Лекция: Счетная машина Блеза Паскаля. Великие ученые

Счетная суммирующая машина Блеза Паскаля – это изобретение, удивившее современников, но так и не нашедшее свой круг клиентов. Механизм, в основе имеющий зубчатые колесики, считается одним из прародителей калькулятора.

История развития суммирующих приборов началась еще в ХVII веке. «Паскалина» - это изобретение французского ученого Блеза Паскаля, которое относят к одному из этапов становления вычислительной техники. Паскаль уже в 19-летнем возрасте начал заниматься разработкой своей счетной машины, о которой сейчас можно прочитать на страницах учебников. Это изобретение считается одним из прообразов калькулятора.

«Паскалина»: история возникновения

Создание одной из самых ранних моделей суммирующих машин принадлежит французскому физику и математику Блезу Паскалю. Отец Паскаля был сборщиком налогов, поэтому уже в 19 лет будущий ученый видел, как производятся разные счетные операции. Уже в этот период создаются первые чертежи «Паскалины». Всего на окончательную разработку аппарата ушло 5 лет.

В теории механизм Паскаля был достаточно прост в применении, но из-за слабого развития технической стороны осуществление плана ученого стало сложной задачей, для которой пришлось преодолеть множество трудностей.

Блез хотел, чтобы его суммирующая машина упростила произведение любых сложных расчетов, как человеку образованному, так и тому, кто мало что понимал в арифметике. Паскаль затронул важную проблему, касающуюся не только его семьи, а и развития науки ХVII века.

На протяжении 10 лет исследователь создал более 50 счетных машин, однако лишь малую долю своих изобретений он смог продать. Один из первых готовых аппаратов Паскаль отдал канцлеру Сергье как благодарность за его помощь в научной деятельности молодого Блеза.

Что такое счетная машина Блеза Паскаля?

«Паскалина» - это небольшой ящичек, в котором находится множество соединенных между собой зубчатых колесиков (шестеренок). На каждом колесике были разметки от нуля до девяти. Для того, чтобы произвести операцию сложения необходимо было набрать суммирующиеся числа с помощью нужного количества оборотов шестеренок. Колесики двигались до того момента, пока не появилось нужное число. При полном обороте появившейся остаток (больше 9) шестеренка перекидывала на другой разряд, передвигая соседнее колесо на одно деление.

Использование оборотов колеса для процесса сложения не был новшеством в научной деятельности Паскаля, так как эту идею озвучил еще в 1623 году Вильгельм Шиккард. А действительно изобретением Блеза считается перенос остатка в следующий разряд при полном вращении шестеренки.

В первых «паскалинах» было по пять зубчатых колесиков, а уже с дальнейшей модернизацией технологии в механизме их число доходило до восьми штук, что позволяло работать с большими числами (до 9999999).

Этот механизм активно использовался в разных технических приборах до ХХ века. Его преимуществом было умение автоматического складывания многозначных чисел самим прибором.

Исследователи истории возникновения счетных механизмов считают, что Паскаль создал свою суммирующую машину практически с нуля, так как не был ознакомлен с проектом Шиккарда.

Прибор удивил современную науку, однако из-за высокой стоимости и сложности в эксплуатации так и не смог обрести свою аудиторию. Все же изобретение Паскаля внесло огромный вклад в историю развития вычислительной техники.

| Суммирующая машина Паскаля

Паскалина (суммирующая машина Паскаля) - механическая счётная машина, изобретённая гениальный французским учёным Блезом Паскалем (1623-1662) в 1642 году.

Паскаль стал первым изобретателем механических счётных машин. Блез начал работу над машиной в возрасте 19 лет, наблюдая за работой своего отца, который был сборщиком налогов и часто выполнял долгие и утомительные расчёты.

Для своего времени Паскалина имела, конечно, довольно футуристический вид: механический «ящичек» с кучей шестерёнок. За десять лет Паскалю удалось собрать более 50 различных вариантов устройства. Складываемые числа вводились в машину при помощи поворотов наборных колёсиков, на каждое из которых были нанесены деления от 0 до 9, т.к. одно колёсико соответствовало одному десятичному разряду числа. Тем самым, чтобы ввести число, колесики прокручивались до соответствующей цифры . При совершении полного оборота, избыток над цифрой 9 колёсико переносило на соседний разряд, сдвигая рядом расположенное колесо на 1 позицию.

