Синтезирование белка. Синтез белков в клетке - описание, функции процесса

Биосинтез белков идет в каждой живой клетке. Наиболее активен он в молодых растущих клетках, где синтезируются белки на построение их органоидов, а также в секреторных клетках, где синтезируются белки-ферменты и белки-гормоны.

Основная роль в определении структуры белков принадлежит ДНК. Отрезок ДНК, содержащий информацию о структуре одного белка, называют геном. Молекула ДНК содержит несколько сотен генов. В молекуле ДНК записан код о последовательности аминокислот в белке в виде определенно сочетающихся нуклеотидов. Код ДНК удалось расшифровать почти полностью. Сущность его состоит в следующем. Каждой аминокислоте соответствует участок цепи ДНК из трех рядом стоящих нуклеотидов.

Например, участок Т-Т-Т соответствует аминокислоте лизину, отрезок А-Ц-А - цистину, Ц-А-А - валину н т. д. Разных аминокислот - 20, число возможных сочетаний из 4 нуклеотидов по 3 равно 64. Следовательно, триплетов с избытком хватает для кодирования всех аминокислот.

Синтез белка - сложный многоступенчатый процесс, представляющий цепь синтетических реакций, протекающих по принципу матричного синтеза.

Поскольку ДНК находится в ядре клетки, а синтез белка происходит в цитоплазме, существует посредник, передающий информацию с ДНК на рибосомы. Таким посредником является и-РНК. :

В биосинтезе белка определяют следующие этапы, идущие в разных частях клетки:

  1. Первый этап - синтез и-РНК происходит в ядре, в процессе которого информация, содержащаяся в гене ДНК, переписывается на и-РНК. Этот процесс называется транскрипцией (от лат. «транскриптик» — переписывание).
  2. На втором этапе происходит соединение аминокислот с молекулами т-РНК, которые последовательно состоят из трех нуклеотидов - антикодонов, с помощью которых определяется свой триплет-кодон.
  3. Третий этап - это процесс непосредственного синтеза полипептидных связей, называемый трансляцией. Он происходит в рибосомах.
  4. На четвертом этапе происходит образование вторич ной и третичной структуры белка, то есть формирование окончательной структуры белка.

Таким образом, в процессе биосинтеза белка образуются новые молекулы белка в соответствии с точной информацией, заложенной в ДНК. Этот процесс обеспечивает обновление белков, процессы обмена веществ, рост и развитие клеток, то есть все процессы жизнедеятельности клетки.

Хромосомы (от греч. «хрома» - цвет, «сома» - тело) - очень важные структуры ядра клетки. Играют главную роль в процессе клеточного деления, обеспечивая передачу наследственной информации от одного поколения к другому. Они представляют собой тонкие нити ДНК, связанные с белками. Нити называются хроматидами, состоящими из ДНК, основных белков (гистонов) и кислых белков.

В неделящейся клетке хромосомы заполняют весь объем ядра и не видны под микроскопом. Перед началом деления происходит спирализация ДНК и каждая хромосома становится различимой под микроскопом. Во время спирализации хромосомы сокращаются в десятки тысяч раз. В таком состоянии хромосомы выглядят как две лежащие рядом одинаковые нити (хроматиды), соединенные общим участком - центромерой.

Для каждого организма характерно постоянное количество и структура хромосом. В соматических клетках хромосомы всегда парные, то есть в ядре есть две одинаковые хромосомы, составляющие одну пару. Такие хромосомы называют гомологичными, а парные наборы хромосом в соматических клетках называют диплоидными.

Так, диплоидный набор хромосом у человека состоит из 46 хромосом, образуя 23 пары. Каждая пара состоит из двух одинаковых (гомологичных) хромосом.

Особенности строения хромосом позволяют выделить их 7 групп, которые обозначаются латинскими буквами А, В, С, D, Е, F, G. Все пары хромосом имеют порядковые номера.

У мужчин и женщин есть 22 пары одинаковых хромосом. Их называют аутосомы. Мужчина и женщина отличаются одной парой хромосом, которые называют половыми. Они обозначаются буквами — большая X (группа С) и маленькая Y (группа С,). В женском организме 22 пары аутосом и одна пара (XX) половых хромосом. У мужчин — 22 пары аутосом н одна пара (XY) половых хромосом.

