Создатели водородной бомбы. испытание водородной бомбы в ссср, сша, кндр

Айви Майк - первые атмосферные испытания водородной бомбы, проведенные США на атоллле Эниветок 1 ноября 1952 года.

65 лет назад Советский Союз взорвал свою первую термоядерную бомбу. Как устроено это оружие, что оно может и чего не может? 12 августа 1953-го в СССР взорвали первую «практичную» термоядерную бомбу. Мы расскажем об истории ее создания и разберёмся, правда ли, что такой боеприпас почти не загрязняет среду, но может уничтожить мир.

Идея термоядерного оружия, где ядра атомов сливаются, а не расщепляются, как в атомной бомбе, появилась не позднее 1941 года. Она пришла в головы физикам Энрико Ферми и Эдварду Теллеру. Примерно в то же время они стали участниками Манхэттенского проекта и помогли создать бомбы, сброшенные на Хиросиму и Нагасаки. Сконструировать термоядерный боеприпас оказалось намного сложнее.

Приблизительно понять, насколько термоядерная бомба сложнее атомной, можно и по тому факту, что работающие АЭС давно обыденность, а работающие и практичные термоядерные электростанции - все еще научная фантастика.

Чтобы атомные ядра сливались друг с другом, их надо нагреть до миллионов градусов. Схему устройства, которое позволило бы это проделать, американцы запатентовали в 1946 году (проект неофициально назывался Super), но вспомнили о ней только спустя три года, когда в СССР успешно испытали ядерную бомбу.

Президент США Гарри Трумэн заявил, что на советский рывок нужно ответить «так называемой водородной, или супербомбой».

К 1951 году американцы собрали устройство и провели испытания под кодовым названием «Джордж». Конструкция представляла собой тор - проще говоря, бублик - с тяжелыми изотопами водорода, дейтерием и тритием. Выбрали их потому, что такие ядра сливать проще, чем ядра обычного водорода. Запалом служила ядерная бомба. Взрыв сжимал дейтерий и тритий, те сливались, давали поток быстрых нейтронов и зажигали обкладку из урана. В обычной атомной бомбе он не делится: там есть только медленные нейтроны, которые не могут заставить делиться стабильный изотоп урана. Хотя на энергию слияния ядер пришлось примерно 10% от общей энергии взрыва «Джорджа», «поджиг» урана-238 позволил поднять мощность взрыва вдвое выше обычного, до 225 килотонн.

За счет дополнительного урана взрыв получился вдвое мощнее, чем с обычной атомной бомбой. Но на термоядерный синтез приходилось только 10% выделившейся энергии: испытания показали, что ядра водорода сжимаются недостаточно сильно.

Тогда математик Станислав Улам предложил другой подход - двухступенчатый ядерный запал. Его задумка заключалась в том, чтобы поместить в «водородной» зоне устройства плутониевый стержень. Взрыв первого запала «поджигал» плутоний, две ударные волны и два потока рентгеновских лучей сталкивались - давление и температура подскакивали достаточно, чтобы начался термоядерный синтез. Новое устройство испытали на атолле Эниветок в Тихом океане в 1952 году - взрывная мощность бомбы составила уже десять мегатонн в тротиловом эквиваленте.

Тем не менее и это устройство было непригодно для использования в качестве боевого оружия.

Чтобы ядра водорода сливались, расстояние между ними должно быть минимальным, поэтому дейтерий и тритий охлаждали до жидкого состояния, почти до абсолютного нуля. Для этого требовалась огромная криогенная установка. Второе термоядерное устройство, по сути увеличенная модификация «Джорджа», весило 70 тонн - с самолета такое не сбросишь.

СССР начал разрабатывать термоядерную бомбу позднее: первая схема была предложена советскими разработчиками лишь в 1949 году. В ней предполагалось использовать дейтерид лития. Это металл, твердое вещество, его не надо сжижать, а потому громоздкий холодильник, как в американском варианте, уже не требовался. Не менее важно и то, что литий-6 при бомбардировке нейтронами от взрыва давал гелий и тритий, что еще больше упрощает дальнейшее слияние ядер.

Бомба РДС-6с была готова в 1953 году. В отличие от американских и современных термоядерных устройств плутониевого стержня в ней не было. Такая схема известна как «слойка»: слои дейтерида лития перемежались урановыми. 12 августа РДС-6с испытали на Семипалатинском полигоне.

Мощность взрыва составила 400 килотонн в тротиловом эквиваленте - в 25 раз меньше, чем во второй попытке американцев. Зато РДС-6с можно было сбросить с воздуха. Такую же бомбу собирались использовать и на межконтинентальных баллистических ракетах. А уже в 1955 году СССР усовершенствовал свое термоядерное детище, оснастив его плутониевым стержнем.