Первые экземпляры машины Паскаля имели пять зубчатых колёс, спустя время их число увеличилось до шести, а ещё чуть позже до восьми, что позволяло работать с многоразрядными числами, вплоть до 9 999 999. Ответ арифметических операций был виден в верхней части металлического корпуса устройства. Вращение колёс было возможно только в одном направлении, тем самым, исключая возможность работать с отрицательными числами. Примечательно, что машина Паскаля умела выполнять как сложение, так и другие операции, однако требовала при этом применения довольно неудобной процедуры повторных сложений. Вычитание выполнялось дополнениями до девятки, которые в качестве помощи считавшему появлялись в окошке, расположенном над выставленным оригинальным значением.

Преимущества автоматических вычислений никак не изменили ситуацию, т.к. использование десятичной машины для финансовых расчётов в рамках действовавшей во Франции до 1799 года денежной системы было занятием не из простых. Расчёты проводились в ливрах, су и денье. В «ливре» насчитывалось 20 «су», в то время как в «су» - 12 «денье». Похожая система была и в Великобритании. В результате использование десятичной системы счисления в недесятичных финансовых расчётах усложняло и без того трудный процесс вычислений.

Несмотря на вызываемый Паскалиной огромный восторг, машина не озолотила своего создателя. Техническая сложность и высокая стоимость машины в сочетании с небольшими даже для тех лет вычислительными способностями служили серьёзным барьером для её широкого распространения. И всё же, Машина Паскаля заслуженно вошла в историю, ведь заложенный в её основу принцип связанных колёс почти на 300 лет стал основой для большинства создаваемых вычислительных машин.

Француз Блез Паскаль был сыном сборщика налогов. Наблюдая за бесконечными утомительными расчетами отца, он задумал создать вычислительное устройство. В возрасте 19 лет Блез начал работу над постройкой суммирующей машины. Через двадцать лет Паскаля не стало, но человечество запомнило его как выдающегося математика, философа, писателя и физика. Недаром именем Паскаля назван один из наиболее распространенных языков программирования.

Суммирующая машина Паскаля (механизм)


Суммирующее устройство Паскаля представляло собой ящик со множеством шестеренок. Только за одно десятилетие ученому удалось построить более пятидесяти разных вариантов машины. Во время работы на "паскалине" суммируемые числа вводились путем определенного поворота наборных колес. На каждое были нанесены деления от нуля до девяти, что соответствовало 1-му десятичному разряду числа. Превышение над девяткой колесо "переносило", при этом совершая полный круг и двигая левое "старшее" колесо на единицу вперед.

Несмотря на всеобщее признание, устройство не сделало ученого богатым. Однако сам принцип связанных колес лег в основу большинства вычислительных машин в течение следующих трех веков. За свое изобретение Паскаль получил королевский Патент, согласно которому за ним сохранялись авторские права на производство и продажу машин. Однако одаренный изобретатель на этом не остановился.

В 1648 году Паскаль довел до конца "опыты, касающиеся пустоты". Он доказал отсутствие в природе "страха пустоты". Ученый анализировал равновесие жидкостей под воздействием атмосферного давления. Результаты открытий легли в основу изобретения гидравлического пресса, который значительно опередил технологии того времени.


Суммирующая машина Паскаля (внешний вид)


Но в один прекрасный момент научная стезя опротивела известному ученому. Храм науки оказался тесен, и Паскалю захотелось порадоваться "прелестям" жизни. Свет принял его тут же, и на несколько лет изобретатель погрузился в атмосферу аристократических салонов. Все эти годы младшая сестра Паскаля, монахиня из Пор Рояль, неустанно молилась за спасение заблудшей души своего брата.

В один из ноябрьских вечеров 1654 года Паскаля посетило мистическое озарение. Когда он пришел в себя, то немедленно записал откровение на кусочке пергамента и зашил его в подкладку платья. Эта реликвия была с ученым до самого последнего дня.

В день смерти Паскаля его друзья и обнаружили пергамент. Событие стало поворотным пунктом в жизни изобретателя, оставившего научную практику и опыты. Отныне его писательский талант был направлен на защиту христианства. Ученый публикует несколько художественных эссе под названием "Письма к провинциалу".


Суммирующая машина Паскаля (принципиальная схема)


Последний год своей жизни Паскаль посвятил паломничеству по церквям Парижа. Его преследовали жуткие головные боли, и врачи запретили умственные нагрузки. Однако больной умудрялся записывать мысли, которые приходили ему в голову, на любом подвернувшемся материале. 19 августа 1662 года мучительная продолжительная болезнь взяла верх, и Блез Паскаль скончался.

После его смерти друзья обнаружили множество пачек с записками, которые были перевязаны бечевкой. Позже их расшифровали, а затем издали отдельной книгой. Современному читателю она известна под названием "Мысли".