В отличие от соматических клеток, половые клетки содержат половинный набор хромосом, то есть содержат по одной хромосоме каждой пары! Такой набор называют гаплоидным. Гаплоидный набор хромосом возникает в процессе созревания клеток.

В каждой области науки есть своя «синяя птица»; кибернетики мечтают о «думающих» машинах, физики - об управляемых термоядерных реакциях, химики - о синтезе «живого вещества» - белка. Синтез белка долгие годы был темой фантастических романов, символом грядущего могущества химии. Это объясняется и той огромной ролью, какая принадлежит белку в мире живого, и теми трудностями, которые неизбежно вставали перед каждым смельчаком, отважившимся «сложить» из отдельных аминокислот замысловатую мозаику белка. И даже еще не самого белка, а только пептидов.

Разница между белками и пептидами не только терминологическая, хотя молекулярные цепи и тех и других состоят из аминокислотных остатков. На каком-то этапе количество переходит в качество: пептидная цепь - первичная структура - обретает способность сворачиваться в спирали и клубки, образуя вторичную и третичную структуры, характерные уже для живой материи. И тогда пептид становится белком. Четкой границы здесь не существует - на полимерной цепи нельзя поставить демаркационный знак: досель - пептид, отсель - белок. Но известно, например, что адранокортикотропный гормон, состоящий из 39 остатков аминокислот,- это полипептид, а гормон инсулин, состоящий из 51 остатка в виде двух цепей,- это уже белок. Простейший, но все же белок.

Способ соединения аминокислот в пептиды был открыт в начале прошлого века немецким химиком Эмилем Фишером. Но еще долго после этого химики не могли всерьез помышлять не только о синтезе белка или 39-членных пептидов, но даже значительно более коротких цепей.

Процесс синтеза белка

Для того, чтобы соединить между собой две аминокислоты, надо преодолеть немало трудностей. Каждая аминокислота, подобно двуликому Янусу, имеет два химических лица: карбоксильную кислотную группу на одном конце и аминную основную группу - на другом. Если от карбоксила одной аминокислоты отнять группу ОН, а от аминной группы другой - атом водорода, то образовавшиеся при этом два аминокислотных остатка могут соединиться друг с другом пептидной связью, и в результате возникнет простейший из пептидов - дипептид. И отщепится молекула воды. Повторяя эту операцию, можно наращивать длину пептида.

Однако эта, казалось бы, на первый взгляд несложная операция практически трудноосуществима: аминокислоты очень неохотно соединяются друг с другом. Приходится их активировать, химически, и «подогревать» один из концов цепи (чаще всего карбоксильный), и вести реакцию, строго соблюдая необходимые условия. Но это еще не все: вторая сложность состоит в том, что соединяться друг с другом могут не только остатки разных аминокислот, но и две молекулы одной кислоты. При этом строение синтезируемого пептида будет уже отличаться от желаемого. Больше того, каждая аминокислота может иметь не две, а несколько «ахиллесовых пят» - боковых химически активных групп, способных присоединять аминокислотные остатки.

Чтобы не дать реакции свернуть с заданного пути, необходимо закамуфлировать эти ложные мишени - «запечатать» на время осуществляемой реакции все реакционноспособные группы аминокислоты, кроме одной, присоединив к ним так называемые защитные группировки. Если этого не сделать, то цель будет расти не только с обоих концов, но и вбок, и аминокислоты уже не удастся соединить в заданной последовательности. А ведь именно в этом и заключается смысл всякого направленного синтеза.

Но, избавляясь таким образом от одной неприятности, химики столкнулись с другой: защитные группировки после окончания синтеза нужно удалить. Во времена Фишера в качестве «защиты» применялись группировки, которые отщеплялись гидролизом. Однако реакция гидролиза обычно оказывалась слишком сильным «потрясением» для полученного пептида: с трудом построенная его «конструкция» разваливалась как только с нее снимали «строительные леса» - защитные группировки. Лишь в 1932 году ученик Фишера М. Бергманн нашел выход из этого положения: он предложил защищать аминогруппу аминокислоты карбобензоксигруппой, которую можно было удалить без повреждения пептидной цепи.

