивностью раздражения -- с другой.

4. Физика как основа научно-технического прогресса

Трудно переоценить роль фундаментальных физических исследований в развитии техники. Так, исследования тепловых явлений в XIX в. способствовали быстрому совершенствованию тепловых двигателей. Фундаментальные исследования в области электромагнетизма привели к возникновению и быстрому развитию электротехники. В первой половине XIX в. был создан телеграф, в середине века появились электрические осветители, а затем электродвигатели. Во второй половине XIX в. химические источники электрического тока стали вытесняться электрогенераторами. Девятнадцатый век завершился триумфально: появился телефон, родилось радио, был создан автомобиль с бензиновым двигателем, в ряде столиц открылись линии метрополитена, зародилась авиация. В 1912 г. В. Я. Брюсов написал строки, в которых хорошо отразилось победное настроение тех лет: Свершились все мечты, что были так далеки. Победный ум прошел за годы сотни миль. При электричестве пишу я эти строки, И у ворот, гудя, стоит автомобиль.

Первый фотоаппарат

А между тем научно-технический прогресс только еще набирал темп; был изобретен транзистор); в 60-х годах родилась микроэлектроника. Прогресс в области электроники привел к созданию совершенных систем радиосвязи, радиоуправления, радиолокации. Развивается телевидение, сменяются одно за другим поколения ЭВМ (растет их быстродействие, совершенствуется память, расширяются функциональные возможности), появляются промышленные роботы. В 1957 г. состоялся вывод на околоземную орбиту первого искусственного спутника Земли; 1961 г.-- полет Ю. А. Гагарина -- первого космонавта планеты; 1969 г.-- первые люди на Луне. Нас почти уже не удивляют поразительные успехи космической техники. Мы привыкли к запускам искусственных спутников Земли (их число давно перевалило за тысячу); становятся все более привычными полеты космонавтов на пилотируемых космических кораблях, их многодневные вахты на орбитальных станциях. Мы познакомились с обратной стороной Луны, получили фотоснимки поверхности Венеры, Марса, Юпитера, кометы Галлея.

Фундаментальные исследования в области ядерной физики позволили вплотную приступить к решению одной из наиболее острых проблем -- энергетической проблемы. Первые ядерные реакторы появились в 40-х годах, а в 1954 г. в СССР начала действовать первая в мире атомная электростанция -- родилась ядерная энергетика. В настоящее время на Земле работает более трехсот АЭС; они дают около 20% всей производимой в мире электрической энергии. Развернуты интенсивные исследования по термоядерному синтезу; прокладываются пути к термоядерной энергетике.

Успехи в исследовании физики газового разряда и физики твердого тела, более глубокое понимание физики взаимодействия оптического излучения с веществом, использование принципов и методов радиофизики -- все это предопределило развитие еще одного важного научно-технического направления -- лазерной техники. Это направление возникло всего тридцать лет назад (первый лазер создан в 1960 г.), но уже сегодня лазеры находят широкое применение во многих областях практической деятельности человека. Лазерный луч выполняет разнообразные технологические операции (сваривает, режет, пробивает отверстия, закаливает, маркирует и т. д.), используется в качестве хирургического скальпеля, выполняет точнейшие измерения, трудится на строительных площадках и взлетно-посадочных полосах аэродромов, контролирует степень загрязнения атмосферы и океана. В ближайшей перспективе лазерная техника позволит реализовать в широких масштабах оптическую связь и оптическую обработку информации, произвести своеобразную революцию в химии (управление химическими процессами, получение новых веществ и, в частности, особо чистых веществ) и осуществить управляемый термоядерный синтез.

Запуск ракеты

физика относительность элемент квантовомеханический

Первый полет в космос

Первое радио

Первый действующий танк

Первый самолет

Первая радиостанция

Говоря о связи между развитием физики и научно-техническим прогрессом, следует отметить, что эта связь двусторонняя. С одной стороны, достижения физики лежат в основе развития техники. С другой -- повышение уровня техники создает условия для интенсификации физических исследований, делает возможным постановку принципиально новых исследований. В качестве примера можно указать на важнейшие исследования, выполняемые на ядерных реакторах или на ускорителях заряженных частиц.

