Абсолютные и относительные величины. Основные свойства величины

Физической величиной называется физическое свойство материального объекта, процесса, физического явления, охарактеризованное количественно.

Значение физической величины выражается одним или несколькими числами, характеризующими эту физическую величину, с указанием единицы измерения.

Размером физической величины являются значения чисел, фигурирующих в значении физической величины.

Единицы измерения физических величин.

Единицей измерения физической величины является величина фиксированного размера, которой присвоено числовое значение, равное единице. Применяется для количественного выражения однородных с ней физических величин. Системой единиц физических величин называют совокупность основных и производных единиц, основанную на некоторой системе величин.

Широкое распространение получило всего лишь некоторое количество систем единиц. В большинстве случаев во многих странах пользуются метрической системой.

Основные единицы.

Измерить физическую величину - значит сравнить ее с другой такой же физической величиной, принятой за единицу.

Длину предмета сравнивают с единицей длины, массу тела - с единицей веса и т.д. Но если один исследователь измерит длину в саженях, а другой в футах, им будет трудно сравнить эти две величины. Поэтому все физические величины во всем мире принято измерять в одних и тех же единицах. В 1963 году была принята Международная система единиц СИ (System international - SI).

Для каждой физической величины в системе единиц должна быть предусмотрена соответствующая единица измерения. Эталоном единицы измерения является ее физическая реализация.

Эталоном длины является метр - расстояние между двумя штрихами, нанесенными на стержне особой формы, изготовленном из сплава платины и иридия.

Эталоном времени служит продолжительность какого-либо правильно повторяющегося процесса, в качестве которого выбрано движение Земли вокруг Солнца: один оборот Земля совершает за год. Но за единицу времени принимают не год, а секунду .

За единицу скорости принимают скорость такого равномерного прямолинейного движения, при котором тело за 1 с совершает перемещение в 1 м.

Отдельная единица измерения используется для площади, объема, длины и т. д. Каждая единица определяется при выборе того или иного эталона. Но система единиц значительно удобнее, если в ней в качестве основных выбрано всего несколько единиц, а остальные определяются через основные. Например, если единицей длины является метр, то единицей площади будет квадратный метр, объема - кубический метр, скорости - метр в секунду и т. д.

Основными единицами физических величин в Международной системе единиц (СИ) являются: метр (м), килограмм (кг), секунда (с), ампер (А), кельвин (К), кандела (кд) и моль (моль).

Основные единицы СИ

Величина

Единица

Обозначение

Наименование

русское

международное

Сила электрического тока

Термодинамическая температура

Сила света

Количество вещества

Существуют также производные единицы СИ, у которых есть собственные наименования:

Производные единицы СИ, имеющие собственные наименования

Единица

Выражение производной единицы

Величина

Наименование

Обозначение

Через другие единицы СИ

Через основные и дополнительные единицы СИ

Давление

м -1 ЧкгЧс -2

Энергия, работа, количество теплоты

м 2 ЧкгЧс -2

Мощность, поток энергии

м 2 ЧкгЧс -3

Количество электричества, электрическийзаряд

Электрическое напряжение, электрическийпотенциал

м 2 ЧкгЧс -3 ЧА -1

Электрическая емкость

м -2 Чкг -1 Чс 4 ЧА 2

Электрическое сопротивление

м 2 ЧкгЧс -3 ЧА -2

Электрическая проводимость

м -2 Чкг -1 Чс 3 ЧА 2

Поток магнитной индукции

м 2 ЧкгЧс -2 ЧА -1

Магнитная индукция

кгЧс -2 ЧА -1

Индуктивность

м 2 ЧкгЧс -2 ЧА -2

Световой поток

Освещенность

м 2 ЧкдЧср

Активность радиоактивного источника

беккерель

Поглощенная доза излучения

И змерения . Для получения точного, объективного и легко воспроизводимого описания физической величины используют измерения. Без измерений физическую величину нельзя охарактеризовать количественно. Такие определения, как «низкое» или «высокое» давление, «низкая» или «высокая» температура отражают лищь субъективные мнения и не содержат сравнения с эталонными величинами. При измерении физической величины ей приписывают некоторое численное значение.

Измерения осуществляются с помощью измерительных приборов. Существует довольно большое количество измерительных приборов и приспособлений, от самых простых до сложных. Например, длину измеряют линейкой или рулеткой, температуру - термометром, ширину - кронциркулем.