Синтез белка из аминокислот

В течение последующих лет был предложен ряд так называемых мягких методов «сшивки» аминокислот друг с другом. Однако все они фактически были лишь вариациями на тему метода Фишера. Вариациями, в которых иногда даже трудно было уловить исходную мелодию. Но сам принцип оставался все тем же. И все теми же оставались трудности, связанные с защитой уязвимых групп. За преодоление этих трудностей приходилось расплачиваться увеличением числа стадий реакции: один элементарный акт - соединение двух аминокислот - распадался на четыре этапа. А каждая лишняя стадия - это неизбежные потери.

Если даже предположить, что каждая стадия идет с полезным выходом в 80% (а это хороший выход), то через четыре этапа эти 80% «растают» до 40%. И это при синтезе только дипептида! А если аминокислот будет 8? А если 51, как в инсулине? Прибавьте к этому сложности, связанные с существованием двух оптических «зеркальных» форм молекул аминокислот, из которых в реакции нужна только одна, приплюсуйте проблемы отделения образующихся пептидов от побочных продуктов, особенно в тех случаях, когда они одинаково растворимы. Что же получится в сумме: Дорога в никуда?

И все же эти трудности не останавливали химиков. Погоня за «синей птицей» продолжалась. В 1954 году были синтезированы первые биологически активные гормоны-полипептиды - вазопрессин и окситоцин. В них было по восемь аминокислот. В 1963 году был синтезирован 39-членный полипептид АКТГ - адренокортикотропный гормон. Наконец, химики США, Германии и Китая синтезировали первый белок - гормон инсулин.

Как же так, скажет читатель, трудная дорога, оказывается, привела не в никуда и не куда-нибудь, а к осуществлению мечты многих поколений химиков! Это же эпохальное событие! Верно, это - эпохальное событие. Но давайте оценим его трезво, отрешившись от сенсационности, восклицательных знаков и чрезмерных эмоций.

Никто не спорит: синтез инсулина - огромная победа химиков. Это колоссальный, титанический труд, достойный всякого восхищения. Но вместе с тем эго, по существу, и потолок старой химии полипептидов. Это победа на грани поражения.

Синтез белков и инсулин

В инсулине 51 аминокислота. Чтобы соединить их в нужной последовательности, химикам потребовалось провести 223 реакции. Когда спустя три года после начала первой из них была закончена последняя, выход продукта составлял меньше одной сотой процента. Три года, 223 стадии, сотая доля процента - согласитесь, победа носит чисто символический характер. Говорить о практическом применении этого метода очень трудно: слишком велики связанные с его реализацией расходы. А ведь в конечном счете речь идет о синтезе не драгоценных реликвий славы органической химии, а о выпуске жизненно важного лекарственного препарата, который необходим тысячам людей во всем мире. Так классический метод синтеза полипептидов исчерпал себя на первом же, самом простом белке. Значит, «синяя птица» вновь ускользнула из рук химиков?

Новый метод синтеза белка

Примерно за полтора года до того, как мир узнал о синтезе инсулина, в печати промелькнуло еще одно сообщение, которое вначале не привлекло особого внимания: американский ученый Р. Мэрифилд предложил новый метод синтеза пептидов. Поскольку сам автор поначалу не дал методу должной оценки, и в нем было много недоработок, выглядел он в первом приближении даже хуже существовавших. Однако уже в начале 1964 года, когда Мэрифилду удалось с помощью своего метода осуществить полный синтез 9-членного гормона с полезным выходом в 70%, ученые изумились: 70% после всех этапов - это 9% полезного выхода на каждой стадии синтеза.

Основная идея нового метода заключается в том, что растущие цепочки пептидов, которые раньше были брошены на произвол хаотического движения в растворе, теперь привязывались одним концом к твердому носителю - их как бы заставляли стать на якорь в растворе. Мэрифилд брал твердую смолу и к ее активным группам «привязывал» за карбонильный конец первую из собираемых в пептид аминокислоту. Реакции шли внутри отдельных частичек смолы. В «лабиринтах» ее молекул сначала появлялись первые короткие ростки будущего пептида. Затем в сосуд вводили вторую аминокислоту, ее молекулы сшивались своими карбонильными концами со свободными аминными концами «привязанной» аминокислоты, и в частицах вырастал еще один «этаж» будущего «здания» пептида. Так, этап за этапом, постепенно наращивался весь пептидный полимер.