5. Физика как важнейший к омпонент человеческой культуры

Воздействуя решающим образом на научно-технический прогресс, физика тем самым оказывает существенное влияние и на все стороны жизни общества, в частности на человеческую культуру. Однако в данном случае мы имеем в виду не это опосредствованное влияние физики на культуру, а влияние непосредственное, позволяющее говорить о самой физике как о компоненте культуры. Иными словами, речь идет о гуманитарном содержании самого предмета физики, которое связано с развитием мышления, формированием мировоззрения, воспитанием чувств. Мы имеем в виду органическую связь физики с развитием общественного сознания, с воспитанием определенного отношения к окружающему миру.

Утверждая материалистическую диалектику, физика XX в. открыла ряд исключительно важных истин, значимость которых выходит за рамки самой физики, истин, ставших общечеловеческим достоянием.

Во-первых, была доказана фундаментальность статистических закономерностей как соответствующих более глубокому этапу (по сравнению с закономерностями динамическими) в процессе познания мира. Было показано, что вероятностная форма причинности является основной, а жесткая, однозначная причинность есть не более чем частный случай. Физика предоставила нам уникальную возможность: на основе статистических теорий рассмотреть количественно диалектику необходимого и случайного. Выходя за рамки собственных задач, современная физика показала, что случайность не только путает и нарушает наши планы, но и может нас обогащать, создавая новые возможности.

Во-вторых, физика XX в. продемонстрировала всеобщность принципа симметрии, заставила значительно глубже взглянуть на симметрию, расширив это понятие за рамки геометрических представлений, а главное, рассмотрела диалектику симметрии и асимметрии, связав ее с диалектикой общего и различного, сохранения и изменения. Был поставлен вопрос о симметрии-асимметрии физических законов, в связи с чем была выявлена особая роль законов сохранения. Выходя за рамки собственных задач, физика наглядно показала, что симметрия ограничивает число возможных вариантов структур или вариантов поведения систем. Это обстоятельство исключительно важно, так как дает возможность во многих случаях находить решение как результат выявления единственно возможного варианта, без выяснения подробностей (решение из соображений симметрии).

В-третьих, физика XX в. показала, что по мере углубления наших знаний происходит постепенное стирание граней, разрушение перегородок. Так, стирается грань между корпускулярным и волновым движениями, между веществом и полем. Оказалось, что как вещество, так и поле состоят из элементарных частиц и, более того, пустота -- это вовсе не пустота в обычном понимании, а физический вакуум, «наполненный» виртуальными частицами. Нормой поведения для частиц, рассматриваемых в современной физике, являются взаимопревращения, поэтому мир предстает перед нами как единое целое. В этом мире понятие полностью изолированного объекта по сути дела отсутствует. Здесь уместно напомнить известное ленинское замечание, что в природе нет абсолютных граней - , что «все грани в природе условны, относительны, подвижны, выражают приближение нашего ума к познанию материи»

В-четвертых, современная физика подарила нам принцип соответствия. Он возник в квантовой механике на этапе ее начального развития, но затем превратился в общий методологический принцип, отражающий диалектику процесса познания мира. Он демонстрирует важное положение диалектики: процесс познания -- это процесс постепенного и бесконечного приближения к абсолютной истине через последовательность относительных истин. Принцип соответствия показывает, как именно в физике реализуется указанный процесс приближения к истине. Это не механическое добавление новых фактов к уже известным, а процесс последовательного обобщения, когда новое отрицает старое, но отрицает не просто, а с удержанием всего того положительного, что было накоплено в старом. «Изучение физики дает возможность показать, что все физические представления и теории отражают объективную реальность лишь приближенно, что наши представления о мире непрерывно углубляются и расширяются, что процесс познания материального мира бесконечен»

Наши представления о мире... Нет необходимости доказывать, что современное миропонимание -- важный компонент человеческой культуры. Каждый культурный человек должен хотя бы в общих чертax представлять, как устроен мир, в котором он живет. Это необходимо не только для общего развития. Любовь к природе предполагает уважение к происходящим в ней процессам, а для этого надо понимать, по каким законам они совершаются. Мы имеем много поучительных примеров, когда природа наказывала нас за наше невежество; пора научиться извлекать из этого уроки. Нельзя также сбывать, что именно знание законов природы есть эффективное оружие борьбы с мистическими представлениями, есть фундамент атеистического воспитания.

Современная физика вносит существенный вклад в выработку нового стиля мышления, который можно назвать планетарным мышлением. Она обращается к проблемам, имеющим большое значение для всех стран и народов. Сюда относятся, например, проблемы солнечно-земных связей, касающиеся воздействия солнечных излучений на магнитосферу, атмосферу и биосферу Земли; прогнозы физической картины мира после ядерной катастрофы, если таковая разразится; глобальные экологические проблемы, связанные с загрязнением Мирового океана и земной атмосферы.

