С точностью до наоборот. Что такое Антиматерия? Есть ли у антивещества практические применения

Как долететь до Марса за месяц? Для этого нужно придать космическому кораблю хороший импульс. Увы, лучшее имеющееся в распоряжении человека топливо - ядерное дает удельный импульс в 3000 секунд, и полет растягивается на долгие месяцы. А нет ли под рукой чего-то более энергичного? Теоретически есть: термоядерный синтез; он обеспечивает импульс в сотни тысяч секунд, а использование антивещества позволит получить импульс в миллионы секунд.

Строение ативещества

Ядра антивещества построены из антинуклонов а внешняя оболочка состоит из позитронов. Вследствие инвариантности сильного взаимодействия относительно зарядового сопряжения (C-инвариантности) антиядра обладают массой и энергетическим спектром такими же, как у ядер, состоящих из соответствующих нуклонов, причем атомы антивещества и вещества должны иметь идентичную структуру и химические свойства, с одним единственным НО, столкновение объекта, состоящего из вещества, с объектом из антивещества приводит к аннигиляции входящих в их состав частиц и античастиц.

Аннигиляция медленных электронов и позитронов ведет к образованию гамма-квантов, а аннигиляция медленных нуклонов и антинуклонов - к образованию нескольких пи-мезонов. В результате последующих распадов мезонов образуется жесткое гамма-излучение с энергией гамма-квантов более 70 МэВ.

Антиэлектроны (позитроны) были предсказаны П. Дираком и вслед за этим экспериментально обнаружены в “ливнях” П. Андерсоном, даже не знавшем тогда о предсказании Дирака. Это открытие было отмечено Нобелевской премий по физике 1936 г. Антипротон был открыт в 1955 г. на “Беватроне” в Беркли, что также было удостоено Нобелевской премии. В 1960 там же обнаружили антинейтрон. С введением в действие Серпуховского ускорителя и нашим физикам кое в чем удалось выйти вперед - в 1969 году там были открыты ядра антигелия. Но атомы антивещества получит не удавалось. Да если быть откровенным, то и античастиц за все время существования ускорителей получили ничтожные количества - всех антипротонов, синтезированных в ЦЕРНе за год, хватит на работу одной электрической лампочки в течение нескольких секунд.

Синтез антивещества

Первое сообщение о синтезе девяти атомов антивещества - антиводорода в рамках проекта «ATRAP» (ЦЕРН) появилось в 1995 году. Просуществовав примерно 40 нс, эти единичные атомы погибли, выделив положенное количество излучения (что и было зарегистрировано). Цели были ясны и оправдывали усилия, задачи определены, и в 1997 году, вблизи Женевы, благодаря международной финансовой помощи, ЦЕРН начал строительство десселератора (не будем его переводить неблагозвучным эквивалентом “тормозитель”), который позволил замедлить («охладить») антипротоны еще в десять миллионов раз по сравнению с установкой 1995 года. Это устройство, названное «Антипротонный замедлитель» (AD) вступило в строй в феврале 2002 года.

Установка - после выхода антипротонов из замедляющего кольца - состоит из четырех основных частей: ловушки для захвата антипротонов, накопителя позитронов, ловушки-смесителя и детектора антиводорода. Поток антипротонов вначале тормозится с помощью микроволнового излучения, затем охлаждается в результате теплообмена с потоком низкоэнергетических электронов, после чего попадает в ловушку - смеситель, где находится при температуре 15 К. Позитронный накопитель последовательно замедляет, захватывает и накапливает позитроны от радиоактивного источника; около половины из которых попадает в ловушку-смеситель, где они дополнительно охлаждаются синхротронным излучением. Все это необходимо для значительного повышения вероятности образования атомов антиводорода.

На «Антипротонном замедлителе» и началась жесткая конкуренция двух групп ученых, участников экспериментов «ATHENA» (39 ученых из разных стран мира) и «ATRAP».

В номере Nature (Nature 2002, vol.419, p.439, ibid p.456) вышедшем 3 октября 2002 года., участники эксперимента «ATHENA» заявили, что им удалось получить 50 000 атомов антивещества - антиводорода. Наличие атомов антивещества фиксировали в момент их аннигиляции, свидетельством которой считали пересечение в одной точке следов двух жестких квантов, образовавшихся при электрон-позитронной аннигиляции, и следов пионов, получившихся при аннигиляции антипротона и протона. Был получен первый “портрет” антивещества (фото в начале) - синтезированное из таких точек компьютерное изображение. Поскольку аннигилировали только те атомы, которые “выскользнули” из ловушки (а таких, достоверно пересчитанных, оказалось всего 130), заявленные 50 000 атомов антиводорода лишь создают невидимый фон “портрета”.

Проблема в том, что аннигиляция антиводорода регистрировалась на общем, более сильном фоне аннигиляций позитронов и антипротонов. Это, естественно, вызвало здоровый скепсис коллег из смежного конкурирующего проекта «ATRAP». Они, в свою очередь синтезировав антиводород на той же установке, смогли с помощью сложных магнитных ловушек зарегистрировать атомы антиводорода без какого-либо фонового сигнала. Образовавшиеся в эксперименте атомы антиводорода становились электрически нейтральными и в отличие от позитронов и антипротонов могли свободно покидать ту область, где удерживались заряженные частицы. Вот там, без фона, их и регистрировали.

По оценкам, в ловушке образовалось примерно 170 000 атомов антиводорода, о чём исследователи и рассказали в статье опубликованной в «Physical Review Letters».

И это уже успех. Теперь полученного количества антиводорода вполне может хватить для изучения его свойств. Для атомов антиводорода, например, предполагается измерение частоты электронного перехода 1s-2s (из основного состояния в первое возбужденное) методами лазерной спектроскопии высокого разрешения. (Частота этого перехода в водороде известна с точностью до 1.8·10-14 - не зря же водородный мазер считается стандартом частоты.) Согласно теории, они должны быть таким же, как и у обычного водорода. Если же, например спектр поглощения, окажется другим, то придется вносить коррективы в фундаментальные основы современной физики.