Новый метод имел несомненные преимущества: прежде всего в нем была решена проблема отделения ненужных продуктов после присоединения каждой очередной аминокислоты - эти продукты легко смывались, а пептид оставался пришитым к гранулам смолы. Одновременно исключалась проблема растворимости растущих пептидов - один из главных бичей старого метода; раньше они нередко выпадали в осадок, практически переставая участвовать в процессе роста. Пептиды, «снимаемые» после окончания синтеза с твердой подложки, получались почти все одинакового размера и строения, во всяком случае, разброс в структуре был меньше, чем при классическом методе. И соответственно больше полезный выход. Благодаря этому методу синтез пептидов - кропотливый, трудоемкий синтез - легко поддается автоматизации.

Мэрифилд соорудил несложный автомат, который сам по заданной программе проделывал все положенные операции - подачу реагентов, смешивание, слив, промывку, отмер дозы, добавление новой порции и так далее. Если по старому методу на присоединение одной аминокислоты приходилось травить 2-3 дня, то Мэрифилд на своем автомате соединял за день 5 аминокислот. Разница - в 15 раз.

В чем состоят трудности синтеза белков

Метод Мэрифилда, названный твердофазным, или гетерогенным, сразу же был принят на вооружение химиками всего мира. Однако уже через короткое время стало ясно: новый метод вместе с крупными достоинствами имеет и ряд серьезных недостатков.

По мере роста пептидных цепей может случиться так, что в какой-то из них окажется пропущенным, скажем, третий «этаж» - третья по счету аминокислота: ее молекула не дойдет до места соединения, застряв где-нибудь по дороге в структурных «дебрях» твердого полимера. И тогда, даже если все остальные аминокислоты, начиная с четвертой, выстроятся в должном порядке, это уже не спасет положения. Полученный полипептид по своему составу, а следовательно, и по своим свойствам не будет иметь ничего общего с получаемым веществом. Произойдет то же самое, что и при наборе телефонного номера; стоит пропустить одну цифру - и нам уже не поможет тот факт, что все остальные мы набрали правильно. Отделить же такие ложные цепи от «настоящих» практически невозможно, и препарат оказывается засоренным примесями. Кроме того, оказывается, что синтез нельзя вести на какой угодно смоле - ее нужно тщательно подбирать, так как свойства растущего пептида зависят в какой-то мере от свойств смолы. Поэтому ко всем этапам синтеза белка необходимо подходить максимально тщательно.

Синтез белка ДНК, видео

И под конец, предлагаем вашему вниманию образовательное видео о том, как происходит синтез белка в молекулах ДНК.

Совокупность реакций биологического синтеза называется пластическим обменом, или ассимиляцией. Название этого вида обмена отражает его сущность: из простых веществ, поступающих в клетку извне, образуются вещества, подобные веществам клетки.

Рассмотрим одну из важнейших форм пластического обмена – биосинтез белков. Все многообразие свойств белков в конечном счете определяется первичной структурой, т. е. последовательностью аминокислот. Огромное количество отобранных эволюцией уникальных сочетаний аминокислот воспроизводится путем синтеза нуклеиновых кислот с такой последовательностью азотистых оснований, которая соответствует последовательности аминокислот в белках. Каждой аминокислоте в полипептидной цепочке соответствует комбинация из трех нуклеотидов – триплет.

Процесс реализации наследственной информации в биосинтезе осуществляется при участии трех видов рибонуклеиновых кислот: информационной (матричной) – иРНК (мРНК), рибосомальной – рРНК и транспортной – тРНК. Все рибонуклеиновые кислоты синтезируются на соответствующих участках молекулы ДНК. Они имеют значительно меньшие размеры, чем ДНК, и представляют собой одинарную цепь нуклеотидов. Нуклеотиды содержат остаток фосфорной кислоты (фосфат), пентозный сахар (рибозу) и одно из четырех азотистых оснований – аденин, цитозин, гуанин и урацил. Азотистое основание – урацил – комплементарно аденину.