Сегодня практически все термоядерные устройства - судя по всему, даже северокорейские - представляют собой нечто среднее между ранними советскими и американскими моделями. Все они используют дейтерид лития как топливо и поджигают его двухступенчатым ядерным детонатором.

Как известно из утечек, даже самая современная американская термоядерная боеголовка W88 похожа на РДС-6c: слои дейтерида лития перемежаются ураном.

Разница в том, что современные термоядерные боеприпасы - это не многомегатонные монстры вроде «Царь-бомбы», а системы мощностью в сотни килотонн, как РДС-6с. Мегатонных боеголовок в арсеналах ни у кого нет, так как в военном отношении десяток менее мощных зарядов ценнее одного сильного: это позволяет поразить больше целей.

Техники работают с американской термоядерной боеголовкой W80

Чего не может термоядерная бомба

Водород - элемент чрезвычайно распространенный, достаточно его и в атмосфере Земли.

Одно время поговаривали, что достаточно мощный термоядерный взрыв может запустить цепную реакцию и весь воздух на нашей планете выгорит. Но это миф.

Не то что газообразный, но и жидкий водород недостаточно плотный, чтобы начался термоядерный синтез. Его нужно сжимать и нагревать ядерным взрывом, желательно c разных сторон, как это делается двухступенчатым запалом. В атмосфере таких условий нет, поэтому самоподдерживающиеся реакции слияния ядер там невозможны.

Это не единственное заблуждение о термоядерном оружии. Часто говорят, что взрыв «чище» ядерного: мол, при слиянии ядер водорода «осколков» - опасных короткоживущих ядер атомов, дающих радиоактивное загрязнение, - получается меньше, чем при делении ядер урана.

Заблуждение это основано на том, что при термоядерном взрыве большая часть энергии якобы выделяется за счет слияния ядер. Это неправда. Да, «Царь-бомба» была такой, но только потому, что ее урановую «рубашку» для испытаний заменили на свинцовую. Современные двухступенчатые запалы приводят к значительному радиоактивному загрязнению.

Зона возможного тотального поражения «Царь-бомбой», нанесенная на карту Парижа. Красный круг - зона полного разрушения (радиус 35 км). Желтый круг - размер огненного шара (радиус 3,5 км).

Правда, зерно истины в мифе о «чистой» бомбе все же есть. Взять лучшую американскую термоядерную боеголовку W88. При ее взрыве на оптимальной высоте над городом площадь сильных разрушений практически совпадет с зоной радиоактивного поражения, опасного для жизни. Погибших от лучевой болезни будет исчезающе мало: люди погибнут от самого взрыва, а не радиации.

Еще один миф гласит, что термоядерное оружие способно уничтожить всю человеческую цивилизацию, а то и жизнь на Земле. Это тоже практически исключено. Энергия взрыва распределена в трех измерениях, поэтому при росте мощности боеприпаса в тысячу раз радиус поражающего действия растет всего в десять раз - мегатонная боеголовка имеет радиус поражения всего в десять раз больше, чем тактическая, килотонная.

66 миллионов лет назад столкновение с астероидом привело к исчезновению большинства наземных животных и растений. Мощность удара составила около 100 млн мегатонн - это в 10 тыс. раз больше суммарной мощности всех термоядерных арсеналов Земли. 790 тыс. лет назад с планетой столкнулся астероид, удар был мощностью в миллион мегатонн, но никаких следов хотя бы умеренного вымирания (включая наш род Homo) после этого не случилось. И жизнь в целом, и человек куда крепче, чем они кажутся.

Правда о термоядерном оружии не так популярна, как мифы. На сегодня она такова: термоядерные арсеналы компактных боеголовок средней мощности обеспечивают хрупкий стратегический баланс, из-за которого никто не может свободно утюжить другие страны мира атомным оружием. Боязнь термоядерного ответа - более чем достаточный сдерживающий фактор.

Как советские физики делали водородную бомбу, какие плюсы и минусы несло в себе это страшное оружие, читайте в рубрике «История науки».

После Второй мировой войны говорить о фактическом наступлении мира было еще нельзя – две крупные мировые державы вступили в гонку вооружений. Одной из граней этого конфликта оказалось противостояние СССР и США в создании ядерного оружия. В 1945 году США, первыми негласно вступившие в гонку, сбросили ядерные бомбы на печально известные города Хиросима и Нагасаки. В Советском Союзе тоже велись работы по созданию ядерного оружия, и в 1949 году испытали первую атомную бомбу, рабочим веществом в которой был плутоний. Еще во время ее разработки советская разведка выяснила, что США переключились на разработку более мощной бомбы. Это подтолкнуло СССР заняться изготовлением термоядерного оружия.