Измерительные приборы классифицируются: по способу представления информации (показывающие или регистрирующие), по методу измерений (прямого действия и сравнения), по форме представлений показаний (аналоговый и цифровой), и др.

Для измерительных приборов характерны следующие параметры:

Диапазон измерений - область значений измеряемой величины, на которой рассчитан прибор при его нормальном функционировании (с заданной точностью измерения).

Порог чувствительности - минимальное (пороговое) значение измеряемой величины, различаемое прибором.

Чувствительность - связывает значение измеряемого параметра и соответствующее ему изменение показаний прибора.

Точность - способность прибора указывать истинное значение измеряемого показателя.

Стабильность - способность прибора поддерживать заданную точность измерений в течение определенного времени после калибровки.

Натуральное число как мера величины

Известно, что числа возникли из потребности счета и измерения, но если для счета достаточно натуральных чисел, то для измерения величин нужны и другие числа. Однако в качестве результата измерения величин будем рассматривать только натуральные числа. Определив смысл натурального числа как меры величины, мы выясним, какой смысл имеют арифметические действия над такими числами. Эти знания нужны учителю начальных классов не только для обоснования выбора действий при решении задач с величинами, но и для понимания еще одного подхода к трактовке натурального числа, существующего в начальном обучении математике.

Натуральное число мы будем рассматривать в связи с измерением положительных скалярных величин - длин, площадей, масс, времени и др, поэтому прежде, чем говорить о взаимосвязи величин и натуральных чисел, напомним некоторые факты, связанные с величиной и ее измерением, тем более что понятие величины, наряду с числом, является основным в начальном курсе математики.

Понятие положительной скалярной величины и ее измерения

Рассмотрим два высказывания, в которых используется слово «длина»:

1) Многие окружающие нас предметы имеют длину.

2) Стол имеет длину.

В первом предложении утверждается, что длиной обладают объекты некоторого класса. Во втором речь идет о том, что длиной обладает конкретный объект из этого класса. Обобщая, можно сказать, что термин «длина» употребляется для обозначения свойства , либо класса объектов (предметы имеют длину), либо конкретного объекта из этого класса (стол имеет длину).

Но чем это свойство отличается от других свойств объектов этого класса? Так, например, стол может иметь не только длину, но и быть изготовленным из дерева или металла; столы могут иметь разную форму. О длине можно сказать, что разные столы обладают этим свойством в разной степени (один стол может быть длиннее или короче другого), чего не скажешь о форме - один стол не может быть «прямоугольнее» другого.

Таким образом, свойство «иметь длину» - особое свойство объектов, оно проявляется тогда, когда объекты сравнивают по их протяженности (по длине). В процессе сравнения устанавливают, что либо два объекта имеют одну и ту же длину, либо длина одного меньше длины другого.

Аналогично можно рассматривать и другие известные величины: площадь, массу, время и т.д. Они представляют собой особые свойства окружающих нас предметов и явлений и проявляются при сравнении предметов и явлений по этому свойству, причем каждая величина связана с определенным способом сравнения.

Величины, которые выражают одно и тоже свойство объектов, называются величинами одного рода или однородными величинами . Например, длина стола и длина комнаты - это величины одного рода.

Напомним основные положения, связанные с однородными величинами.

1. Любые две величины одного рода сравнимы: они либо равны, либо одна меньше другой. Другими словами, для величин одного рода имеют место отношения «равно», «меньше» и «больше», и для любых величин А и В справедливо одно и только одно из отношений: А<В, А = В, А> В.

Например, мы говорим, что длина гипотенузы прямоугольного треугольника больше, чем длина любого катета этого треугольника, масса яблока меньше массы арбуза, а длины противоположных сторон прямоугольника равны.

2. Отношение «меньше» для однородных величин транзитивно: если А < В и В < С, то А < С.

Так, если площадь треугольника F 1 меньше площади треугольника F 2 , и площадь треугольника F 2 меньше площади треугольника F 3 , то площадь треугольника F 1 меньше площади треугольника F 3 .

3. Величины одного рода можно складывать, в результате сложения получается величина того же рода. Иными словами, для любых двух величин А и В однозначно определяется величина С = А + В, которую называют суммой величин А и В.

Сложение величин коммутативно и ассоциативно.

Например, если А - масса арбуза, а В - масса дыни, то С = А +В - это масса арбуза и дыни. Очевидно, что А+В = В+А и(А+В) + С = А+(В+С).