Двигатель на антивеществе

Но интерес к антивеществу - антиматерии отнюдь не чисто теоретический. Двигатель на антивеществе может работать, например следующим образом. Сначала создают два облака из нескольких триллионов антипротонов, которые от соприкосновения с материей удерживает электромагнитная ловушка. Потом между ними вводят частичку топлива весом в 42 нанограмма. Она представляет собой капсулу из урана-238, в которую заключена смесь дейтерия и гелия-3 или дейтерия и трития.

Антипротоны моментально аннигилируют с ядрами урана и вызывают их распад на фрагменты. Эти фрагменты, вместе с образовавшимися гамма-квантами, так сильно разогревают внутренность капсулы, что там начинается термоядерная реакция. Ее продукты, обладающие огромной энергией, еще сильнее разгоняются магнитным полем и улетают через сопло двигателя, обеспечивая космическому кораблю неслыханную тягу.

Что же касается полета к Марсу за один месяц, то для него американские физики рекомендуют использовать другую технологию - ядерное деление, катализируемое антипротонами. Тогда на весь полет потребуется 140 нанограммов антипротонов, не считая радиоактивного топлива.

Новые измерения, проведенные в стэндфордском исследовательском центре (Калифорния), где установлен линейный ускоритель элементарных частиц, позволили ученым продвинуться в ответе на вопрос, почему во вселенной вещество преобладает над антивеществом.

Результаты эксперимента подтверждают сделанные ранее предположения о развитии дисбаланса этих противоположных сущностей. Однако ученые говорят, что проведенные исследования поставили больше вопросов, чем ответов: опыты с ускорителем не могут дать полного объяснения, почему в космосе так много вещества - миллиарды галактик, наполненных звездами и планетами.

Ученые, работающие с ускорителем, измеряли параметр, известный как синус двух бета (0,74 плюс или минус 0,07). Этот показатель отражает степень асимметрии между веществом и антивеществом.

Антивещество и большой взрыв

В результате Большого взрыва должно было образоваться одинаковое количество вещества и антивещества , которые затем аннигилировали и не оставили ничего кроме энергии. Однако обозреваемая нами вселенная является неоспоримым доказательством победы вещества над антивеществом.

Чтобы понять, как это могло произойти, физики рассмотрели эффект, называемый нарушением равенства зарядов. Для наблюдения такого эффекта ученые изучали B-мезоны и анти-B-мезоны, частицы с очень коротким периодом жизни - триллионные доли секунды.

Различия в поведении этих абсолютно противоположных частиц показывают различия между веществом и антивеществом и отчасти объясняют, почему одно преобладает над другим. Миллионы B-мезонов и анти-B-мезонов, необходимых для эксперимента, образовались в результате столкновения в ускорителе лучей электронов и позитронов. Первые результаты, полученные еще в 2001 году, четко показывают нарушение равенства зарядов у B-мезонов.

"Это было важным открытием, но необходимо собрать еще множество данных, чтобы утвердить синус двух бета в качестве фундаментальной константы квантовой физики, - считает Стюарт Смит (Stewart Smith) из Принстонского университета. - Новые результаты были объявлены после трех лет интенсивных исследований и анализа 88 миллионов событий".

Новые измерения согласуются с так называемой "стандартной моделью", которая описывает элементарные частицы и их взаимодействие. Подтвержденная степень нарушения равенства зарядов сама по себе не достаточна для объяснения дисбаланса вещества и антивещества во вселенной.

"Судя по всему, кроме неравенства зарядов произошло что-то еще, что вызвало преобладание вещества, превратившегося в звезды, планеты и живые организмы, - прокомментировал Хассан Джоэри (Hassan Jawahery), сотрудник университета в Мериленде - В будущем мы, возможно, сможем понять эти скрытые процессы и ответить на вопрос, что привело вселенную к ее нынешнему состоянию и это будет самое захватывающее открытие".

В физике и химии антиматерия - это вещество, которое состоит из античастиц, то есть из антипротона (протон с отрицательным электрическим зарядом) и из антиэлектрона (электрон с положительным электрическим зарядом). Антипротон и антиэлектрон образуют атом антиматерии подобно тому, как электрон и протон образуют атом водорода.

Общее понятие о материи и антиматерии

Каждый знает ответ на вопрос о том, что такое материя, то есть это субстанция, которая состоит из молекул и атомов. Сами атомы, в свою очередь, состоят из электронов и ядер, образованных протонами и нейтронами. Понимание вопроса, что такое материя, дает возможность понять, что такое антиматерия. Под ней понимается субстанция, составляющие частицы которой имеют противоположный электрический заряд. В случае пары нейтрон-антинейтрон их заряды равны нулю, но магнитные моменты направлены противоположно.

Основное свойство антиматерии - это ее способность к аннигиляции при встрече с обычной материей. В результате контакта этих субстанций масса исчезает и полностью переводится в энергию. Согласно космической теории, во Вселенной существует равное количество материи и антиматерии, этот факт следует из теоретических рассуждений. Однако эти субстанции разделены между собой огромными расстояниями, поскольку любая их встреча приводит к грандиозным космическим феноменам уничтожения материи.

История открытия антиматерии

Антиматерия была открыта в 1932 году североамериканским физиком Карлом Андерсеном, который изучал космические лучи и смог обнаружить позитрон (античастица электрона). Благодаря этому открытию он получил Нобелевскую премию в 1936 году. Впоследствии были экспериментально открыты антипротоны. Это произошло в 2006 году благодаря запуску спутника "Памела", миссией которого было изучение частиц, испускаемых Солнцем.

Впоследствии человечество научилось самостоятельно создавать антиматерию. В результате многих экспериментов было показано, что столкновение материи и антиматерии уничтожает обе субстанции и порождает гамма-лучи. Эти экспериментальные выводы были предсказаны еще Альбертом Эйнштейном.

Использование антиматерии

Где может быть использована антиматерия? В первую очередь антиматерия - это отличное топливо. Всего одна капля антивещества способна дать энергию, которой будет достаточно для энергообеспечения крупного города в течение суток. Кроме того, этот источник энергии является экологически чистым.