В честь Паскаля назвали язык программирования. Его отцом считается Никлаус Вирт. Работа над языком Паскаль велась на протяжении 1968-1969 года. Годом рождения языка Паскаль считается 1970. Компьютерная общественность нашла в нем эффективный инструмент для структурного программирования и обучения правильному программированию.

Первым изобретателем, механических счетных машин, стал гениальный француз Блез Паскаль. Сын сборщика налогов, Паскаль задумал построить вычислительное устройство, наблюдая бесконечные утомительные расчеты своего отца. В 1642 г., когда Паскалю было всего 19 лет, он начал работать над созданием суммирующей машины. Паскаль умер в возрасте 39 лет, но, несмотря на столь короткую жизнь, навечно вошел в историю как выдающийся математик, физик, писатель и философ. В его честь назван один из самых распространенных современных языков программирования.

Суммирующая машина Паскаля, «паскалина», представляла собой механическое устройство - ящик с многочисленными шестеренками. Всего приблизительно за десятилетие он построил более 50 различных вариантов машины. При работе на «паскалине» складываемые числа вводились путем соответствуюшего поворота наборных колесиков. Каждое колесико с нанесенными на него делениями от 0 до 9 соответствовало одному десятичному разряду числа - единицам, десяткам, сотням и т. д. Избыток над 9 колесико «переносило», совершая полный оборот и продвигая соседнее слева «старшее» колесико на 1 вперед. Другие операции выполнялись при помощи довольно неудобной процедуры повторных сложений.

1642г. Суммирующая машина Паскаля производила арифметические действия приСуммирующая машина Паскаля вращении связаных колесиков с цифровыми делениями.

Хотя машина вызвала всеобщий восторг, она не принесла Паскалю богатства. Тем не менее изобретенный им принцип связанных колес явился основой, на которой строил ось большинство вычислительных устройств на протяжении следующих трех столетий.

Основной недостаток «паскалины» состоял в неудобстве выполнения на ней всех операций, кроме простого сложения. Первая машина, позволявшая легко производить вычитание, умножение и деление, была изобретена позже в том же XVII в. в Германии. Заслуга этого изобретения принадлежит гениальному человеку, творческое воображение которого казалось неисчерпаемым. Готфрид Вильгельм Лейбниц родился в 1646 г. в Лейпциге. Он принадлежал к роду, известному своими учеными и политическими деятелями. Его отец, профессор этики, умер, когда ребенку было всего 6 лет, но к этому времени Лейбницем уже овладела жажда знаний. Дни напролет он проводил в отцовской библиотеке, читая книги и занимаясь историей, латинским и греческим языками и другими предметами.

Поступив в Лейпцигский университет в возрасте 15 лет, он по своей эрудиции, пожалуй, не уступал многим профессорам. И все же теперь перед ним открылся совершенно новый мир. В университете он впервые познакомился с работами Кеплера, Галилея и других ученых, стремительно расширявших границы научного познания. Темпы научного прогресса поразили воображение молодого Лейбница, и он решил включить в свою учебную про грамму математику.



В возрасте 20 лет Лейбницу предложили должность профессора в Нюрнбергском университете. Он отклонил это предложение, предпочтя жизни ученого дипломатическую карьеру. Однако, пока он разъезжал в карете из одной европейской столицы в другую, его беспокойный ум терзали всевозможные вопросы из самых различных областей науки и философии - от этики до гидравлики и астрономии. В 1672 г., находясь в Париже, Лейбниц познакомился с голландским математиком и астрономом Христиан ом Гюйгенсом. Видя, как много вычислений приходится делать астроному, Лейбниц решил изобрести механическое устройство, которое облегчило бы расчеты. «Поскольку это недостойно таких замечательных людей, - писал Лейбниц, - подобно рабам, терять время на вычислительную работу, которую можно было бы доверить кому угодно при использовании машины».

В 1673 г. он изготовил механический калькулятор. Сложение производил ось на нем по существу так же, как и на «паскалине», однако Лейбниц включил в конструкцию движущуюся часть (прообраз подвижной каретки будущих настольных калькуляторов) и ручку, с помощью которой можно было крутить ступенчатое колесо или - в последующих вариантах машины - цилиндры, расположенные внутри аппарата. Этот механизм с движущимся элементом позволял ускорить повторяющиеся операции сложения, необходимые для перемножения или деления чисел. Само повторение тоже было автоматическим.

1673 г. Калькулятор Лейбница ускорил выполнение операций умножения и деления.