Выяснить, каких результатов достигли американцы, разведчики не смогли, да и попытки советских ядерщиков не увенчались успехом. Поэтому было решено создать бомбу, взрыв которой происходил бы за счет синтеза легких ядер, а не деления тяжелых, как в атомной бомбе. Весной 1950 года начались работы над созданием бомбы, получившей в дальнейшем название РДС-6с. В числе ее разработчиков оказался и будущий лауреат Нобелевской премии мира Андрей Сахаров, предложивший идею конструкции заряда еще в 1948 году, но позднее выступавший против ядерных испытаний.

Андрей Сахаров

Владимир Федоренко/Wikimedia Commons

Сахаров предложил покрыть ядро из плутония несколькими слоями легких и тяжелых элементов, а именно ураном и дейтерием – изотопом водорода. Впоследствии, правда, дейтерий предложили заменить на дейтерид лития – это значительно упростило конструкцию заряда и его эксплуатацию. Дополнительным преимуществом было то, что из лития после бомбардировки нейтронами получается еще один изотоп водорода - тритий. Вступая в реакцию с дейтерием, тритий выделяет гораздо больше энергии. К тому же литий еще и замедляет нейтроны лучше. Такая структура бомбы и подарила ей прозвище «Слойка».

Определенная сложность состояла в том, что толщина каждого слоя и их окончательное количество также были очень важны для успешного испытания. По расчетам, от 15% до 20% выделения энергии при взрыве приходилось на термоядерные реакции, а еще 75-80% - на деление ядер урана-235, урана-238 и плутония-239. Предполагалось также, что мощность заряда составит от 200 до 400 килотонн, практический результат оказался на верхней границе прогнозов.

В день Х, 12 августа 1953 года, первую советскую водородную бомбу проверили в действии. Семипалатинский испытательный полигон, на котором произошел взрыв, находился в Восточно-Казахстанской области. Испытанию РДС-6с предшествовала попытка 1949 года (тогда на полигоне провели наземный взрыв бомбы мощностью 22,4 килотонны). Несмотря на изолированное положение полигона, население региона на себе прочувствовало всю прелесть ядерных испытаний. Люди, жившие сравнительно недалеко от полигона на протяжение десятков лет, вплоть до закрытия полигона в 1991 году, подвергались радиационному облучению, а территории за много километров от полигона оказались загрязнены продуктами ядерного распада.

Первая советская водородная бомба РДС-6с

Wikimedia Commons

За неделю до испытания РДС-6с, по рассказам очевидцев, военные выдали семьям проживавших неподалеку от полигона деньги и продукты, но никакой эвакуации и информирования о предстоящих событиях не последовало. Радиоактивный грунт с самого полигона увезли, а ближайшие сооружения и наблюдательные пункты восстановили. Водородную бомбу было решено взорвать на поверхности земли, несмотря на то, что конфигурация позволяла сбросить ее с самолета.

Предыдущие испытания атомных зарядов разительно отличались от того, что зафиксировали ядерщики после испытания «слойки Сахарова». Энерговыход бомбы, которую критики называют не термоядерной бомбой, а атомной бомбой с термоядерным усилением, оказался в 20 раз больше, чем у предыдущих зарядов. Это было заметно невооруженным взглядом в солнечных очках: от уцелевших и восстановленных зданий после испытания водородной бомбы осталась только пыль.

Фав

Что происходит внутри дошедшей до цели термоядерной боеголовки? Много удивительных и красивых, с точки зрения физики, вещей. Правда, перед самым апокалипсисом о них вряд ли кто-нибудь подумает, поэтому мы расскажем о зарождении ядерного взрыва прямо сейчас.

…Ну, допустим, пришёл " title="">боевой блок МБР в расчётную точку. Или атомная бомба на парашюте опустилась на ту высоту, где, выражаясь популярно, необходимо непременно бахнуть. А бахнуть - это вообще как? Что происходит в корпусе бомбы за то мгновение, когда он с содержимым превращается в энергию?

Нет, вот не надо мне тут про« вспышку слева», про« ногами в эпицентр» и прочий стёб по мотивам скверно зазубренного учебника гражданской обороны. Что конкретно происходит под корпусом термоядерной боеголовки в тот момент, пока этот корпус ещё существует - хотя бы условно и частично?

Отстаньте от меня с вашим раскаянием, это же такая красивая физика!(Laßt mich in Ruhe mit euren Gewissensbissen, das ist doch so schöne Physik!)

Так сказал Энрико Ферми перед первыми ядерными испытаниями в Аламогордо, июль 1945 года.(Если, конечно, верить автору книги« Ярче тысячи солнц» Роберту Юнгу. Оснований верить ему нет ни малейших, но фраза всё равно хорошая, и мы ею цинично воспользуемся.)

