Ускорение тела по наклонной плоскости. Движение по наклонной плоскости тела: скорость, трение, время

Букина Марина, 9 В

Движение тела по наклонной плоскости

с переходом на горизонтальную

В качестве исследуемого тела я взяла монету достоинством 10 рублей (грани ребристые).

Технические характеристики:

Диаметр монеты – 27,0 мм;

Масса монеты - 8,7 г;

Толщина - 4 мм;

Монета изготовлена из сплава латунь-мельхиор.

За наклонную плоскость я решила принять книгу длиной 27 см. Она и будет являться наклонной плоскостью. Горизонтальная же плоскость неограниченная, т. к. цилиндрическое тело, а в дальнейшем монета, скатываясь с книги, будет продолжать свое движение на полу (паркетная доска). Книга поднята на высоту 12 см от пола; угол между вертикальной плоскостью и горизонтальной равен 22 градусам.

В качестве дополнительного оборудования для измерений были взяты: секундомер, линейка обыкновенная, длинная нить, транспортир, калькулятор.

На Рис.1. схематичное изображение монеты на наклонной плоскости.

Выполним пуск монеты.

Полученные результаты занесем в таблицу 1

вид плоскости

наклонная

плоскость

горизонтальная

плоскость

*0,27 м величина постоянная tобщ=90,04

Таблица 1

Траектория движения монеты во всех опытах была различна, но некоторые части траектории были похожи. По наклонной плоскости монета двигалась прямолинейно, а при движении на горизонтальной плоскости – криволинейно.

На Рисунке 2 изображены силы, действующие на монету во время её движения по наклонной плоскости:

С помощью II Закона Ньютона выведем формулу для нахождения ускорения монеты (по Рис.2.):

Для начала, запишем формулу II Закона Ньютона в векторном виде.

Где - ускорение, с которым движется тело, - равнодействующая сила (силы, действующие на тело), https://pandia.ru/text/78/519/images/image008_3.gif" width="164" height="53">, на наше тело во время движения действуют три силы: сила тяжести (Fтяж), сила трения (Fтр) и сила реакции опоры (N);

Избавимся от векторов, при помощи проецирования на оси X и Y:

Где - коэффициент трения

Т. к. у нас нет данных о числовом значении коэффициента трения монеты о нашу плоскость, воспользуемся другой формулой:

Где S – путь, пройденный телом, V0- начальная скорость тела, а – ускорение, с которым двигалось тело, t – промежуток времени движения тела.

т. к. ,

в ходе математических преобразований получаем следующую формулу:

При проецировании этих сил на ось Х (Рис.2.) видно, что направления векторов пути и ускорения совпадают, запишем полученную форму, избавившись от векторов:

За S и t примем средние значения из таблицы, найдем ускорение и скорость (по наклонной плоскости тело двигалось прямолинейно равноускоренно).

https://pandia.ru/text/78/519/images/image021_1.gif" align="left" width="144" height="21">

Аналогично найдём ускорение тела на горизонтальной плоскости (по горизонтальной плоскости тело двигалось прямолинейно равнозамедленно)

R=1, 35 см, где R – радиус монеты

где - угловая скорость, -центростремительное ускорение, - частота обращения тела по окружности

Движение тела по наклонной плоскости с переходом на горизонтальную – прямолинейное равноускоренное, сложное, которое можно разделить на вращательное и поступательное движения.

Движение тела на наклонной плоскости является прямолинейным равноускоренным.

По II Закону Ньютона видно, что ускорение зависит только от равнодействующей силы (R), а она на протяжении всего пути по наклонной плоскости остается величиной постоянной, т. к. в конечной формуле, после проецирования II Закона Ньютона, величины, задействованные в формуле являются постоянными https://pandia.ru/text/78/519/images/image029_1.gif" width="15" height="17">поворота из некоторого начального положения.

Поступательным называется такое движение абсолютно твердого тела, при котором любая прямая, жестко связанная с телом, перемещается, оставаясь параллельной самой себе. Все точки тела, движущегося поступательно, в каждый момент времени имеют одинаковые скорости и ускорения, а их траектории полностью совмещаются при параллельном переносе.