Процесс биосинтеза сложный и включает ряд этапов – транскрипцию, сплайсинг и трансляцию.

Первый этап (транскрипция) происходит в ядре клетки: на участке определенного гена молекулы ДНК синтезируется мРНК. Этот синтез осуществляется при участии комплекса ферментов, главным из которых является ДНК-зависимая РНК-полимераза, которая прикрепляется к начальной (инициальной) точке молекулы ДНК, расплетает двойную спираль и, перемещаясь вдоль одной из нитей, синтезирует рядом с ней комплементарную нить мРНК. В результате транскрипции мРНК содержит генетическую информацию в виде последовательного чередования нуклеотидов, порядок которых точно скопирован с соответствующего участка (гена) молекулы ДНК.

Дальнейшие исследования показали, что в процессе транскрипции синтезируется так называемая про-мРНК – предшественник зрелой мРНК, участвующей в трансляции. Про-мРНК имеет значительно большие размеры и содержит фрагменты, не кодирующие синтез соответствующей полипептидной цепи. В ДНК наряду с участками, кодирующими рРНК, тРНК и полипептиды, имеются фрагменты, не содержащие генетической информации. Они получили название интронов в отличие от кодирующих фрагментов, которые называются экзонами. Интроны обнаружены на многих участках молекул ДНК. Так, например, в одном гене – участке ДНК, кодирующем овальбумин курицы, содержится 7 интронов, в гене сывороточного альбумина крысы – 13 интронов. Длина интрона бывает различной – от двухсот до тысячи пар нуклеотидов ДНК. Интроны считываются (транскрибируются) одновременно с экзонами, поэтому про-мРНК значительно длиннее, чем зрелая мРНК. В ядре в про-мРНК специальными ферментами вырезаются интроны, а фрагменты экзона «сращиваются» между собой в строгом порядке. Этот процесс называют сплайсингом. В процессе сплайсинга образуется зрелая мРНК, которая содержит только ту информацию, которая необходима для синтеза соответствующего полипептида, то есть информативную часть структурного гена.

Значение и функции интронов до сих пор еще не совсем выяснены, но установлено, что, если в ДНК считываются только участки экзонов, зрелая мРНК не образуется. Процесс сплайсинга изучен на примере работы гена овальбумина. Он содержит один экзон и 7 интронов. Сначала на ДНК синтезируется про-мРНК, содержащая 7700 нуклеотидов. Затем в про-мРНК число нуклеотидов уменьшается до 6800, затем - до 5600, 4850, 3800, 3400 и т. д. до 1372 нуклеотидов, соответствующих экзону. Содержащая 1372 нуклеотида мРНК выходит из ядра в цитоплазму, попадает на рибосому и синтезирует соответствующий полипептид.

Следующий этап биосинтеза – трансляция – происходит в цитоплазме на рибосомах при участии тРНК.

Транспортные РНК синтезируются в ядре, но функционируют в свободном состоянии в цитоплазме клетки. Одна молекула тРНК содержит 76-85 нуклеотидов и имеет довольно сложную структуру, напоминающую клеверный лист. Три участка тРНК имеют особо важное значение: 1) антикодон, состоящий из трех нуклеотидов, определяющий место прикрепления тРНК к соответствующему комплементарному кодону (мРНК) на рибосоме; 2) участок, определяющий специфичность тРНК, способность данной молекулы прикрепляться только к определенной аминокислоте; 3) акцепторный участок, к которому прикрепляется аминокислота. Он одинаков для всех тРНК и состоит из трех нуклеотидов – Ц-Ц-А. Присоединению аминокислоты к тРНК предшествует ее активация ферментом аминоацил-тРНК-синтетазой. Этот фермент специфичен для каждой аминокислоты. Активированная аминокислота прикрепляется к соответствующей тРНК и доставляется ею на рибосому.