Будем рассматривать двухступенчатый боеприпас, выполненный по схеме Теллера-Улама. В Советском Союзе она широко известна как« третья идея» из воспоминаний Андрея Сахарова, хотя реальных« отцов» у неё в наших палестинах был целый взвод - как минимум Давиденко, Франк-Каменецкий, Зельдович, Бабаев и Трутнев. Поэтому неправильно было бы приписывать её лично товарищу академику Сахарову, как это иногда делают.(Товарищ академик тоже не приписывал себе ничего лишнего. Будь как товарищ академик.)

Килотонная зажигалка

Начинается всё с первой ступени - так называемого триггера. Это простой атомный заряд(ну, может не совсем простой), а в нём уже всё стартует одновременным подрывом заряда обычной взрывчатки, хитрым образом обёрнутого вокруг делящегося вещества.

В древние времена атомной эры было важно, чтобы детонаторы сработали строго одновременно, с минимальным рассогласованием - в пределах десятков наносекунд. Иначе будет небольшой обычный взрыв с быстро погасшей ядерной реакцией(так называемая« шипучка»). Он изгадит все окрестности впустую израсходованным плутонием и прочей радиоактивной поганью. В конце концов придумали хитрый вариант подрыва, так называемый« лебедь». В нём синхронность некритична, и можно не утыкивать всю поверхность детонаторами.

Специально обученная взрывчатка взрывается и давит на тампер(толкатель - тяжёлую оболочку триггера). Он« падает» внутрь через пустоту, в центре которой, окружённое бериллиевым отражателем нейтронов, висит самое интересное: маленький шарик плутония-239. Тампер обжимает шарик, доводя давление до нескольких миллионов атмосфер, и переводит его в надкритическое состояние.

Внимание: с момента запуска детонаторов уже прошло несколько десятков микросекунд, а меж тем никакой ядерной реакции ещё нет. Но сейчас будет.

В момент обжатия плутониевого ядрышка срабатывает« запал»: стартовый источник начинает гнать в ядро нейтроны.

Вот она, отметка« ноль»: с этого момента и начинается всё веселье.

Пошли первые деления плутония, ещё под действием внешнего потока нейтронов. Несколько дополнительных наносекунд, и в толще плутония загуляла следующая волна нейтронов, уже« собственных».

Поздравляю, дамы и господа, перед нами - цепная реакция. Вас предупреждали.

Давление в центре уже шкалит за миллиард атмосфер, температура уверенно движется к 100 миллионам градусов Кельвина. А что происходит снаружи этого маленького шарика? Там же обычный взрыв вроде был? Так он и есть. Висит, извините за такой глагол, держит всю эту конструкцию через тампер, чтобы сразу никуда не убежало, но силы его на исходе.

Тут всё заканчивается: через одну десятимиллионную долю секунды с момента« ноль»(0,1 микросекунды, но все цифры очень приблизительны) реакция в плутонии завершена.

Подставляй ведро

Вроде как всё, ядерный взрыв состоялся, расходимся? Ну, теоретически да. Но если бросить всё как есть, взрыв будет не очень мощный. Можно его усилить(бустировать) слоями термоядерного горючего. Правда есть одна проблема. Вон ударная волна висит, по швам уже расходится, устала вашу ядрену-бомбу держать. Как это всё сжигать, пока оно не убежало? Сделаешь в семнадцать этажей, пять прореагируют, на те два процента и живём, а остальное - ковром по сельской местности? Нет уж, давайте думать.

Как писал Теллер в обосновании своей идеи, где-то 70-80% энергии ядерной реакции выделяется в виде рентгеновского излучения, которое движется существенно быстрее, чем рвущиеся наружу осколки деления плутония. Что это даёт пытливому уму физика?

А давайте, говорит физик, пока до нас не доползла взрывная волна и тут всё вообще не разлетелось к едрене-фене, используем уже вышедший из триггера рентген для поджига термоядерной реакции.

Поставим рядом ведро жидкого дейтерия(как у Теллера в первом изделии и было) или твердого дейтерида лития(как Гинзбург в Союзе предложил), и используем взрыв триггера как зажигалку, ну или, если хотите, как детонатор НАСТОЯЩЕГО ВЗРЫВА.

Сказано - сделано. Теперь понятна конструкция нашего заряда: пустотелый бак, с одного торца - триггер, всю низость падения которого мы уже обсудили. Пространство между первой и второй ступенью заполняется разными хитрыми рентгенопроницаемыми материалами. Везде официально указано, что поначалу это был пенополистирол. Но с конца 1970-х у американцев, скажем, используется шибко секретный материал FOGBANK - предположительно, аэрогель. Наполнитель предохраняет вторую ступень от раннего перегрева, а внешний корпус заряда - от быстрого разрушения. Корпус поддаёт также давления на вторую ступень и вообще способствует симметричности обжатия.