Факторы, влияющие на время движения тела

по наклонной плоскости

с переходом на горизонтальную

Зависимость времени от монет разного достоинства (т. е. имеющих разный d (диаметр)).

Достоинство монеты

d монеты, см

tср, с

Таблица 2

Чем больше диаметр монеты, тем больше время её движения.

Зависимость времени от угла наклона

Угол наклона

tср, с

Таблица 3

Динамика является одним из важных разделов физики, который изучает причины движения тел в пространстве. В данной статье рассмотрим с точки зрения теории одну из типичных задач динамики - движение тела по наклонной плоскости, а также приведем примеры решений некоторых практических проблем.

Основная формула динамики

Прежде чем переходить к изучению физики движения тела по плоскости наклонной, приведем необходимые теоретические сведения для решения этой задачи.

В XVII Исаак Ньютон благодаря практическим наблюдениям за движением макроскопических окружающих тел вывел три закона, носящих в настоящее время его фамилию. На этих законах зиждется вся классическая механика. Нас интересует в данной статье лишь второй закон. Его математический вид приведен ниже:

Вам будет интересно:

Формула говорит о том, что действие внешней силы F¯ придаст ускорение a¯ телу массой m. Это простое выражение будем далее использовать для решения задач движения тела по плоскости наклонной.

Отметим, что сила и ускорение - это величины векторные, направленные в одну и ту же сторону. Кроме того, сила - это аддитивная характеристика, то есть в приведенной формуле F¯ можно рассматривать как результирующее воздействие на тело.

Наклонная плоскость и силы, действующие на тело, находящееся на ней

Ключевым моментом, от которого зависит успех решения задач движения тела по плоскости наклонной, является определение действующих на тело сил. Под определением сил понимают знание их модулей и направлений действия.

Ниже дан рисунок, где показано, что тело (автомобиль) находится в покое на наклоненной под углом к горизонту плоскости. Какие силы на него действуют?

Список ниже перечисляет эти силы:

  • тяжести;
  • реакции опоры;
  • трения;
  • натяжения нити (если присутствует).

Сила тяжести

В первую очередь это сила тяжести (Fg). Она направлена вертикально вниз. Поскольку тело имеет возможность двигаться только вдоль поверхности плоскости, то при решении задач силу тяжести разлагают на две взаимно перпендикулярные составляющие. Одна из составляющих направлена вдоль плоскости, другая - перпендикулярна ей. Только первая из них приводит к появлению у тела ускорения и, по сути, является единственным движущим фактором для рассматриваемого тела. Вторая составляющая обуславливает возникновение силы реакции опоры.

Проецирование сил. Движение по наклонной плоскости

Задачи по динамике.

I и II закон Ньютона.

Ввод и направление осей.

Неколлинеарные силы.

Проецирование сил на оси.

Решение систем уравнений.

Самые типовые задачи по динамике

Начнем с I и II законов Ньютона.

Откроем учебник физики и прочтем. I закон Ньютона: существуют такие инерциальные системы отсчета в которых... Закроем такой учебник, я тоже не понимаю. Ладно шучу, понимаю, но объясню проще.

I закон Ньютона: если тело стоит на месте либо движется равномерно (без ускорения), сумма действующих на него сил равна нулю.

Вывод: Если тело движется с постоянной скоростью или стоит на месте векторная сумма сил будет ноль.

II закон Ньютона: если тело движется равноускоренно или равнозамедленно (с ускорением), сумма сил, действующих на него, равна произведению массы на ускорение.

Вывод: Если тело двигается с изменяющейся скоростью, то векторная сумма сил, которые как-то влияют на это тело (сила тяги, сила трения, сила сопротивления воздуха), равна массе этого тело умножить на ускорение.

При этом одно и то же тело чаще всего движется по-разному (равномерно или с ускорением) в разных осях. Рассмотрим именно такой пример.

Задача 1. Определите коэффициент трения шин автомобиля массой 600 кг, если сила тяги двигателя 4500 Н вызывает ускорение 5 м/с².