В области медицины основное использование антиматерии - это томография позитронного излучения. Гамма-лучи, которые возникают в результате аннигиляции вещества и антивещества, используются для обнаружения раковых опухолей в организме. Также используют антивещество в терапии против раковых заболеваний. В настоящее время ведутся исследования по использованию антипротонов для полного уничтожения раковых тканей.

Сколько стоит грамм антиматерии и где ее хранить?

Производство антиматерии с помощью ускорителей элементарных частиц требует огромных энергетических затрат. Кроме того, антиматерию тяжело хранить, поскольку она при любом контакте с обычным веществом самоуничтожается. Поэтому хранят ее в сильных электромагнитных полях, которые также требуют больших энергетических затрат на их создание и поддержание.

В связи с вышесказанным можно сделать вывод, что антиматерия является самой дорогой субстанцией на земле. Ее грамм оценивается в 62,5 миллиарда долларов США. По другим оценкам, предоставленным ЦЕРН, чтобы создать одну миллиардную грамма антивещества, необходимо затратить несколько сотен миллионов швейцарских франков.

Космос - источник антиматерии

На данном этапе развития технологий искусственное создание антиматерии - это низкоэффективный и затратный способ. Ввиду этого ученые из НАСА планируют собирать магнитными полями антиматерию в поясе Ван Аллена Земли. Этот пояс находится на высоте нескольких сотен километров над поверхностью нашей планеты и имеет толщину в несколько тысяч километров. Эта область космоса содержит большое количество антипротонов, которые образуются в результате реакций элементарных частиц, вызванных столкновениями космических лучей в верхних слоях атмосферы Земли. В количество обычной материи невелико, поэтому антипротоны могут существовать в нем достаточно долгое время.

Другой источник антивещества - это аналогичные радиационные пояса вокруг планет-гигантов Солнечной системы: Юпитера, Сатурна, Нептуна и Урана. Особое внимание ученые уделяют Сатурну, который, по их мнению, должен производить большое количество антипротонов, возникающих в результате взаимодействия заряженных космических частиц с ледяными кольцами планеты.

Также ведутся работы в направлении более экономного хранения антивещества. Так, профессор Масаки Гори (Masaki Hori) заявил о разработанном методе удержания антипротонов с помощью радиочастот, что, по его словам, позволит значительно сократить размеры контейнера для антиматерии.

По современным представлениям, силы, определяющие структуру материи (сильное взаимодействие , образующее ядра , и электромагнитное взаимодействие , образующее атомы и молекулы), совершенно одинаковы (симметричны) как для частиц, так и для античастиц. Это означает, что структура антивещества должна быть идентична структуре обычного вещества.

Свойства антивещества полностью совпадают со свойствами обычного вещества, рассматриваемого через зеркало (зеркальность возникает вследствие несохранения чётности в слабых взаимодействиях) .

В ноябре 2015 года группа российских и зарубежных физиков на американском коллайдере RHIC экспериментально доказала идентичность структуры вещества и антивещества путём точного измерения сил взаимодействия между антипротонами, оказавшимися в этом плане неотличимыми от обычных протонов.

При взаимодействии вещества и антивещества происходит их аннигиляция , при этом образуются высокоэнергичные фотоны или пары частиц-античастиц. При взаимодействии 1 кг антивещества и 1 кг вещества выделится приблизительно 1,8·10 17 джоулей энергии, что эквивалентно энергии, выделяемой при взрыве 42,96 мегатонн тротила . Самое мощное ядерное устройство из когда-либо взрывавшихся на планете, «Царь-бомба »: масса 26,5 т, при взрыве высвободило энергию, эквивалентную ~57-58,6 мегатоннам . Теллеровский предел для термоядерного оружия подразумевает, что самый эффективный выход энергии не превысит 6 кт /кг массы устройства. Следует отметить, что порядка 50 % энергии при аннигиляции пары нуклон-антинуклон выделяется в форме нейтрино , которые практически не взаимодействуют с веществом.

Ведётся довольно много рассуждений на тему того, почему наблюдаемая часть Вселенной состоит почти исключительно из вещества, и существуют ли другие места, заполненные, наоборот, практически полностью антивеществом; но на сегодняшний день наблюдаемая асимметрия вещества и антивещества во вселенной - одна из самых больших нерешённых задач физики (см. Барионная асимметрия Вселенной). Предполагается, что столь сильная асимметрия возникла в первые доли секунды после Большого Взрыва .

Получение

Первым объектом, целиком составленным из античастиц, был синтезированный в 1965 году анти-дейтрон ; затем были получены и более тяжёлые антиядра. В 1995 году в ЦЕРНе был синтезирован атом антиводорода , состоящий из позитрона и антипротона . В последние годы антиводород был получен в значительных количествах и было начато детальное изучение его свойств.

В 2013 году эксперименты проводились на опытной установке, построенной на базе вакуумной ловушки ALPHA. Учёные провели измерения движения молекул антиматерии под действием гравитационного поля Земли. И хотя результаты оказались неточными, а измерения имеют низкую статистическую значимость, физики удовлетворены первыми опытами по прямому измерению гравитации антиматерии.

Стоимость

Антивещество известно как самая дорогая субстанция на Земле - по оценкам НАСА 2006 года, производство миллиграмма позитронов стоило примерно 25 миллионов долларов США . По оценке 1999 года, один грамм антиводорода стоил бы 62,5 триллиона долларов . По оценке CERN 2001 года, производство миллиардной доли грамма антивещества (объём, использованный CERN в столкновениях частиц и античастиц в течение десяти лет) стоило несколько сотен миллионов швейцарских франков .

См. также

Напишите отзыв о статье "Антивещество"

Примечания

Ссылки

  • - 2011
  • Пахлов, Павел. . postnauka.ru (23.05.2014).
  • Пахлов, Павел. . postnauka.ru (6.03.2014).

Литература

  • Власов Н. А. Антивещество. - М .: Атомиздат , 1966. - 184 с.
  • Широков Ю. М. , Юдин Н. П. Ядерная физика. - М .: Наука , 1972. - 670 с.