Центральное место в трансляции принадлежит рибосомам – рибонуклеопротеиновым органоидам цитоплазмы, во множестве в ней присутствующим. Размеры рибосом у прокариот в среднем 30х30х20 нм, у эукариот – 40х40х20 нм. Обычно их размеры определяют в единицах седиментации (S) – скорости осаждения при центрифугировании в соответствующей среде. У бактерии кишечной палочки рибосома имеет величину 70Sи состоит из двух субчастиц, одна из которых имеет константу 30S, вторая 50S, и содержит 64 % рибосомальной РНК и 36 % белка.

Молекула мРНК выходит из ядра в цитоплазму и прикрепляется к малой субчастице рибосомы. Трансляция начинается с так называемого стартового кодона (инициатора синтеза) – А-У-Г-. Когда тРНК доставляет к рибосоме активированную аминокислоту, ее антикодон соединяется водородными связями с нуклеотидами комплементарного кодона мРНК. Акцепторный конец тРНК с соответствующей аминокислотой прикрепляется к поверхности большой субчастицы рибосомы. После первой аминокислоты другая тРНК доставляет следующую аминокислоту, и таким образом на рибосоме синтезируется полипептидная цепь. Молекула мРНК обычно работает сразу на нескольких (5-20) рибосомах, соединенных в полисомы. Начало синтеза полипептидной цепи называют инициацией, рост ее – элонгацией. Последовательность аминокислот в полипептидной цепи определяется последовательностью кодонов в мРНК. Синтез полипептидной цепи прекращается, когда на мРНК появляется один из кодонов-терминаторов – УАА, УАГ или УГА. Окончание синтеза данной полипептидной цепи называется терминацией.

Установлено, что в клетках животных полипептидная цепь за одну секунду удлиняется на 7 аминокислот, а мРНК продвигается на рибосоме на 21 нуклеотид. У бактерий этот процесс протекает в два-три раза быстрее.

Следовательно, синтез первичной структуры белковой молекулы – полипептидной цепи – происходит на рибосоме в соответствии с порядком чередования нуклеотидов в матричной рибонуклеиновой кислоте – мРНК. Она не зависит от строения рибосомы.

С биохимической точки зрения синтез белка в мышцах – очень сложный процесс. Информацию о структуре всех необходимых организму белков содержит ДНК, находящаяся в ядре клеток. Функции белка зависят от последовательности аминокислот в их структуре. А эта последовательность кодируется последовательностью нуклеотидов ДНК, в которой каждой аминокислоте соответствует группа из трех нуклеотидов – триплет. И каждый участок ДНК – геном – отвечает за синтез одного типа белка.

Белок строится рибосомами в цитоплазме. Необходимая информация о его структуре передается из ядра на рибосомы с помощью и-РНК (информационной РНК) – своеобразной «копии» нужного генома. Синтез и-РНК – это первый этап биосинтеза белков, называемый транскрипцией («переписыванием»).

Второй этап синтеза белков в клетках – трансляция («перевод» нуклеотидного кода ДНК в последовательность аминокислот). На этом этапе и-РНК прикрепляется к рибосоме, затем рибосома начинает от стартового кодона двигаться вдоль цепи и-РНК и присоединять на каждом кодоне (нуклеотидном триплете, кодирущем информацию об одной аминокислоте) и-РНК – аминокислоты, приносимые т-РНК (транспортными РНК). Т-РНК содержат молекулу определенной аминокислоты и антикодон, соответствующий определенному кодону и-РНК. Рибосома присоединяет аминокислоту к растущей белковой цепи, потом отсоединяет т-РНК и передвигается к следующему кодону. Так происходит до тех пор, пока рибосоме не встретится терминатор – стоп-кодон. После этого синтез белковой молекулы прекращается и она отсоединяется от рибосомы. Остается только транспортировать готовую белковую молекулу в растущую мышечную клетку.

Активация синтеза

Главный механизм, запускающий синтез белка в мышцах – это активация всем известного mTOR’а (mammalian target of rapamycin – т.е. «мишень рапамицина у млекопитающих»). «Мишенью» он называется потому, что mTOR отвечает за рост и размножение клеток, и эти процессы блокируются особыми ингибиторами (например, рапамицином), которые воздействуют именно на данный белок.