В заключение отметим, что, воздействуя на самый характер мышления, помогая ориентироваться в шкале жизненных ценностей, физика способствует, в конечном счете, выработке адекватного отношения к окружающему миру и, в частности, активной жизненной позиции. Любому человеку важно знать, что мир в принципе познаваем, что случайность не всегда вредна, что нужно и можно ориентироваться и работать в мире, насыщенном случайностями, что в этом изменяющемся мире есть тем не менее «опорные точки», инварианты (что бы ни менялось, а энергия сохраняется), что по мере углубления знаний картина неизбежно усложняется, становится диалектичнее, так что вчерашние «перегородки» более не годятся.

Мы убеждаемся, таким образом, что современная физика действительно содержит в себе мощный гуманитарный потенциал. Можно не считать слишком большим преувеличением слова американского физика И. Раби: «Физика составляет сердцевину гуманитарного образования нашего времени»

6. Стихи

1. В нашей жизни электричества -

Непомерное количество.

Даже Папа, их величество,

Чтоб величье ощущать,

Преуспев в борьбе с язычеством,

Приказал свои владычества

В самом центре католичества

Ярко ночью освещать.

Ну а мы, махнув по стопочке,

Жмем, расслабившись, на кнопочки, .

И как в сказке - вот вам, опачки!

Телевизор уж включен.

И в квартирах всюду лампочки,

А в глазах от счастья бабочки.

Греют нас электротапочки,

Погружая в сладкий сон.

Нож на кухне - электрический,

Режет все автоматически.

И вращаясь истерически

Ездят щетки по зубам. .

Преуспел прогресс технический,

Даже к близости физической

Нас матрас терапевтический

По ночам толкает сам.

У приборов электрических

В рабстве мы уже практически,

Заменил мозги фактически

Электронный интеллект.

Словно в дреме наркотической

Пребывая флегматически,

Станем мы для электричества

Не нужны в один момент…

2. Физика учит хозяйку,

Как пищу готовить быстрей.

Зимою выращивать розы,

Тепло сберегать в квартире своей.

Физика учит плавать

Тяжёлый морской теплоход,

Летать воздушный лайнер,

Космический звездоход.

Физика в жизнь воплощает

Все замыслы и мечты.

Загадки природы она объясняет,

Всем, кто с нею на ты.

7. Загадки

В загадках нужно учесть следующий момент:

Какое физическое явление (объект) отражено в загадке.

Какие свойства загадываемого явления, объекта отражены в загадке а какие нет.

С каким явлением или объектом сравниваем загадываемое?

Я в Москве, он в Ленинграде

В разных комнатах сидим

Далеко, а будто рядом

Разговариваем с ним. (телефон)

Чудо-птица алый хвост

Полетела в стаю звёзд. (ракета)

Я под мышкой посижу

И что делать укажу

Или разрешу гулять

Или уложу в кровать (термометр)

Через нос проходит в грудь

И обратный держит путь

Он не видимый и всё же

Без него мы жить не можем. (воздух)

В нашей комнате одно

Есть волшебное окно

В нём летают чудо - птицы,

Бродят волки и лисицы,

Знойным летом снег идёт,

И зимою сад цветёт.

В том окне чудес полно

Что же это за окно. (телевизор)

Сначала - блеск

За блеском - треск

За треском - плеск. (молния)

Никто его не видывал,

А слышать всякий слыхивал

Без тела, а живёт оно

Без языка кричит. (эхо)

Пушистая вата

Плывёт куда-то

Чем вата ниже,

Тем дождик ближе. (туча)

Цветное коромысло

Над лесом повисло. (радуга)

Летит - молчит,

Лежит - молчит,

Когда умрёт, тогда заревёт. (снег)

Две сестры качались,

Правды добивались.

А когда добились, то остановились. (весы)

Всем поведает хоть без языка

Когда будет ясно, а когда облака. (барометр)

По высокой дороге идёт бычок круторогий. (месяц)

В круглом домике, в окошке

Ходят сёстры по дорожке, Не торопиться меньшая,

Но зато спешит старшая. (часы)

Размещено на Allbest.ru

...

Подобные документы

    Предмет и структура физики. Роль тепловых машин в жизни человека. Основные этапы истории развития физики. Связь современной физики с техникой и другими естественными науками. Основные части теплового двигателя и расчет коэффициента его полезного действия.