Отрывок, характеризующий Антивещество

И в доказательство неопровержимости этого довода складки все сбежали с лица.
Князь Андрей вопросительно посмотрел на своего собеседника и ничего не ответил.
– Зачем вы поедете? Я знаю, вы думаете, что ваш долг – скакать в армию теперь, когда армия в опасности. Я это понимаю, mon cher, c"est de l"heroisme. [мой дорогой, это героизм.]
– Нисколько, – сказал князь Андрей.
– Но вы un philoSophiee, [философ,] будьте же им вполне, посмотрите на вещи с другой стороны, и вы увидите, что ваш долг, напротив, беречь себя. Предоставьте это другим, которые ни на что более не годны… Вам не велено приезжать назад, и отсюда вас не отпустили; стало быть, вы можете остаться и ехать с нами, куда нас повлечет наша несчастная судьба. Говорят, едут в Ольмюц. А Ольмюц очень милый город. И мы с вами вместе спокойно поедем в моей коляске.
– Перестаньте шутить, Билибин, – сказал Болконский.
– Я говорю вам искренно и дружески. Рассудите. Куда и для чего вы поедете теперь, когда вы можете оставаться здесь? Вас ожидает одно из двух (он собрал кожу над левым виском): или не доедете до армии и мир будет заключен, или поражение и срам со всею кутузовскою армией.
И Билибин распустил кожу, чувствуя, что дилемма его неопровержима.
– Этого я не могу рассудить, – холодно сказал князь Андрей, а подумал: «еду для того, чтобы спасти армию».
– Mon cher, vous etes un heros, [Мой дорогой, вы – герой,] – сказал Билибин.

В ту же ночь, откланявшись военному министру, Болконский ехал в армию, сам не зная, где он найдет ее, и опасаясь по дороге к Кремсу быть перехваченным французами.
В Брюнне всё придворное население укладывалось, и уже отправлялись тяжести в Ольмюц. Около Эцельсдорфа князь Андрей выехал на дорогу, по которой с величайшею поспешностью и в величайшем беспорядке двигалась русская армия. Дорога была так запружена повозками, что невозможно было ехать в экипаже. Взяв у казачьего начальника лошадь и казака, князь Андрей, голодный и усталый, обгоняя обозы, ехал отыскивать главнокомандующего и свою повозку. Самые зловещие слухи о положении армии доходили до него дорогой, и вид беспорядочно бегущей армии подтверждал эти слухи.
«Cette armee russe que l"or de l"Angleterre a transportee, des extremites de l"univers, nous allons lui faire eprouver le meme sort (le sort de l"armee d"Ulm)», [«Эта русская армия, которую английское золото перенесло сюда с конца света, испытает ту же участь (участь ульмской армии)».] вспоминал он слова приказа Бонапарта своей армии перед началом кампании, и слова эти одинаково возбуждали в нем удивление к гениальному герою, чувство оскорбленной гордости и надежду славы. «А ежели ничего не остается, кроме как умереть? думал он. Что же, коли нужно! Я сделаю это не хуже других».
Князь Андрей с презрением смотрел на эти бесконечные, мешавшиеся команды, повозки, парки, артиллерию и опять повозки, повозки и повозки всех возможных видов, обгонявшие одна другую и в три, в четыре ряда запружавшие грязную дорогу. Со всех сторон, назади и впереди, покуда хватал слух, слышались звуки колес, громыхание кузовов, телег и лафетов, лошадиный топот, удары кнутом, крики понуканий, ругательства солдат, денщиков и офицеров. По краям дороги видны были беспрестанно то павшие ободранные и неободранные лошади, то сломанные повозки, у которых, дожидаясь чего то, сидели одинокие солдаты, то отделившиеся от команд солдаты, которые толпами направлялись в соседние деревни или тащили из деревень кур, баранов, сено или мешки, чем то наполненные.
На спусках и подъемах толпы делались гуще, и стоял непрерывный стон криков. Солдаты, утопая по колена в грязи, на руках подхватывали орудия и фуры; бились кнуты, скользили копыта, лопались постромки и надрывались криками груди. Офицеры, заведывавшие движением, то вперед, то назад проезжали между обозами. Голоса их были слабо слышны посреди общего гула, и по лицам их видно было, что они отчаивались в возможности остановить этот беспорядок. «Voila le cher [„Вот дорогое] православное воинство“, подумал Болконский, вспоминая слова Билибина.
Желая спросить у кого нибудь из этих людей, где главнокомандующий, он подъехал к обозу. Прямо против него ехал странный, в одну лошадь, экипаж, видимо, устроенный домашними солдатскими средствами, представлявший середину между телегой, кабриолетом и коляской. В экипаже правил солдат и сидела под кожаным верхом за фартуком женщина, вся обвязанная платками. Князь Андрей подъехал и уже обратился с вопросом к солдату, когда его внимание обратили отчаянные крики женщины, сидевшей в кибиточке. Офицер, заведывавший обозом, бил солдата, сидевшего кучером в этой колясочке, за то, что он хотел объехать других, и плеть попадала по фартуку экипажа. Женщина пронзительно кричала. Увидав князя Андрея, она высунулась из под фартука и, махая худыми руками, выскочившими из под коврового платка, кричала:
– Адъютант! Господин адъютант!… Ради Бога… защитите… Что ж это будет?… Я лекарская жена 7 го егерского… не пускают; мы отстали, своих потеряли…
– В лепешку расшибу, заворачивай! – кричал озлобленный офицер на солдата, – заворачивай назад со шлюхой своею.
– Господин адъютант, защитите. Что ж это? – кричала лекарша.
– Извольте пропустить эту повозку. Разве вы не видите, что это женщина? – сказал князь Андрей, подъезжая к офицеру.
Офицер взглянул на него и, не отвечая, поворотился опять к солдату: – Я те объеду… Назад!…
– Пропустите, я вам говорю, – опять повторил, поджимая губы, князь Андрей.
– А ты кто такой? – вдруг с пьяным бешенством обратился к нему офицер. – Ты кто такой? Ты (он особенно упирал на ты) начальник, что ль? Здесь я начальник, а не ты. Ты, назад, – повторил он, – в лепешку расшибу.
Это выражение, видимо, понравилось офицеру.
– Важно отбрил адъютантика, – послышался голос сзади.
Князь Андрей видел, что офицер находился в том пьяном припадке беспричинного бешенства, в котором люди не помнят, что говорят. Он видел, что его заступничество за лекарскую жену в кибиточке исполнено того, чего он боялся больше всего в мире, того, что называется ridicule [смешное], но инстинкт его говорил другое. Не успел офицер договорить последних слов, как князь Андрей с изуродованным от бешенства лицом подъехал к нему и поднял нагайку:
– Из воль те про пус тить!
Офицер махнул рукой и торопливо отъехал прочь.