Обязательно в таких задачах делать рисунок, и показывать силы, которые дествуют на машину:


На Ось Х: движение с ускорением

На Ось Y: нет движения (здесь координата, как была ноль так и останется, машина не поднимает в горы или спускается вниз)

Те силы, направление которых совпадает с направлением осей, будут с плюсом, в противоположном случае - с минусом.

По оси X: сила тяги направлена вправо, так же как и ось X, ускорение так же направлено вправо.

Fтр = μN, где N - сила реакции опоры. На оси Y: N = mg, тогда в данной задаче Fтр = μmg.

Получаем, что:

Коэффициент трения - безразмерная величина. Следовательно, единиц измерения нет.

Ответ: 0,25

Задача 2. Груз массой 5кг, привязанный к невесомой нерастяжимой нити, поднимают вверх с ускорением 3м/с². Определите силу натяжения нити.

Сделаем рисунок, покажем силы, которые дествуют на груз

T - сила натяжения нити

На ось X: нет сил

Разберемся с направлением сил на ось Y:

Выразим T (силу натяжения) и подставим числительные значения:

Ответ: 65 Н

Самое главное не запутаться с направлением сил (по оси или против), все остальное сделает калькулятор или всеми любимый столбик.

Далеко не всегда все силы, действующие на тело, направлены вдоль осей.

Простой пример: мальчик тянет санки

Если мы так же построим оси X и Y, то сила натяжения (тяги) не будет лежать ни на одной из осей.

Чтобы спроецировать силу тяги на оси, вспомним прямоугольный треугольник.

Отношение противолежащего катета к гипотенузе - это синус.

Отношение прилежащего катета к гипотенузе - это косинус.

Сила тяги на ось Y - отрезок (вектор) BC.

Сила тяги на ось X - отрезок (вектор) AC.

Если это непонятно, посмотрите задачу №4.

Чем длинее будет верека и, соответсвенно, меньше угол α, тем проще будет тянуть санки. Идеальный вариант, когда веревка параллельна земле , ведь сила, которая действуют на ось X- это Fнcosα. При каком угле косинус максимален? Чем больше будет этот катет, тем сильнее горизонтальная сила.

Задача 3. Брусок подвешен на двух нитях. Сила натяжения первой составляет 34 Н, второй - 21Н, θ1 = 45°, θ2 = 60°. Найдите массу бруска.

Введем оси и спроецируем силы:

Получаем два прямоугольных треугольника. Гипотенузы AB и KL - силы натяжения. LM и BC - проекции на ось X, AC и KM - на ось Y.

Ответ: 4,22 кг

Задача 4. Брусок массой 5 кг (масса в этой задаче не нужна, но, чтобы в уравнениях все было известно, возьмем конкретное значение) соскальзывает с плоскости, которая наклонена под углом 45°, с коэффициентом трения μ = 0,1. Найдите ускорение движения бруска?

Когда же есть наклонная плоскость, оси (X и Y) лучше всего направить по направлению движения тела. Некоторые силы в данном случае (здесь это mg) не будут лежать ни на одной из осей. Эту силу нужно спроецировать, чтобы она имела такое же направление, как и взятые оси.
Всегда ΔABC подобен ΔKOM в таких задачах (по прямому углу и углу наклона плоскости).

Рассмотрим поподробнее ΔKOM:

Получим, что KO лежит на оси Y, и проекция mg на ось Y будет с косинусом. А вектор MK коллинеарен (параллелен) оси X, проекция mg на ось X будет с синусом, и вектор МК направлен против оси X (то есть будет с минусом).

Не забываем, что, если направления оси и силы не совпадают, ее нужно взять с минусом!

Из оси Y выражаем N и подставляем в уравнение оси X, находим ускорение:

Ответ: 6,36 м/с²

Как видно, массу в числителе можно вынести за скобки и сократить со знаменаталем. Тогда знать ее не обязательно, получить ответ реально и без нее.
Да-да, в идеальных условиях (когда нет силы сопротивления воздуха и т.п.), что перо, что гиря скатятся (упадут) за одно и тоже время.