Кроме того, там же - в небольшом перерывчике между первой и второй - установлены совсем хитрые и начисто секретные конструкции, про которые стараются вообще ничего не писать. Их можно осторожно назвать концентраторами рентгеновского излучения. Нужно всё это, чтобы рентген не просто так светил в пространство, а надлежащим образом доехал до второй ступени.

Всё остальное место занимает вторая ступень. Пакет её тоже непростой, а какой надо пакет. В самой сердцевине этого цилиндра из дейтерида лития, упакованного в прочный тяжёлый корпус, проделан канал, в который коварно вложили стержень из того же самого плутония-239 или урана-235.

Когда Родине нужно - и звёзды зажигают

Рентген испарил наполнитель, переотражается изнутри от внешней оболочки и действует на корпус второй ступени. Да и в общем, чего греха таить, вся эта ярмарка уже приступает к ликвидации самой бомбы как материальной конструкции. Но мы успеем, нам надо-то всего ничего, около микросекунды.

Всё испарившееся ломится в центр и со страшной силой давит и греет(миллионы градусов, сотни миллионов атмосфер) внешнюю оболочку второй ступени. Она тоже начинает испаряться(эффект абляции). Ну как - испаряться…

Реактивный двигатель на форсаже в сравнении с этим - попытка деликатно высморкаться.

Отсюда можете прикинуть давление на то, что внутри оболочки. См. выше про тампер на первой ступени, идея в чем-то схожая.

Вторая ступень уменьшается в размерах - в 30 раз для цилиндрического варианта и примерно в 10 для сферического. Плотность вещества возрастает более, чем в тысячу раз. Внутренний стержень из плутония доводится до надкритичности и в нём начинается ядерная реакция - уже вторая в нашем боеприпасе за последнюю микросекунду.

Итак, сверху обжатый тампер, внутри жёстко бомбануло, пошёл поток нейтронов - и у нас внутри стоят расчудесные погоды.

Здравствуй, синтез легких ядер, литий в тритий, всё вместе в гелий, вот он, выход мощности. Сотни миллионов градусов, как в звёздах. Термоядерная бомба пожаловала.

Микросекунда капает, подожжённый дейтерид лития горит из центра наружу… стоп, а если нам и сейчас мощности мало?

Давайте-ка отмотаемся немного назад и организуем корпус второй ступени не просто так, а из урана-238. По сути, из природного металла, а то и из обеднённого.

У нас от синтеза лёгких ядер прёт поток очень быстрых нейтронов, они кидаются изнутри на недоиспарившийся урановый тампер и - о, чудо! - в этом безобидном изотопе запускается ядерная реакция. Не цепная, самоподдерживаться она не может. Но этих нейтронов из термояда вылетает столько, что на тонну урана хватит: вся вторая ступень как огромный нейтронный источник работает.

Это так называемая« реакция Джекила-Хайда». Потому и название такое: никого не трогал, вроде был нормальный, и тут на тебе ВНЕЗАПНО.

Оно вылупилось

У нас, напомним, не прошло и двух микросекунд, а уже столько сделано важных дел: взорвали атомную бомбу, подожгли с её помощью термоядерное горючее и, если было надо, заставили делиться аполитичного пофигиста - уран-238. Последнее, кстати, важно: на нём можно сильно разогнать мощность устройства. Но и грязи в окружающую среду полетит много.

Правда, на этом« красивая физика» гигантов научной мысли середины XX века заканчивается. Теперь вся эта первозданная стихия готова излиться наружу, за призрачные границы того, что ещё недавно было корпусом бомбы.

Созданием водородной бомбы начали заниматься в Германии еще во время Второй мировой войны. Но эксперименты так и завершились безрезультатно из-за падения Рейха. Первыми в практической фазе исследований стали американские физики-ядерщики. 1 ноября 1952 года в Тихом океане был произведен взрыв мощностью 10,4 мегатонны.

30 октября 1961 года, за несколько минут до полудня, сейсмологи всего мира зафиксировали сильную ударную волну, несколько раз обогнувшую Земной шар. Такой жуткий шлейф оставила водородная бомба, приведённая в действие. Авторами столь шумного подрыва стали советские физики-ядерщики и военные. Мир ужаснулся. Это был очередной виток конфронтации Запада и Советов. Человечество встало на развилке своего существования.