Для спортсмена важно, что в мышцах постоянно происходит синтез и разрушение белка, обеспечивающие обновление мышечной ткани. И если мы хотим, чтобы наши мышцы подросли, нам надо сделать так, чтобы на протяжении определенного периода синтез белка превосходил его разрушение. Для этого мы и рассматриваем процессы активации синтеза белка, ключевым элементом которых является mTOR.

Биохимически mTOR – это белок-фермент (относящийся к группе протеинкиназ), который стимулирует процесс трансляции, т.е. синтеза белка рибосомами на и-РНК (ее еще называют м-РНК – матричная РНК). В свою очередь, сам mTOR активизируется аминокислотами (лейцин, изолейцин и др.) и факторами роста (различные гормоны – соматотропин, инсулин и др.).

Мышечные нагрузки стимулируют mTOR опосредованно, через систему сигналов о разрушении мышц и усиление секреции факторов роста (например, механического фактора роста).

Белковый баланс

Итак, если наша задача — добиться положительного белкового баланса , т.е. превосходства синтеза белка над его разрушением, то нам следует снижать катаболизм (разрушение мышц) и стимулировать их рост. И у нас есть прекрасная возможность добиться в этом успеха — т.н. «белково-углеводное окно». Всем понятно, что в период вскоре от начала тренировки организм атлета испытывает острую нехватку питательных веществ, которая продолжается примерно полтора-два часа после окончания тренировки, пока организм не восполнит нехватку необходимых веществ из собственных ресурсов. Учитывая, что скорость всасывания и усвоения аминокислот в составе протеинового коктейля составляет час-полтора, то мы получаем пределы белково-углеводного окна, принятие аминокислот и углеводов в котором имеет высокую эффективность усвоения, - от 1,5 ч до тренировки до 1,5 ч после.

По мудрости Природы многие вещества (такие как ) обладают способностью не только стимулировать синтез белка, но и подавлять его разрушение (например, угнетают действие кортизола). Считается, что прием белка (лучше в виде

Синтез белка - один из основных процессов метаболизма в клетке. Это - матричный синтез. Для синтеза белка необходимы ДНК, иРНК, тРНК, рРНК (рибосомы), аминокислоты, ферменты, ионы магния, энергия АТФ. Основная роль в определении структуры белка принадлежит ДНК.

Информация об аминокислотной последовательности в молекуле белка закодирована в молекуле ДНК. Способ записи информации называют кодированием. Генетический код - это система записи информации о последовательности расположения аминокислот в белках с помощью последовательности расположения нуклеотидов в информационной РНК.

В состав РНК входят нуклеотиды 4 типов: А, Г, Ц, У. В состав белковых молекул входит 20 аминокислот. Каждая из 20 амино- кислот зашифрована последовательностью 3 нуклеотидов, называемых триплетом, или кодоном. Из 4 нуклеотидов можно создать 64 различные комбинации по 3 нуклеотида в каждой (4 3 =64).

Свойства генетического кода

1. Генетический код триплетный:

2. Код вырожден. Это означает, что каждая аминокислота кодируется более чем одним кодоном (от 2 до 6):

3. Код не перекрывающийся. Это значит, что последовательно расположенные кодоны являются последовательно расположенны- ми триплетами нуклеотидов:

4. Универсален для всех клеток (человека, животных, растений).

5. Специфичен. Один и тот же триплет не может соответствовать нескольким аминокислотам.

6. Синтез белка начинается со стартового (начального) кодона АУТ, который кодирует аминокислоту метионин.

7. Заканчивается синтез белка одним из трех стоп-кодонов, не кодирующих аминокислоты: УАТ, УАА, УТА.

Таблица генетического кода

Участок ДНК, содержащий информацию о структуре определенного белка, называют геном. Ген непосредственного участия в синтезе белка не принимает. Посредником между геном и белком является информационная РНК (иРНК). ДНК играет роль матрицы для синтеза иРНК в ядре клетки. Молекула ДНК на участке гена раскручивается. С одной из ее цепей переписывается информация на иРНК в соответствии с принципом компле- ментарности между азотистыми основаниями нуклеиновых кислот. Этот процесс называют транскрипцией. Транскрипция происходит в ядре клетки при участии фермента РНК-полимеразы и с использованием энергии АТФ (рис. 37).