Задача 5. Автобус съезжает с горки под уклоном 60° с ускорением 8 м/с² и с силой тяги 8 кН. Коэффициент трения шин об асфальт равен 0,4. Найдите массу автобуса.

Сделаем рисунок с силами:

Введем оси X и Y. Спроецируем mg на оси:


Запишем второй закон Ньютона на X и Y:

Ответ: 6000 кг

Задача 6. Поезд движется по закруглению радиуса 800 м со скоростью 72 км/ч. Определить, на сколько внешний рельс должен быть выше внутреннего. Расстояние между рельсами 1,5 м.

Самое сложное - понять, какие силы куда действуют, и как угол влияет на них.

Вспомни, когда едешь по кругу на машине или в автобусе, куда тебя выталкивает? Для этого и нужен наклон, чтобы поезд не упал набок!

Угол α задает отношение разницы высоты рельсов к расстоянию между ними (если бы рельсы находились горизонтально)

Запишем какие силы действуют на оси:

Ускорение в данной задачи центростремительное!

Поделим одно уравнение на другое:

Тангенс - это отношение противолежащего катета к прилежащему:

Ответ: 7,5 см

Как мы выяснили, решение подобных задач сводится к расстановке направлений сил, проецированию их на оси и к решению систем уравнений, почти сущий пустяк.

В качестве закрепления материала решите несколько похожих задач с подсказками и ответами.

Динамика является одним из важных разделов физики, который изучает причины движения тел в пространстве. В данной статье рассмотрим с точки зрения теории одну из типичных задач динамики — движение тела по наклонной плоскости, а также приведем примеры решений некоторых практических проблем.

Основная формула динамики

Прежде чем переходить к изучению физики движения тела по плоскости наклонной, приведем необходимые теоретические сведения для решения этой задачи.

В XVII Исаак Ньютон благодаря практическим наблюдениям за движением макроскопических окружающих тел вывел три закона, носящих в настоящее время его фамилию. На этих законах зиждется вся классическая механика. Нас интересует в данной статье лишь второй закон. Его математический вид приведен ниже:

Формула говорит о том, что действие внешней силы F¯ придаст ускорение a¯ телу массой m. Это простое выражение будем далее использовать для решения задач движения тела по плоскости наклонной.

Отметим, что сила и ускорение — это величины векторные, направленные в одну и ту же сторону. Кроме того, сила — это аддитивная характеристика, то есть в приведенной формуле F¯ можно рассматривать как результирующее воздействие на тело.

Наклонная плоскость и силы, действующие на тело, находящееся на ней

Ключевым моментом, от которого зависит успех решения задач движения тела по плоскости наклонной, является определение действующих на тело сил. Под определением сил понимают знание их модулей и направлений действия.

Ниже дан рисунок, где показано, что тело (автомобиль) находится в покое на наклоненной под углом к горизонту плоскости. Какие силы на него действуют?

Список ниже перечисляет эти силы:

  • тяжести;
  • реакции опоры;
  • трения;
  • натяжения нити (если присутствует).

Сила тяжести


В первую очередь это сила тяжести (F g). Она направлена вертикально вниз. Поскольку тело имеет возможность двигаться только вдоль поверхности плоскости, то при решении задач силу тяжести разлагают на две взаимно перпендикулярные составляющие. Одна из составляющих направлена вдоль плоскости, другая — перпендикулярна ей. Только первая из них приводит к появлению у тела ускорения и, по сути, является единственным движущим фактором для рассматриваемого тела. Вторая составляющая обуславливает возникновение силы реакции опоры.

Реакция опоры

Второй действующей на тело силой является реакция опоры (N). Причина ее появления связана с третьим законом Ньютона. Величина N показывает, с какой силой плоскость воздействует на тело. Она направлена вверх перпендикулярно плоскости наклонной. Если бы тело находилось на горизонтальной поверхности, то N равнялась бы его весу. В рассматриваемом же случае N равна лишь второй составляющей, полученной при разложении силы тяжести (см. абзац выше).

Реакция опоры не оказывает прямого воздействия на характер движения тела, поскольку она перпендикулярна плоскости наклона. Тем не менее она обуславливает появление трения между телом и поверхностью плоскости.