История создания первой водородной бомбы в СССР

Физики ведущих держав мира знали теорию извлечения термоядерного синтеза ещё в 30-е годы ХХ столетия. Плотное развитие термоядерной концепции пришлось на период Второй мировой войны. Ведущим разработчиком стала Германия. Немецкие учёные до 1944 года усердно вели работы по активации термоядерного синтеза через уплотнение ядерного топлива с применением обычной взрывчатки. Однако эксперимент никак не мог завершиться успехом из-за недостаточных температур и давления. Поражение Рейха поставило точку в термоядерных исследованиях.

Однако война не помешала СССР и США заниматься аналогичными разработками с 40-х годов, пусть и не так успешно, как немцы. К моменту испытаний обе сверхдержавы подошли примерно в одно время. Американцы стали пионерами в практической фазе исследований. Взрыв состоялся 1 ноября 1952 года на коралловом атолле Эниветок, что в Тихом океане. Операция получила секретное название Ivy Mike.

Специалисты накачали 3-этажное строение жидким дейтерием. Полная мощность заряда составила 10,4 мегатонны в тротиловом эквиваленте. Получилось в 1 000 раз мощнее, чем было в сброшенной на Хиросиму бомбе. После подрыва островок Элугелаб, который стал центром размещения заряда, бесследно исчез с лица земли. На его месте образовалась воронка диаметром в 1 милю.

За всю историю разработок ядерного оружия на Земле было произведено более 2 000 подрывов: в надземном, подземном, воздушном и подводном положениях. Экосистеме нанесён колоссальный ущерб.

Принцип действия

Конструктив водородной бомбы сформирован на использовании энергии, выделяемой в процессе реакции термоядерного синтеза лёгких ядер. Аналогичный процесс происходит внутри звезды, где воздействие сверхвысоких температур вместе с гигантским давлением заставляют ядра водорода сталкиваться. На выходе образуются утяжелённые ядра гелия. В процессе часть массы водорода преображается в энергию исключительной силы. Именно поэтому звёзды являются постоянными источниками энергии.

Физики переняли схему деления, заменив изотопы водорода таким элементами, как дейтерий и тритий. Однако изделию всё равно дали название водородная бомба на основании базовой схемы. В ранних разработках ещё использовались жидкие изотопы водорода. Но впоследствии основным компонентом стал твёрдый дейтерий лития-6.

Дейтерий лития-6 уже содержит тритий. Но чтобы его выделить, требуется создать пиковую температуру и грандиозное давление. Для этого под термоядерное горючее конструируется оболочка из урана-238 и полистирола. По соседству устанавливается небольшой ядерный заряд мощностью несколько килотонн. Он служит триггером.

При взрыве заряда оболочка урана переходит в плазменное состояние, создавая пиковую температуру и грандиозное давление. В процессе нейтроны плутония контактируют с литием-6, что позволяет выделяться тритию. Ядра дейтерия и лития коммуницируют, образуя термоядерный взрыв. Таков принцип действия водородной бомбы.


Почему при взрыве образуется «гриб»?

При подрыве термоядерного заряда формируется горячая светящаяся сферическая масса, более известная как огненный шар. По мере формирования масса расширяется, охлаждается и устремляется вверх. В процессе охлаждения пары в огненном шаре сгущаются в облако с твёрдыми частицами, влагой и элементами заряда.

Образуется воздушный рукав, который втягивает с поверхности полигона подвижные элементы и переносит их в атмосферу. Нагретое облако поднимается на высоту 10-15 км, затем остывает и начинает расплываться по поверхности атмосферы, принимая грибовидную форму.

Первые испытания

В СССР экспериментальный термоядерный взрыв впервые произвели 12 августа 1953 года. В 7:30 утра на полигоне Семипалатинска была подорвана водородная бомба РДС-6. Стоит сказать, что это было четвёртое тестирование атомного оружия в Советском Союзе, но первое термоядерное. Масса бомбы составляла 7 тонн. Она могла бы свободно разместиться в бомболюке бомбардировщика Ту-16. В сравнение приведём пример Запада: американская бомба Ivy Mike весила 54 тонны, и для неё был построен 3-этажный корпус, схожий на дом.

Советские учёные пошли дальше американцев. Чтобы оценить силу разрушения, на полигоне был построен городок из жилых и административных зданий. Разместили по периметру военную технику от каждого рода войск. Всего в зоне поражения разместилось 190 различных объектов недвижимого и движимого имущества. Вместе с этим учёные подготовили более 500 видов всевозможной измерительной аппаратуры на полигоне и в воздухе, на самолётах наблюдателях. Были установлены кинокамеры.

Бомбу РДС-6 установили на 40-метровой железной башне с возможностью дистанционного подрыва. Все следы прошлых испытаний, радиационный грунт и т. п. были удалены с полигона. Наблюдательные бункеры усилили, а рядом с башней, всего в 5 метрах, соорудили капитальное укрытие для аппаратуры, регистрирующей термоядерные реакции и процессы.