« Антиматерия физически и химически ничем не отличается от материи. Собственно, это та же материя, только вывернутая наизнанку. Для проционидов наши физические и химические справочники пригодны так же, как и для нас. Они описывают те же самые закономерности, те же самые реакции с теми же самыми элементами. Только для них наша материя является антиматерией. Вопрос, с какой стороны смотреть».(Кшиштоф Борунь, «Антимир», 1963)

Мысль о возможности существования антивещества была высказана еще в эпоху классической физики, в конце XIX века


Водород и антиводород по своему строению совершенно идентичны — они состоят из адрона и лептона. В первом случае положительно заряженный протон, состоящий из трех кварков (двух верхних и одного нижнего), и отрицательно заряженный электрон образуют атом хорошо знакомого нам водорода. Антиводород состоит из отрицательно заряженного антипротона, который, в свою очередь, построен из трех соответствующих антикварков и положительно заряженного позитрона (античастицы электрона)


Аннигиляция электрона и позитрона в случае низких энергий порождает как минимум два (это обусловлено сохранением импульса) фотона. Этот процесс схематически можно изобразить с помощью так называемой диаграммы Фейнмана. При превышении определенного энергетического порога аннигиляция может происходить с рождением «виртуальных» фотонов, которые вновь быстро распадаются на пары электронов и позитронов


Компьютерная модель аннигиляции вещества и антивещества. Красные линии — фотоны, разлетающиеся в противоположных направлениях при аннигиляции позитронов, а желтые — частицы, образующиеся при аннигиляции антипротонов. Треки исходят из одной точки — это свидетельство того, что антипротоны и позитроны образуют атомы антиводорода (эксперимент ATHENA в ЦЕРН)


Времяпроекционная камера эксперимента PANDA международного центра FAIR в Дармштадте

Открытие античастиц по праву считается крупнейшим достижением физики ХХ столетия. Оно впервые доказало нестабильность материи на самом глубинном, самом фундаментальном уровне. До этого все были уверены, что вещество нашего мира сложено из элементарных частиц, которые никогда не исчезают и не рождаются заново. Эта простая картина ушла в прошлое, когда без малого 80 лет назад было доказано, что электрон и его положительно заряженный двойник при встрече исчезают, рождая кванты электромагнитного излучения. Позднее выяснилось, что частицам микромира вообще свойственно превращаться друг в друга, причем многими способами. Открытие античастиц положило начало коренной трансформации фундаментальных представлений о природе материи.

Мысль о возможности существования антивещества впервые была высказана в 1898 году — англичанин Артур Шустер опубликовал в журнале Nature весьма туманную заметку, вероятно, вдохновленную недавним открытием электрона. «Если существует отрицательное электричество, — вопрошал Шустер, — то почему бы не существовать отрицательно заряженному золоту, такому же желтому, с той же точкой плавления и с таким же спектром?» А дальше у него — впервые в мировой научной литературе — появляются и слова «антиатом» и «антивещество». Шустер предполагал, что антиатомы притягиваются друг к другу гравитационными силами, но отталкиваются от обычной материи.

Антиэлектроны впервые были замечены в эксперименте опять-таки до момента своего официального открытия. Это сделал ленинградский физик Дмитрий Скобельцин, который в 1920-х годах исследовал рассеяние гамма-лучей на электронах в камере Вильсона, помещенной в магнитное поле. Он заметил, что некоторые треки вроде бы электронного происхождения искривляются не туда, куда положено. Дело, разумеется, в том, что гамма-квант при взаимодействии с веществом может давать начало электрону и позитрону, которые в магнитном поле закручиваются в противоположных направлениях. Скобельцин этого, естественно, не знал и объяснить странный эффект не смог, но в 1928 году доложил о нем на международной конференции в Кембридже. По занятному совпадению, годом ранее в совет кембриджского колледжа Св. Иоанна избрали молодого физика-теоретика Поля Дирака, чьи исследования со временем позволили объяснить эти аномалии.

Уравнение Дирака

В 1926 году австриец Эрвин Шредингер сформулировал уравнение, описывающее поведение нерелятивистских частиц, подчиняющихся квантовой механике, — дифференциальное уравнение, решения которого определяют состояния частицы. Уравнение Шредингера описывало частицу, которая не имеет собственного углового импульса — спина (иначе говоря, не ведет себя как волчок). Однако в 1926 году уже было известно, что электроны обладают спином, который может иметь два различных значения: грубо говоря, ось электронного волчка ориентируется в пространстве лишь в двух противоположных направлениях (спустя год аналогичное доказательство было получено и для протонов). Тогда же швейцарский теоретик Вольфганг Паули обобщил уравнение Шредингера для электрона, так чтобы оно позволяло учитывать спин. Таким образом, спин сперва открыли экспериментально, а потом искусственно навязали шредингеровскому уравнению.

В релятивистской механике Эйнштейна формула для энергии свободной частицы выглядит сложнее, нежели в ньютоновской. Перевести эйнштейновскую формулу в квантовое уравнение несложно, это проделали и Шредингер, и трое его современников. Но решения такого уравнения показывают, что вероятность нахождения частицы в определенной точке может оказаться отрицательной, что не имеет физического смысла. Возникают и другие неприятности, обусловленные тем, что математическая структура нового уравнения (его называют уравнением Клейна-Гордона) расходится с теорией относительности (на формальном языке, оно не является релятивистски инвариантным).

Вот над этой задачей в 1927 году и задумался Дирак. Для сохранения инвариантности он включил в уравнение не квадраты операторов энергии и импульса, а их первую степень. Чтобы записать уравнение в таком виде, пришлось изначально ввести в него более сложные, чем у Паули, матрицы размером 4х4. У этого уравнения обнаружились четыре равноправных решения, причем в двух случаях энергия электрона положительна, а в двух — отрицательна.