    реферат , добавлен 14.01.2010

    Изложение физических основ классической механики, элементы теории относительности. Основы молекулярной физики и термодинамики. Электростатика и электромагнетизм, теория колебаний и волн, основы квантовой физики, физики атомного ядра, элементарных частиц.

    учебное пособие , добавлен 03.04.2010

    Важная роль физики в техническом развитии оборонной промышленности. Теоретические исследования физиков, начальное развитие новых отраслей науки: теории относительности, атомной квантовой физики. Работы в области радиотехники, военных прикладных отраслей.

    доклад , добавлен 27.02.2011

    Основные закономерности развития физики. Аристотелевская механика. Физические идеи средневековья. Галилей: принципы "земной динамики". Ньютоновская революция. Становление основных отраслей классической физики. Создание общей теории относительности.

    реферат , добавлен 26.10.2007

    Научно-техническая революция (НТР) ХХ века и ее влияние на современный мир. Значение физики и НТР в развитии науки и техники. Открытие и применение ультразвука. Развитие микроэлектроники и применение полупроводников. Роль компьютера в развитии физики.

    презентация , добавлен 04.04.2016

    История биофизики и физики, их значение и роль в теоретическом развитии и методическом вооружении: физиологии, биохимии, цитологии, ветеринарно-санитарной экспертизе, клинической диагностике, ветеринарной хирургии, зооинженерии, экологии и биотехнологии.

    курс лекций , добавлен 01.05.2009

    Научные исследования физических, химических и биологических явлений, проводившиеся в ХХ в. Открытие элементарных частиц и теория расширяющейся Вселенной. Создание и развитие общей теории относительности. Возникновение релятивистской и квантовой физики.

    презентация , добавлен 08.11.2015

    Основные этапы жизни советского физика П. Капицы. Студенческие годы и начало преподавательской работы ученого. Получение Нобелевской премии за фундаментальные изобретения и открытия в области физики низких температур. Роль Капицы в становлении физики.

    презентация , добавлен 05.06.2011

    Предмет физики и ее связь со смежными науками. Общие методы исследования физических явлений. Развитие физики и техники и их взаимное влияния друг на друга. Успехи физики в течение последних десятилетий и характеристика ее современного состояния.

    учебное пособие , добавлен 26.02.2008

    Геометрия и физика в теории многомерных пространств. Абсолютная система измерения физических величин. Бесконечности в теории многомерных пространств. Квантовая теория относительности. Сущность принципа относительности в теории многомерных пространств.

Экология жизни: Во всеоружии этого знания вы точно не попадётесь в ловушку мифов, не купите шарлатанский прибор и сможете уверенно отвечать на детские вопросы в духе «Почему небо голубое?».

Появилась в продаже книга Луиса Блумфилда «Как все работает. Законы физики в нашей жизни». Расскажем о том, почему её стоит прочитать - особенно если физика представляется вам чем-то скучным и непонятным.

Поднимаясь утром с пружинного матраса, включая электрический чайник, согревая руки о чашку кофе и проделывая ещё десятки повседневных вещей, мы редко задумываемся о том, как именно всё это происходит. Возможно, в чьей-то памяти одиноким осколком торчит закон Ома или правило буравчика (хорошо, если вы вообще помните, что «буравчик» - это винт, а не фамилия).

Далеко не всегда ясно, в какие моменты жизни мы встречаемся с силой тока и моментом импульса.

Само собой, существуют учёные, технические специалисты и гики. Мы даже готовы поверить, что бывают люди, которые просто очень хорошо учили физику в школе (наше им уважение). Для них не составит труда рассказать, как именно работает лампа накаливания или солнечная батарея и объяснить, глядя на крутящееся велосипедное колесо, где там трение покоя, а где - трение скольжения. Однако, будем честными, большинство людей имеет обо всём этом весьма смутные представления.

Источник: Pinterest

Из-за этого кажется, будто природные объекты и механизмы ведут себя тем или иным образом благодаря каким-то волшебным силам. Бытовое представление о причинах и следствиях может оградить от некоторых ошибок (например, не класть обёрнутые фольгой продукты в микроволновку), однако более глубокое понимание физико-химических процессов позволяет лучше разбираться, что к чему, и аргументировать свои решения.

Луис Блумфилд - профессор Виргинского университета, исследователь атомной физики, физики конденсированного состояния и оптики.