Рис. 37. Транскрипция.

Синтез белка осуществляется в цитоплазме на рибосомах, где иРНК служит матрицей (рис. 38). Перевод последовательности триплетов нуклеотидов в молекуле иРНК в специфическую последовательность аминокислот называют трансляцией. Синтезированная иРНК выходит через поры в ядерной оболочке в цитоплазму клетки, объединяется с рибосомами, образуя полирибосомы (полисомы). Каждая рибосома состоит из двух субъединиц - большой и малой. иРНК присоединяется к малой субъединице в присутствии ионов магния (рис. 39).

Рис. 38. Синтез белка.

Рис. 39. Основные структуры, участвующие в белковом синтезе.

В цитоплазме находятся транспортные РНК (тРНК). Каждая аминокислота имеет свою тРНК. У молекулы тРНК на одной из петель имеется триплет нуклеотидов (антикодон), который комплементарен триплету нуклеотидов на иРНК (кодону).

Аминокислоты, находящиеся в цитоплазме, активируются (взаимодействуют с АТФ) и с помощью фермента аминоацил-тРНК- синтетазы присоединяются к тРНК. Первый (стартовый) кодон иРНК - АУГ - несет информацию об аминокислоте метионине (рис. 40). К этому кодону подходит молекула тРНК, содержащая комплементарный антикодон и несущая первую аминокислоту метионин. Это обеспечивает соединение большой и малой субъединиц рибосомы. Второй кодон иРНК присоединяет тРНК, содержащую антикодон, комплементарный этому кодону. тРНК содержит вторую аминокислоту. Между первой и второй аминокислотами образуется пептидная связь. Рибосома прерывисто, триплет за триплетом, перемещается по иРНК. Первая тРНК освобождается и выходит в цитоплазму, где может соединяться со своей аминокислотой.

По мере продвижения рибосомы по иРНК к полипептидной цепочке присоединяются аминокислоты, соответствующие триплетам иРНК и привезенные тРНК (рис. 41).

«Считывание» рибосомой информации, заключенной в иРНК, происходит до тех пор, пока не дойдет до одного из трех стоп-кодонов (УАА, УГА, УАГ). Полипептидная цепь

Рис. 40. Синтез белка.

А - связывание аминоацил - тРНК;

Б - образование пептидной связи между метионином и 2-ой аминокислотой;

В - перемещение рибосомы на один кодон.

выходит из рибосомы и приобретает структуру, свойственную данному белку.

Непосредственная функция отдельного гена состоит в кодировании структуры определенного белка-фермента, который ка- тализирует одну биохимическую реакцию, протекающую в определенных условиях среды.

Ген (участок ДНК) → иРНК → белок-фермент → биохимическая реакция → наследственный признак.

Рис. 41. Трансляция.

Вопросы для самоконтроля

1. Где в клетке происходит синтез белка?

2. Где записана информация о синтезе белка?

3. Какие свойства имеет генетический код?

4. С какого кодона начинается синтез белка?

5. Какими кодонами заканчивается синтез белка?

6. Что такое ген?

7. Как и где происходит транскрипция?

8. Как называют триплеты нуклеотидов в молекуле иРНК?

9. Что такое трансляция?

10. Каким образом к тРНК присоединяется аминокислота?

11. Как называют триплет нуклеотидов в молекуле тРНК? 12.Какая аминокислота обеспечивает соединение большой и

малой субъединиц рибосомы?

13. Как происходит образование полипептидной цепочки белка?

Ключевые слова темы «Синтез белка»

азотистые основания аланин

аминокислоты

антикодон

белок

биохимическая реакция

валин

ген

генетический код действие

ДНК

запись информация ионы магния

иРНК

кодирование

кодон

лейцин

матрица

метаболизм

метионин

наследственный признак нуклеиновые кислоты пептидная связь петля

полирибосома поры

последовательность посредник

принцип комплементарности рибосомы

рРНК

серин

синтез

сочетание

способ

структура

субъединица

транскрипция

трансляция

триплет

тРНК

участок

фенилаланин

ферменты

цепочка

цитоплазма

энергия АТФ