Тут-то и возникла загвоздка. Первая пара решений интерпретировалась просто — это обычный электрон в каждом из возможных спиновых состояний. Если добавить в уравнение Дирака электромагнитное поле, то легко получится, что электрон обладает правильным магнитным моментом. Это был гигантский успех теории Дирака, которая без всяких дополнительных предположений наделила электрон и спином, и магнитным моментом. Однако в первое время никто не мог решить, что делать с остальными решениями. И в ньютоновской, и в эйнштейновской механике энергия свободной частицы никогда не бывает отрицательной, и частицы с энергией меньше нуля вызывали недоумение. К тому же было непонятно, почему обычные электроны не переходят в предсказанные теорией Дирака состояния с заведомо меньшей энергией, в то время как электроны в оболочках атомов такой возможности не упускают.

Поиски смысла

Через два года Дирак нашел очень красивую интерпретацию парадоксальных решений. В соответствии с принципом Паули два электрона (как и любые частицы с полуцелым спином) не могут одновременно находиться в одинаковом квантовом состоянии. По мысли Дирака, все состояния с отрицательной энергией в норме уже заполнены, а переход в эти состояния из зоны положительных энергий запрещен принципом Паули. Поэтому дираковское море электронов с отрицательной энергией в принципе ненаблюдаемо, но лишь до тех пор, пока в нем нет свободных вакансий. Такую вакансию можно создать, если вышибить электрон с отрицательного энергетического уровня на положительный (например, достаточно мощным квантом электромагнитного излучения). Поскольку электронное море потеряет единицу отрицательного заряда, появившаяся вакансия (Дирак назвал ее дыркой) будет вести себя в электрическом поле как частица с плюсовым зарядом. По этой же логике падение электрона из нормального состояния в такую дырку ведет к исчезновению и электрона, и дырки, сопровождающемуся испусканием одного фотона.

А как проявляют себя дираковские дырки в реальном мире? Сначала Дирак отождествлял их с протонами, о чем в 1930 году и написал в Nature. Это было как минимум странно — протон в 2000 раз тяжелее электрона. Будущий академик и нобелевский лауреат Игорь Тамм и будущий отец атомной бомбы Роберт Оппенгеймер выдвинули и более серьезное возражение, заметив, что тогда каждый атом водорода стоит перед угрозой исчезновения, а этого в природе не происходит. Дирак вскоре отказался от этой гипотезы и в сентябре 1931 года выступил со статьей, где предсказал, что дырки, если их удастся обнаружить, окажутся совершенно новыми частицами, неизвестными экспериментальной физике. Он предложил назвать их антиэлектронами.

Дираковская модель ушла в историю после создания квантовой электродинамики и квантовой теории поля, которые приписывают частицам и античастицам одинаковую реальность. Из квантовой электродинамики следует также, что встреча свободного электрона с антиэлектроном влечет за собой рождение не менее пары квантов, так что в этой части модель попросту неверна. Как нередко бывает, уравнение Дирака оказалось много умнее интерпретации, предложенной его создателем.

Открытие антиэлектрона

Как уже было сказано, позитроны фактически наблюдал еще Дмитрий Скобельцин. В 1930 году с ними столкнулся аспирант Калифорнийского технологического института Чунг-Яо Чао, исследовавший прохождение гамма-квантов сквозь свинцовую фольгу. В этом эксперименте возникали электронно-позитронные пары, после чего новорожденные позитроны аннигилировали с электронами атомных оболочек и порождали вторичное гамма-излучение, которое и зарегистрировал Чао. Однако многие физики усомнились в результатах, и эта работа признания не получила.

Руководителем Чао был президент Калтеха, нобелевский лауреат Роберт Милликен, который в те времена занимался космическими лучами (он и предложил этот термин). Милликен считал их потоком гамма-квантов и потому ожидал, что они будут расколачивать атомы на электроны и протоны (нейтрон открыли позже, в 1932 году). Милликен предложил проверить эту гипотезу Карлу Андерсону, другому своему аспиранту и к тому же приятелю Чао. Тот, подобно Скобельцину, решил воспользоваться камерой Вильсона, соединенной с очень мощным электромагнитом. Андерсон тоже получил треки заряженных частиц, которые внешне не отличались от треков электронов, но были изогнуты в обратном направлении. Сначала он приписал их электронам, которые движутся не сверху вниз, а снизу вверх. Для контроля он установил в центре камеры свинцовую пластинку толщиной 6 мм. Оказалось, что над пластиной величины импульсов частиц с треками электронного типа в два с лишним раза превышают эти показатели в нижней части камеры — отсюда следовало, что все частицы движутся сверху вниз. Этот же прием доказал, что частицы с аномальной закруткой не могут быть протонами — те бы застряли в свинцовом экране.

В конце концов Андерсон пришел к выводу, что почти все аномальные треки принадлежат каким-то легким частицам с положительным зарядом. Однако Милликен в это не поверил, а Андерсон без одобрения шефа не хотел публиковаться в научной печати. Поэтому он ограничился коротким письмом в популярный журнал Science News Letter и приложил к нему фотографию аномального трека. Согласившийся с интерпретацией Андерсона редактор предложил назвать новую частицу позитроном. Этот снимок был опубликован в декабре 1931 года.

Теперь вспомним, что Дирак обнародовал гипотезу о существовании антиэлектрона еще в сентябре. Однако и Андерсон, и Милликен почти ничего не знали о его теории и вряд ли понимали ее суть. Поэтому Андерсону не пришло в голову отождествить позитрон с дираковским антиэлектроном. Он еще долго пытался убедить Милликена в собственной правоте, но, так не достигнув успеха, в сентябре 1932 года опубликовал в журнале Science заметку о своих наблюдениях. Однако в этой работе речь идет все-таки не о двойнике электрона, а лишь о положительно заряженной частице неизвестного вида, масса которой много меньше массы протона.