Взрыв. Ударная волна снесла всё, что было установлено на полигоне в радиусе 4 км. Такой заряд смог бы свободно превратить в пыль 30-тысячнй городок. Приборы зафиксировали ужасающие экологические последствия: стронций-90 почти 82%, а цезий-137 около 75%. Это зашкаливающие показатели радионуклидов.

Мощность взрыва оценили в 400 килотонн, что 20 раз превзошло американский аналог Ivy Mike. По исследованиям 2005 года, от испытаний на Семипалатинском полигоне пострадало более 1 млн человек. Но эти цифры намеренно занижены. Главные последствия - онкология.

После тестирования разработчику водородной бомбы Андрею Сахарову были присвоены степень академика физико-математических наук и звание Героя Социалистического труда.


Взрыв на полигоне «Сухой Нос»

Спустя 8 лет, 30 октября 1961 года, СССР взорвал 58-мегатонную «Царь-бомбу» АН602 над архипелагом Новая Земля на высоте 4 км. Снаряд был сброшен самолётом Ту-16А с высоты 10,5 км на парашюте. После подрыва ударная волна трижды обогнула планету. Огненный шар достиг в диаметре 5 км. Световое излучение обладало поражающей силой в радиусе 100 км. Ядерный гриб вырос на 70 км. Грохот распространился на 800 км. Мощность взрыва составила 58,6 мегатонны.

Учёные признались, они подумали о том, что начала гореть атмосфера и выгорать кислород, а это бы означало конец всему живому на земле. Но опасения оказались напрасными. Впоследствии было доказано, что цепная реакция от термоядерного подрыва не грозит атмосфере.

Корпус АН602 был рассчитан на 100 мегатонн. Никита Хрущёв впоследствии шутил, что объём заряда был уменьшен из-за боязни «побить все окна в Москве». На вооружение оружие не поступило, но это был такой политический козырь, который невозможно было покрыть в то время. СССР продемонстрировал всему миру, что он способен решить задачу любого мегатоннажа ядерного вооружения.


Возможные последствия взрыва водородной бомбы

В первую очередь водородная бомба - это оружие массового поражения. Оно способно уничтожать не только взрывной волной, как на это способны тротиловые снаряды, но и радиационными последствиями. Что происходит после взрыва термоядерного заряда:

  • ударная волна, сметающая всё на своём пути, оставляя после себя масштабные разрушения;
  • тепловой эффект - невероятная тепловая энергия, способна расплавить даже бетонные конструкции;
  • радиоактивные осадки - облачная масса с каплями радиационной воды, элементами распада заряда и радионуклидами, движется по ветру и выпадает в виде осадков на любом удалении от эпицентра подрыва.

Вблизи ядерных полигонов или техногенных катастроф на протяжении десятилетий наблюдается радиоактивный фон. Последствия применения водородной бомбы очень серьёзные, способные нанести вред будущим поколениям.

Чтобы наглядно оценить эффект поражающей силы термоядерного оружия, предлагаем посмотреть краткий ролик подрыва РДС-6 на полигоне Семипалатинска.

Во время обустройства площадки для ядерных испытаний на Семипалатинском атомном полигоне мне пришлось 12 августа 1953 года пережить взрыв первой на земном шаре водородной бомбы мощностью 400 килотонн, взрыв возник внезапно. Земля заколыхалась под нами, как вода. Волна земной поверхности прошла и подняла нас на высоту более метра. А находились мы на удалении около 30 километров от эпицентра взрыва. Шквал воздушной волны бросил нас на землю. Прокатил по ней несколько метров, как щепки. Раздался дикий рёв. Ослепительно сверкали молнии. Они вселяли животный ужас.

Когда мы, наблюдатели этого кошмара, поднялись, над нами висел ядерный гриб. От него исходило тепло и слышался треск. Я как зачарованный смотрел в ножку гигантского гриба. Внезапно к нему подлетел самолёт и начал делать чудовищные виражи. Я подумал, что это лётчик-герой забирает пробы радиоактивного воздуха. Затем самолёт нырнул в ножку гриба и исчез... Это было удивительно и страшно.

На поле полигона действительно стояли самолёты, танки и другая техника. Но позднейшие расспросы показали, что ни один самолёт не брал пробы воздуха из ядерного гриба. Неужели это была галлюцинация? Загадка разрешилась позже. Я понял, что то был эффект печной трубы гигантских масштабов. Ни самолётов, ни танков на поле после взрыва не оказалось. Но специалисты считали, что они испарились от высокой температуры. Я считаю, что их попросту втянул в себя огненный гриб. Мои наблюдения и впечатления подтвердились и другим свидетельством.