Лейбниц продемонстрировал свою машину в Французской академии наук и Лондонском королевском обществе. Один экземпляр машины Лейбница попал к Петру Великому, который подарил ее китайскому императору, желая поразить того европейскими техническими достижениями. Но Лейбниц прославился прежде всего не этой машиной, а созданием дифференциального и интегрального исчисления (которое независимо разрабатывал в Англии Исаак Ньютон). Он заложил также основы двоичной системы счисления, которая позднее нашла применение в автоматических вычислительных устройствах.



Арифмометр Лейбница

Арифмометр (от греч. αριθμός - «число», «счёт» и греч. μέτρον - «мера», «измеритель») - настольная (или портативная) механическая вычислительная машина, предназначенная для точного умножения и деления, а также для сложения и вычитания.

Настольная или портативная: Чаще всего арифмометры были настольные или «наколенные» (как современные ноутбуки), изредка встречались карманные модели (Curta). Этим они отличались от больших напольных вычислительных машин, таких как табуляторы (Т-5М) или механические компьютеры (Z-1, Разностная машина Чарльза Бэббиджа).

Механическая: Числа вводятся в арифмометр, преобразуются и передаются пользователю (выводятся в окнах счётчиков или печатаются на ленте) с использованием только механических устройств. При этом арифмометр может использовать исключительно механический привод (то есть для работы на них надо постоянно крутить ручку. Этот примитивный вариант используется, например, в «Феликсе») или производить часть операций с использованием электромотора (Наиболее совершенные арифмометры - вычислительные автоматы, например «Facit CA1-13», почти при любой операции используют электромотор).

Точное вычисление: Арифмометры являются цифровыми (а не аналоговыми, как например логарифмическая линейка) устройствами. Поэтому результат вычисления не зависит от погрешности считывания и является абсолютно точным.

Умножение и деление: Арифмометры предназначены в первую очередь для умножения и деления. Поэтому почти у всех арифмометров есть устройство, отображающее количество сложений и вычитаний - счётчик оборотов (так как умножение и деление чаще всего реализовано как последовательное сложение и вычитание; подробнее - см. ниже).

Сложение и вычитание: Арифмометры могут выполнять сложение и вычитание. Но на примитивных рычажных моделях (например, на «Феликсе») эти операции выполняются очень медленно - быстрее, чем умножение и деление, но заметно медленнее, чем на простейших суммирующих машинах или даже вручную.

Не программируемый: При работе на арифмометре порядок действий всегда задаётся вручную - непосредственно перед каждой операцией следует нажать соответствующую клавишу или повернуть соответствующий рычаг. Это особенность арифмометра не включается в определение, так как программируемых аналогов арифмометров практически не существовало.

Идеи Чарльза Бэббиджа

Ра́зностная маши́на Чарльза Бэббиджа - механический аппарат, изобретённый английским математиком Чарльзом Бэббиджем, предназначенный для автоматизации вычислений путём аппроксимации функций многочленами и вычисления конечных разностей. Возможность приближённого представления в многочленах логарифмов и тригонометрических функций позволяет рассматривать эту машину как довольно универсальный вычислительный прибор.

Первая идея разностной машины была выдвинута немецким инженером Иоганном Мюллером в книге, изданной в 1788 году.

Однако, Чарльз Бэббидж почерпнул идею для своего проекта не у Мюллера, а из работ Гаспара де Прони, занимавшего должность руководителя бюро переписи при французском правительстве с 1790 по 1800 год.

Прони, которому было поручено выверить и улучшить логарифмические тригонометрические таблицы для подготовки к введению метрической системы, предложил распределить работу по трём уровням. На верхнем уровне группа крупных математиков занималась выводом математических выражений, пригодных для численных расчётов. Вторая группа вычисляла значения функций для аргументов, отстоящих друг от друга на пять или десять интервалов. Подсчитанные значения входили в таблицу в качестве опорных. После этого формулы отправляли третьей, наиболее многочисленной группе, члены которой проводили рутинные расчёты и именовались «вычислителями». От них требовалось только аккуратно складывать и вычитать в последовательности, определённой формулами, полученными от второй группы.

Работы де Прони (так и не законченные ввиду революционного времени), с которыми Бэббидж познакомился, находясь во Франции, навели Бэббиджа на мысль о возможности создания машины, способной заменить третью группу - вычислителей. В 1822 году Бэббидж опубликовал статью с описанием такой машины, а вскоре приступил к её практическому созданию. Как математику, Бэббиджу был известен метод аппроксимации функций многочленами и вычислением конечных разностей. С целью автоматизации этого процесса он начал проектировать машину, которая так и называлась - разностная. Эта машина должна была уметь вычислять значения многочленов до шестой степени с точностью до 18-го знака.