Следующий шаг к идентификации антиэлектрона сделали в месте его предсказания — в Кембридже. Английский физик Патрик Блэкетт и его итальянский коллега Джузеппе Оккиалини занимались исследованием космических лучей в знаменитой Кавендишской лаборатории, возглавляемой великим Резерфордом. Оккиалини предложил оснастить камеру Вильсона электронной схемой (придуманной его соотечественником Бруно Росси), включавшей камеру в случае одновременного срабатывания счетчиков Гейгера, один из которых был установлен над камерой, а другой — под ней. К осени 1932 года партнеры получили около 700 фотографий треков, которые можно было приписать заряженным частицам космического происхождения. Среди них имелись и V-образные трековые пары, порожденные расходящимися в магнитном поле электронами и позитронами.

Блэкетт знал о предсказанном Дираком антиэлектроне, но не принимал его теорию всерьез. Сам Дирак тоже не разглядел своей гипотетической частицы на снимках Блэкетта. В итоге Блэкетт и Оккиалини правильно интерпретировали свои фотоснимки лишь позднее, когда ознакомились с сентябрьской публикацией Андерсона. Свои выводы они представили в статье со скромным заголовком «Фотографии треков проникающей радиации», добравшейся до редакции журнала Proceedings of the Royal Society 7 февраля 1933 года. К этому времени Андерсон узнал о конкурентах из Кавендиша и вполне адекватно изложил свои результаты в четырехстраничной статье «Положительный электрон», которая поступила в журнал Physical Review 28 февраля. Поскольку приоритет Андерсона был установлен предыдущими публикациями, он один и получил за открытие позитрона Нобелевскую премию (в 1936 году, совместно с первооткрывателем космических лучей Виктором Гессом). Блэкетт был удостоен этой награды 12 годами позже (с формулировкой «За усовершенствование методов наблюдений на камере Вильсона и за открытия в области ядерной физики и космической радиации»), а вот Оккиалини премией обошли — считается, что по политическим соображениям.

Вскоре исследования позитрона двинулись вперед семимильными шагами. Парижский физик Жан Тибо наблюдал электронно-позитронные пары земного происхождения, порожденные торможением в свинце гамма-квантов от радиоактивного источника. Он доказал, что у обеих частиц отношение заряда к массе по абсолютной величине совпадает с очень высокой точностью. В 1934 году Фредерик Жолио и Ирен Кюри обнаружили, что позитроны возникают и при радиоактивном распаде. Так что к середине 30-х годов ХХ века существование предсказанных Дираком антиэлектронов превратилось в установленный факт.

Антинуклоны

Механизм порождения позитронов космическими лучами установлен давно. В основном первичное космическое излучение состоит из протонов с энергией более 1 ГэВ, которые при столкновениях с ядрами атомов в верхних слоях атмосферы порождают пионы и прочие нестабильные частицы. Пионы дают начало новым распадам, в ходе которых появляются гамма-кванты, которые при торможении в веществе производят электронно-позитронные пары.

Достаточно быстрые протоны при столкновении с атомными ядрами способны непосредственно порождать антипротоны и антинейтроны. В середине ХХ века физики уже не сомневались в возможности подобных превращений и искали их следы во вторичных космических лучах. Результаты некоторых наблюдений вроде бы можно было интерпретировать как аннигиляцию антипротонов, но без полной уверенности. Поэтому американские физики предложили проект сооружения протонного ускорителя на 6 ГэВ, на котором, согласно теории, было возможно получить оба типа антинуклонов. Эта машина, названная беватроном, была запущена в Лаборатории имени Лоуренса в Беркли в 1954 году. Спустя год Оуэн Чемберлен, Эмилио Сегре и их коллеги получили антипротоны, обстреливая протонами медную мишень. Еще через год другая группа физиков на той же установке зарегистрировала антинейтроны. В 1965 году в ЦЕРН и в Брукхейвенской национальной лаборатории были синтезированы ядра антидейтерия, сложенные из антипротона и антинейтрона. А вначале 1970-х из СССР пришло сообщение, что на 70-ГэВ протонном ускорителе Института физики высоких энергий синтезированы ядра антигелия-3 (два антипротона и антинейтрон) и антитрития (антипротон и два антинейтрона); в 2002 году несколько ядер легкого антигелия были получены и в ЦЕРН. Дальше дело пока не двинулось, так что синтез хотя бы одного ядра антизолота — дело неблизкого будущего.

Рукотворное антивещество

Ядра ядрами, но для настоящего антивещества требуются полноценные атомы. Простейший из них — атом антиводорода, антипротон плюс позитрон. Такие атомы были впервые созданы в ЦЕРН в 1995 году — через 40 лет после открытия антипротона. Вполне возможно, что это были первые атомы антиводорода за время существования нашей Вселенной после Большого взрыва — в природных условиях вероятность их рождения практически нулевая, а существование внеземных технологических цивилизаций все еще под вопросом.

Этот эксперимент был осуществлен под руководством немецкого физика Вальтера Олерта. В ЦЕРН тогда действовало накопительное кольцо LEAR, в котором хранились низкоэнергетические (всего-то 5,9 МэВ) антипротоны (оно проработало с 1984 по 1996 год). В эксперименте группы Олерта антипротоны направляли на струю ксенона. После столкновения антипротонов с ядрами этого газа возникали электронно-позитронные пары, и некоторые позитроны крайне редко (с частотой 10−17%!) объединялись с антипротонами в атомы антиводорода, движущиеся почти что со скоростью света. Незаряженные антиатомы больше не могли вращаться внутри кольца и вылетали по направлению к двум детекторам. В первом приборе каждый антиатом ионизировался, и освобожденный позитрон аннигилировал с электроном, порождая пару гамма-квантов. Антипротон уходил во второй детектор, который до исчезновения этой частицы успевал определить ее заряд и скорость. Сопоставление данных с обоих детекторов показало, что в эксперименте было синтезировано не меньше 9 атомов антиводорода. Вскоре релятивистские атомы антиводорода были созданы и в Фермилабе.