22 ноября 1955 года был произведён ещё более мощный взрыв. Заряд водородной бомбы составлял 600 килотонн. Площадку под этот новый взрыв мы подготовили в 2,5 километра от эпицентра предыдущего ядерного взрыва. Оплавленную радиоактивную корку земли зарывали тут же в вырытые бульдозерами траншеи; готовили новую порцию техники, которая должна была сгореть в пламени водородной бомбы. Начальником строительства Семипалатинского полигона был Р. Е. Рузанов. Он оставил выразительное описание этого второго взрыва.

Жителей «Берега» (жилгородок испытателей), ныне город Курчатов, подняли в 5 часов утра. Был мороз -15°С. Всех отвели на стадион. Окна и двери в домах оставили открытыми.

В назначенный час появился гигантский самолёт в сопровождении истребителей.

Вспышка взрыва возникла неожиданно и страшно. Она была ярче Солнца. Солнце померкло. Оно исчезло. Исчезли облака. Небо стало чёрно-синим. Раздался удар страшной силы. Он дошёл до стадиона с испытателями. Стадион был в 60 километрах от эпицентра. Несмотря на это, воздушная волна повалила людей на землю и отбросила их на десятки метров к трибунам. Были повалены тысячи людей. Раздался дикий вопль этих толп. Кричали женщины и дети. Весь стадион наполнился стонами от травм и боли, которые мгновенно поразили людей. Стадион с испытателями и жителями городка утонул в пыли. Город тоже был не виден от пыли. Горизонт там, где был полигон, кипел в клубах пламени. Ножка атомного гриба тоже как бы кипела. Она двигалась. Казалось, вот-вот подойдёт к стадиону и накроет нас всех кипящее облако. Отчётливо было видно, как с земли в облако стали втягиваться и исчезать в нём танки, самолёты, части разрушенных сооружений, специально выстроенных на поле полигона Голову сверлила мысль: и нас втянет в это облако! Всеми овладели оцепенение и ужас.

Внезапно ножка ядерного гриба оторвалась от кипящего вверху облака. Облако поднялось выше, а ножка осела к земле. Только тут люди пришли в себя. Все бросились к домам. Окон и дверей, крыш, скарба в них не было. Всё было размётано вокруг. Пострадавших во время испытаний спешно собирали и отправляли в госпиталь...

Через неделю приехавшие с Семипалатинского полигона офицеры шёпотом рассказывали об этом чудовищном зрелище. О страданиях, которые перенесли люди. О летающих в воздухе танках. Сопоставив эти рассказы с моими наблюдениями, я понял, что был свидетелем явления, которое можно назвать эффектом печной трубы. Только в гигантских масштабах.

Огромные тепловые массы при водородном взрыве отрывались от поверхности земли и двигались в направлении к центру гриба. Этот эффект возник из-за чудовищных температур, которые давал ядерный взрыв. В начальной стадии взрыва температура составляла 30 тысяч градусов Цельсия В ножке ядерного гриба она была не менее 8 тысяч. Возникала огромная, чудовищная сила всасывания, втягивавшая в эпицентр взрыва любые предметы, стоявшие на полигоне. Поэтому самолёт, который я наблюдал при первом ядерном взрыве, не был галлюцинацией. Его просто втянуло в ножку гриба, и он делал там невероятные виражи...

Процесс, который я наблюдал при взрыве водородной бомбы, весьма опасен. Не только своей высокой температурой, но и понятым мной эффектом всасывания гигантских масс, будь то воздушная или водяная оболочка Земли.

Мой расчёт 1962 года показал, что если ядерный гриб пробьёт атмосферу на большую высоту, это может вызвать планетарную катастрофу. При подъеме гриба на высоту 30 километров начнётся процесс всасывания водо-воздушных масс Земли в космос. Вакуум начнёт работать как насос. Земля лишится воздушной и водной оболочек вместе с биосферой. Человечество погибнет.

Я подсчитал, что для этого апокалиптического процесса достаточно атомной бомбы всего в 2 тысячи килотонн, то есть всего в три раза больше мощности второго водородного взрыва. Это самый простой рукотворный сценарий гибели человечества.

В своё время мне запретили об этом говорить. Сегодня я считаю своим долгом сказать об угрозе человечеству прямо и открыто.

На Земле накоплены огромные запасы ядерного оружия. Работают реакторы атомных электростанций по всему миру. Они могут стать добычей террористов. Взрыв этих объектов может достигнуть мощностей больших, чем 2 тысячи килотонн. Потенциально сценарий гибели цивилизации уже уготован.

Что отсюда следует? Необходимо охранять ядерные объекты от возможного терроризма так тщательно, чтобы они оказались совершенно недоступными для него. В противном случае планетарная катастрофа неминуема.

Сергей Алексеенко

участник строительства

Семиполатинского ядерного