Сила трения


Третьей силой, которую следует учитывать при исследовании движения тела по наклонной плоскости, является трение (F f). Физическая природа трения является непростой. Ее появление связано с микроскопическими взаимодействиями соприкасающихся тел, имеющих неоднородные поверхности контакта. Выделяют три вида этой силы:

  • покоя;
  • скольжения;
  • качения.

Трение покоя и скольжения описываются одной и той же формулой:

где µ — это безразмерный коэффициент, значение которого определяется материалами трущихся тел. Так, при трении скольжения дерева о дерево µ = 0,4, а льда о лед — 0,03. Коэффициент для трения покоя всегда больше такового для скольжения.

Трение качения описывается по отличной от предыдущей формуле. Она имеет вид:

Здесь r — радиус колеса, f — коэффициент, имеющий размерность обратной длины. Эта сила трения, как правило, намного меньше предыдущих. Заметим, что на ее значение влияет радиус колеса.

Сила F f , какого бы типа она ни была, всегда направлена против движения тела, то есть F f стремится остановить тело.

Натяжение нити

При решении задач движения тела по наклонной плоскости эта сила не всегда присутствует. Ее появление определяется тем, что находящееся на наклонной плоскости тело связано с помощью нерастяжимой нити с другим телом. Часто второе тело свисает на нити через блок за пределами плоскости.

На находящийся на плоскости предмет, сила натяжение нити воздействует либо ускоряя его, либо замедляя. Все зависит от модулей сил, действующих в физической системе.

Появление этой силы в задаче значительно усложняет процесс решения, поскольку приходится рассматривать одновременно движение двух тел (на плоскости и свисающего).


Задача на определение критического угла

Теперь пришло время применить описанную теорию для решения реальных задач движения по наклонной плоскости тела.

Предположим, что брус из дерева имеет массу 2 кг. Он находится на деревянной плоскости. Следует определить, при каком критическом угле наклона плоскости брус начнет по ней скользить.

Скольжение бруса наступит только тогда, когда суммарная действующая вниз вдоль плоскости сила на него окажется больше нуля. Таким образом, чтобы решить эту задачу, достаточно определить результирующую силу и найти угол, при котором она станет больше нуля. Согласно условию задачи на брус будут вдоль плоскости оказывать действие только две силы:

  • составляющая силы тяжести F g1 ;
  • трение покоя F f .

Чтобы началось скольжение тела, должно выполняться условие:

Отметим, что если составляющая силы тяжести превысит трение покоя, то она также будет больше силы трения скольжения, то есть начавшееся движение будет продолжаться с постоянным ускорением.

Рисунок ниже показывает направления всех действующих сил.


Обозначим критический угол символом θ. Несложно показать, что силы F g1 и F f будут равны:

F g1 = m × g × sin(θ);

F f = µ × m × g × cos(θ).

Здесь m × g — это вес тела, µ — коэффициент силы трения покоя для пары материалов дерево-дерево. Из соответствующей таблицы коэффициентов можно найти, что он равен 0,7.

Подставляем найденные величины в неравенство, получаем:

m × g × sin(θ) ≥ µ × m × g × cos(θ).

Преобразуя это равенство, приходим к условию движения тела:

tg(θ) ≥ µ =>

θ ≥ arctg(µ).

Мы получили весьма интересный результат. Оказывается, значение критического угла θ не зависит от массы тела на наклонной плоскости, а однозначно определяется коэффициентом трения покоя µ. Подставляя его значение в неравенство, получим величину критического угла:

θ ≥ arctg(0,7) ≈ 35 o .

Задача на определение ускорения при движении по наклонной плоскости тела


Теперь решим несколько иную задачу. Пусть на стеклянной наклонной плоскости находится брус из дерева. Плоскость к горизонту наклонена под углом 45 o . Следует определить, с каким ускорением будет двигаться тело, если его масса равна 1 кг.

Запишем главное уравнение динамики для этого случая. Поскольку сила F g1 будет направлена вдоль движения, а F f против него, то уравнение примет вид:

F g1 — F f = m × a.