С лета 2000 года в ЦЕРН действует новое кольцо AD (Antiproton Decelerator). В него поступают антипротоны с кинетической энергией 3,5 ГэВ, которые замедляются до энергии в 100 МэВ и затем используются в разнообразных экспериментах. Антивеществом там занялись группы ATHENA и ATRAP, которые в 2002 году стали разово получать десятки тысяч атомов антиводорода. Эти атомы возникают в особых электромагнитных бутылках (так называемых ловушках Пеннинга), где смешиваются поступающие из AD антипротоны и рождающиеся при распаде натрия-22 позитроны. Правда, жизнь нейтральных антиатомов в такой ловушке измеряется всего лишь микросекундами (зато позитроны и антипротоны могут храниться там месяцами!). В настоящее время отрабатываются технологии более длительного хранения антиводорода.

В беседе с «ПМ» руководитель группы ATRAP (проект ATHENA уже завершен), профессор Гарвардского университета Джеральд Габриэлс подчеркнул, что, в отличие от LEAR, установка AD позволяет синтезировать относительно медленные (как говорят физики, холодные) атомы антиводорода, с которыми намного проще работать. Сейчас ученые пытаются еще сильнее охладить антиатомы и перевести их позитроны на уровни с меньшей энергией. Если это получится, то появится возможность дольше удерживать антиатомы в силовых ловушках и определять их физические свойства (к примеру, спектральные характеристики). Эти показатели можно будет сопоставить со свойствами обычного водорода и понять наконец, чем антивещество отличается от вещества. Работы еще непочатый край.

) как для частиц, так и для античастиц. Это означает, что структура антивещества должна быть идентична структуре обычного вещества.

Отличие вещества и антивещества возможно только за счёт слабого взаимодействия , однако при обычных температурах слабые эффекты пренебрежимо малы.

При взаимодействии вещества и антивещества происходит их аннигиляция , при этом образуются высокоэнергичные фотоны или пары частиц-античастиц. Подсчитано, что при вступлении во взаимодействие 1 кг антивещества и 1 кг вещества выделится приблизительно 1,8·10 17 джоулей энергии, что эквивалентно энергии выделяемой при взрыве 42,96 мегатонн тротила . Самое мощное ядерное устройство из когда-либо взрывавшихся на планете, «Царь-бомба » (масса ~ 20 т), соответствовало 57 мегатоннам . Следует отметить, что порядка 50 % энергии при аннигиляции пары нуклон-антинуклон выделяется в форме нейтрино , которые практически не взаимодействуют с веществом.

Ведётся довольно много рассуждений на тему того, почему наблюдаемая часть Вселенной состоит почти исключительно из вещества и существуют ли другие места, заполненные, наоборот, практически полностью антивеществом; но на сегодняшний день наблюдаемая асимметрия вещества и антивещества во вселенной - одна из самых больших нерешенных задач физики (см. Барионная асимметрия Вселенной). Предполагается, что столь сильная асимметрия возникла в первые доли секунды после Большого Взрыва .

Получение

Первым объектом, целиком составленным из античастиц, был синтезированный в 1965 году анти-дейтрон ; затем были получены и более тяжёлые антиядра. В 1995 году в ЦЕРНе был синтезирован атом антиводорода , состоящий из позитрона и антипротона . В последние годы антиводород был получен в значительных количествах и было начато детальное изучение его свойств.

Стоимость

Антивещество известно как самая дорогая субстанция на Земле - по оценкам НАСА 2006 года, производство миллиграмма позитронов стоило примерно 25 миллионов долларов США . По оценке 1999 года, один грамм антиводорода стоил бы 62,5 триллиона долларов . По оценке CERN 2001 года, производство миллиардной доли грамма антивещества (объём, использованный CERN в столкновениях частиц и античастиц в течение десяти лет) стоило несколько сотен миллионов швейцарских франков .

См. также

Примечания

Ссылки


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Антивещество" в других словарях:

    Антивещество … Орфографический словарь-справочник

    антивещество - антивещество/, а/ … Слитно. Раздельно. Через дефис.

    А; ср. Физ. Материя, построенная из античастиц. ◁ Антивещественный, ая, ое. * * * антивещество материя, построенная из античастиц. Ядра атомов антивещества состоят из антипротонов и антинейтронов, а атомные оболочки построены из позитронов.… … Энциклопедический словарь

    АНТИВЕЩЕСТВО, вещество, построенное из античастиц. Ядра атомов антивещества состоят из антипротонов и антинейтронов, а роль электронов играют позитроны. Предполагают, что в первые моменты образования Вселенной антивещество и вещество… … Современная энциклопедия

    Материя, построенная из античастиц. Ядра атомов антивещества состоят из антипротонов и антинейтронов, а атомные оболочки построены из позитронов. Скопления антивещества во Вселенной пока не обнаружены. На ускорителях заряженных частиц получены… … Большой Энциклопедический словарь

    АНТИВЕЩЕСТВО, вещество, состоящее из античастиц, тождественных с обычными частицами по всем параметрам, кроме ЭЛЕКТРИЧЕСКОГО ЗАРЯДА, СПИНА И МАГНИТНОГО МОМЕНТА, которые у них имеют обратный знак. Когда античастица, например, позитрон… … Научно-технический энциклопедический словарь

    Ср. Материя, образованная из античастиц (в физике). Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

    Материя, построенная из античастиц. Ядра атомов в ва состоят из протонов и нейтронов, а эл ны образуют оболочки атомов. В А. ядра состоят из антипротонов и антинейтронов, а место эл нов в их оболочках занимают позитроны. Согласно совр. теории, яд … Физическая энциклопедия

    Сущ., кол во синонимов: 1 антиматерия (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    АНТИВЕЩЕСТВО - материя, состоящая из (см.). Вопрос о распространённости А. во Вселенной пока остаётся открытым … Большая политехническая энциклопедия

Книги

  • Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса , Дэйв Голдберг. Не любите физику? Вы просто не читали книги Дэйва Голдберга! Эта книга познакомит вас с одной из самых интригующих тем современной физики фундаментальными симметриями. Ведь в нашей прекрасной…
  • Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон , Голдберг Дэйв. Не любите физику? Вы просто не читали книги Дэйва Голдберга! Эта книга познакомит вас с одной из самых интригующих тем современной физики - фундаментальными симметриями. Ведь в нашей…