Ещё в юности он выбрал опыты главным методом исследования мира, черпая из обыденных вещей вдохновение для занятий наукой. Стремясь сделать знания доступными для многих людей, а не горстки специалистов, Блумфилд занимается преподаванием, выступает на телевидении и пишет научно-популярные работы.

Главная задача книги «Как все работает. Законы физики в нашей жизни» - опровергнуть представление о физике как скучной и оторванной от жизни науке, и дать понять, что она описывает реальные явления, которые можно увидеть, пощупать и ощутить.

Для меня всегда было загадкой, почему физика традиционно преподается как абстрактная наука - ведь она изучает вещественный мир и законы, которыми тот управляется. Я убеждён в обратном: если лишить физику бесчисленных примеров из живого, реального мира, она не будет иметь ни основы, ни формы - словно молочный коктейль без стакана.

Луис Блумфильд

Речь идёт о движении тел, механических устройствах, тепле и многом другом. Вместо того, чтобы начинать с теории, автор идёт от окружающих нас вещей, формулируя с их помощью законы и принципы. Отправными точками служат карусели, американские горки, водопровод, тёплая одежда, аудиоплееры, лазеры и светодиоды, телескопы и микроскопы...

Вот некоторые примеры из книги, на которых автор объясняет механику простых вещей.

Почему конькобежцы быстро двигаются

Коньки - удобный способ рассказать о принципах движения. Ещё Галилео Галилей сформулировал, что тела имеют свойство двигаться равномерно и прямолинейно в отсутствие внешних сил, будь то сопротивление воздуха или трение поверхности. Коньки способны почти полностью устранить трение, так что вы легко скользите по льду. Объект в состоянии покоя стремится остаться на месте, а объект движущийся - двигаться дальше. Именно это называется инерцией.

Как режут ножницы

Сдвигая кольца ножниц, вы производите моменты сил, под действием которых лезвия смыкаются и режут бумагу. Бумага стремится раздвинуть лезвия за счет моментов сил, «разводящих» лезвия. Если вы приложите достаточно большое усилие, «сдвигающие» моменты сил возобладают над «разводящими». В результате лезвия ножниц приобретут угловое ускорение, начнут поворачиваться, сомкнутся и разрежут лист бумаги.

Источник: Pexels

Что творится в шампурах

Если нагреть один конец металлического стержня, атомы в этой части стержня будут колебаться более интенсивно, чем в холодном конце, и металл начнет проводить тепло из горячего конца к холодному. Некоторая часть этого тепла передается благодаря взаимодействию соседних атомов, однако основная его часть будет передана подвижными электронами, которые переносят тепловую энергию на большие расстояния от одного атома к другому.

Как забиваются гвозди

Весь направленный вниз импульс, который вы сообщаете молотку, замахнувшись, передаётся гвоздю за время краткого удара. Поскольку время передачи импульса мало, со стороны молотка должна быть приложена очень большая сила, чтобы его импульс перешёл к гвоздю. Эта ударная сила вбивает гвоздь в доску.

Зачем воздушные шары нагревают

Чтобы заполнить воздушный шар горячим воздухом, нужно меньше частиц, чем для заполнения холодным воздухом. Дело в том, что в среднем частица горячего воздуха движется быстрее, сталкивается чаще и занимает больше места, чем частица холодного воздуха. Поэтому шар, наполненный горячим воздухом, весит меньше, чем такой же шар, наполненный холодным. Если вес шара достаточно мал, равнодействующая сила направлена вверх, и шар поднимается.

Почему воланчик летит всегда одинаков о

Бадминтонный волан всегда летит головкой вперед, так как результирующая сила, вызванная давлением, приложена в его центре давления, на некотором расстоянии от центра масс. Если вдруг оперение случайно окажется впереди головки, сопротивление воздуха создаст момент силы относительно центра масс и вернет всё на свои места.

Что делает воду жёсткой

Жёсткой считается вода, в которой содержание положительно заряженных ионов кальция и магния превышает 120 мг на литр. Ионы этих и некоторых других металлов связывают отрицательные ионы мыла и создают нерастворимую пену, оседающую грязным налетом на раковине, лейке душа, ванне, в стиральной машине и на одежде. Затеяв стирку мылом в жёсткой воде, будьте готовы к неприятным сюрпризам. опубликовано

Это Вам будет интересно:

Даниэль Канеман: Соображать и Думать - в чем разница