Подставляем полученные в предыдущей задаче формулы для сил F g1 и F f , имеем:

m × g × sin(θ) — µ × m × g × cos(θ) = m × a.

Откуда получаем формулу для ускорения:

a = g × (sin(θ) — µ × cos(θ)).

Снова мы получили формулу, в которой нет массы тела. Этот факт означает, что бруски любой массы будут соскальзывать за одно и то же время по наклонной плоскости.

Учитывая, что коэффициент µ для трущихся материалов дерево-стекло равен 0,2, подставим все параметры в равенство, получим ответ:

Таким образом, методика решения задач с наклонной плоскостью заключается в определении результирующей силы, действующей на тело, и в последующем применении второго закона Ньютона.

Физика: движение тела по наклонной плоскости. Примеры решения и задачи — все интересные факты и достижения науки и образования на сайт

Тело массой 2 кг под действием силы F перемещается вверх по наклонной плоскости на расстояние расстояние тела от поверхности Земли при этом увеличивается на

Вектор силы F направлен параллельно наклонной плоскости, модуль силы F равен 30 Н. Какую работу при этом перемещении совершила сила тяжести? (Ответ дайте в джоулях.) Ускорение свободного падения примите равным коэффициент трения

Решение.

Работа силы определяется как скалярное произведение вектора силы и вектора перемещения тела. Следовательно, сила тяжести при подъеме тела вверх по наклонной плоскости совершила работу ( - угол при основании наклонной плоскости)

Ответ: −60.

Альтернативный способ решения.

Сила тяжести относится к типу сил, называемых потенциальными. Эти силы обладают таким свойством, что их работа по любому замкнутому пути всегда равна нулю (это можно считать определением). В качестве других примеров потенциальных сил можно упомянуть силу упругости, подчиняющуюся закону Гука кулоновскую силу взаимодействия зарядов силу всемирного тяготения (как обобщение простой силы тяжести) Примером непотенциальной силы, то есть не обладающей вышеописанным свойством, может служить, например, сила трения.

Как легко заметить, для всех сил, которые здесь названы потенциальными определена величина потенциальной энергии: - для силы тяжести, - для силы упругости, - для сил кулоновского взаимодействия, и, наконец, - для силы всемирного тяготения. Оказывается, что именно замечательное свойство потенциальных сил, легшее в основу их определения, и позволяется ввести для них понятия соответствующих потенциальных энергий. В общем случае это делается следующим образом. Пусть при переносе тела из точки 1 в точку 2 потенциальная сила совершила работу Тогда, по определению, говорят, что разность значений соответствующей потенциальной энергии в точках 2 и 1 равна Поскольку это определение содержит всегда только разность потенциальных энергий в двух точках, потенциальная энергия всегда оказывается определенной с точностью до константы. Это должен быть хорошо известный вам факт. Применим теперь это к данной задаче.

Нам требуется найти работу силы тяжести, для силы тяжести мы знаем, что такое потенциальная энергия. По выписанной ранее формуле получаем. Что искомая работа равна изменению потенциальной энергии тела, взятой со знаком минус. Высота тела над поверхностностью Земли увеличилась на следовательно, его энергия увеличилась на

А значит, работа силы тяжести равна

В качестве закрепления материала, предлагаю рассмотреть следующую задачу. С поверхности Земли стартует ракета массой Определите, какую работу совершит сила притяжения со стороны Земли к тому моменту, когда ракета будет находиться на расстоянии двух земных радиусов от центра Земли.

Решение.

Использовать в лоб формулу «» не удастся, поскольку сила притяжения уменьшается по мере удаления от Земли, единственный шанс применить эту формулу - начать интегрировать. Мы это оставим и попробуем ещё раз применить наши знания. Сила притяжения к Земле является потенциальной. Для неё мы знаем величину потенциальной энергии. Определим на сколько изменится потенциальная энергия ракеты.

Следовательно, сила притяжения совершила работу

Как и ожидалось, эта работа отрицательна.

Пример для самостоятельного разбора:

Пружина жесткостью 10 Н/м растянута на 5 см, какую работу совершит сила упругости при её растяжении ещё на 5 см?