В том же 1822 году Бэббиджем была построена модель разностной машины, состоящая из валиков и шестерней, вращаемых вручную при помощи специального рычага. Заручившись поддержкой Королевского общества, посчитавшего его работу «в высшей степени достойной общественной поддержки», Бэббидж обратился к правительству Великобритании с просьбой о финансировании полномасштабной разработки. В 1823 году правительство Великобритании предоставило ему субсидию в размере 1500 фунтов стерлингов (общая сумма правительственных субсидий, полученных Бэббиджем на реализацию проекта, составила в конечном счёте 17 000 фунтов стерлингов).

Разрабатывая машину, Бэббидж и не представлял всех трудностей, связанных с её реализацией, и не только не уложился в обещанные три года, но и спустя девять лет вынужден был приостановить свою работу. Однако часть машины все же начала функционировать и производила вычисления даже с большей точностью, чем ожидалось.

Копия разностной машины в лондонском Музее науки

Конструкция разностной машины основывалась на использовании десятичной системы счисления. Механизм приводился в действие специальными рукоятками. Когда финансирование создания разностной машины прекратилось, Бэббидж занялся проектированием гораздо более общей аналитической машины, но затем всё-таки вернулся к первоначальной разработке. Улучшенный проект, над которым он работал между 1847 и 1849 годами, носил название «Разностная машина № 2» (англ. Difference Engine No.

Француз Блез Паскаль был сыном сборщика налогов. Наблюдая за бесконечными утомительными расчетами отца, он задумал создать вычислительное устройство. В возрасте 19 лет Блез начал работу над постройкой суммирующей машины. Через двадцать лет Паскаля не стало, но человечество запомнило его как выдающегося математика, философа, писателя и физика. Недаром именем Паскаля назван один из наиболее распространенных языков программирования.

Суммирующее устройство Паскаля представляло собой ящик со множеством шестеренок. Только за одно десятилетие ученому удалось построить более пятидесяти разных вариантов машины. Во время работы на “паскалине” суммируемые числа вводились путем определенного поворота наборных колес. На каждое были нанесены деления от нуля до девяти, что соответствовало 1-му десятичному разряду числа. Превышение над девяткой колесо “переносило”, при этом совершая полный круг и двигая левое “старшее” колесо на единицу вперед.

Несмотря на всеобщее признание, устройство не сделало ученого богатым. Однако сам принцип связанных колес лег в основу большинства вычислительных машин в течение следующих трех веков. За свое изобретение Паскаль получил королевский Патент, согласно которому за ним сохранялись авторские права на производство и продажу машин. Однако одаренный изобретатель на этом не остановился.

В 1648 году Паскаль довел до конца “опыты, касающиеся пустоты”. Он доказал отсутствие в природе “страха пустоты”. Ученый анализировал равновесие жидкостей под воздействием атмосферного давления. Результаты открытий легли в основу изобретения гидравлического пресса, который значительно опередил технологии того времени.

Но в один прекрасный момент научная стезя опротивела известному ученому. Храм науки оказался тесен, и Паскалю захотелось порадоваться “прелестям” жизни. Свет принял его тут же, и на несколько лет изобретатель погрузился в атмосферу аристократических салонов. Все эти годы младшая сестра Паскаля, монахиня из Пор Рояль, неустанно молилась за спасение заблудшей души своего брата.

В один из ноябрьских вечеров 1654 года Паскаля посетило мистическое озарение. Когда он пришел в себя, то немедленно записал откровение на кусочке пергамента и зашил его в подкладку платья. Эта реликвия была с ученым до самого последнего дня.

В день смерти Паскаля его друзья и обнаружили пергамент. Событие стало поворотным пунктом в жизни изобретателя, оставившего научную практику и опыты. Отныне его писательский талант был направлен на защиту христианства. Ученый публикует несколько художественных эссе под названием “Письма к провинциалу”.

Последний год своей жизни Паскаль посвятил паломничеству по церквям Парижа. Его преследовали жуткие головные боли, и врачи запретили умственные нагрузки. Однако больной умудрялся записывать мысли, которые приходили ему в голову, на любом подвернувшемся материале. 19 августа 1662 года мучительная продолжительная болезнь взяла верх, и Блез Паскаль скончался.

После его смерти друзья обнаружили множество пачек с записками, которые были перевязаны бечевкой. Позже их расшифровали, а затем издали отдельной книгой. Современному читателю она известна под названием “Мысли”.

В честь Паскаля назвали язык программирования. Его отцом считается Никлаус Вирт. Работа над языком Паскаль велась на протяжении 1968-1969 года. Годом рождения языка Паскаль считается 1970. Компьютерная общественность нашла в нем эффективный инструмент для структурного программирования и обучения правильному программированию.