Разностью величин А и В называется такая величина

С = А - В, что А = В + С.

Разность величин А и В существует тогда и только тогда, когда А>В.

Например, если А - длина отрезка а, В - длина отреза b, то С=А-В - это длина отрезка с (рис. 1).


5. Величину можно умножать на положительное действительное число, в результате получают величину того же рода. Более точно, для любой величины А и любого положительного действительного числа х существует единственная величина В =

х. А, которую называют произведением величины А на число х.

Например, если А - время, отводимое на один урок, то умножив А на число х = 3, получим величину В = 3·А - время, за которое пройдет 3 урока.

6. Величины одного рода можно делить, получая в результате число. Определяют деление через умножение величины на число.

Частным величин А и В называется такое положительное действительное число х = А: В, что А =х·В.

Так, если А - длина отрезка а, В - длина отрезка b (рис. 2) и отрезок А состоит из 4-х отрезков, равных b, то А:В = 4, поскольку А= 4·В.


Величины, как свойства объектов, обладают еще одной особенностью - их можно оценивать количественно. Для этого величину надо измерить. Чтобы осуществить измерение из данного рода величин выбирают величину, которую называют единицей измерения. Мы будем обозначать ее буквой Е.

Если задана величина А и выбрана единица величины Е (того же рода), то измерить величину А - это значит найти такое положительное действительное число х, что А =х·Е .

Число х называется численным значением величины А при единице величины Е. Оно показывает, во сколько раз величина А больше (или меньше) величины Е, принятой за единицу измерения.

Если А=х·Е, то число х называют также мерой величины А при единице Е и пишут х=m Е (А).

Например, если А - длина отрезка а, Е- длина отрезка b (рис.2), то А=а·Е. Число 4 - это численное значение длины А при единице длины Е, или, другими словами, число 4 - это мера длины А при единице длины Е.

В практической деятельности при измерении величин люди пользуются стандартными единицами величин: так, длину измеряют в метрах, сантиметрах и т.д. Результат измерения записывают в таком виде: 2,7 кг; 13 см; 16 с. Исходя из понятия измерения, данного выше, эти записи можно рассматривать как произведение числа и единицы величины. Например, 2,7 кг = 2,7·кг; 13 см = 13·см; 16 с = 16·с.

Используя это представление, можно обосновать процесс перехода от одной единицы величины к другой. Пусть, например, требуется выразить ч в минутах. Так как ч = · ч и час = 60 мин, то ч = ·60·мин = ( · 60) мин = 25 мин.

Величина, которая определяется одним численным значением, называется скалярной величиной .

Если при выбранной единице измерения скалярная величина принимает только положительные численные значения, то ее называют положительной скалярной величиной.

Положительными скалярными величинами являются длина, площадь, объем, масса, время, стоимость и количество товара и др.

Измерение величин позволяет переходить от сравнения величин к сравнению чисел, от действий над величинами к соответствующим действиям над числами, и наоборот.

1. Если величины А и В измерены при помощи единицы величины Е, то отношения между величинами А и В будет такими же, как и отношения между их численными значениями, и наоборот:

А+В <=> m(А)+ m(В);

А<В <=> m (А)

А> В <=> m (А) > m (В).

Например, если массы двух тел таковы, что А =5 кг, В=3 кг, то можно утверждать, что А> В, поскольку 5 > 3.

2. Если величины А и В измерены при помощи единицы величины Е, то чтобы найти численное значение суммы А + В, достаточно сложить численные значения величин А и В:

А + В = С <=> m (А +В) = m (А) + m (В). Например, если А = 5 кг, В = 3 кг, то А + В = 5 кг + 3 кг = = (5 + 3) кг = 8 кг.

3. Если величины А и В таковы, что В= х·А, где х - положительное действительное число, и величина А измерена при помощи единицы величины Е, то, чтобы найти численное значение величины В при единицы Е, достаточно число х умножить на число m (А):

В = х·А <=> m (В)=х·m(А).

Например, если масса В в 3 раза больше массы А и А = 2 кг, то В = 3А = 3· (2·кг) = (3·2)кг = 6 кг.

В математике при записи произведения величины А на число х принято число писать перед величиной, т.е. х·А. Но разрешается писать и так: Ах. Тогда численное значение величины А умножают на х, если находят значение величины А·х.

Рассмотренные понятия - объект (предмет, явление, процесс), его величина, численное значение величины, единица величины - надо уметь вычленять в текстах и задачах. Например, математическое содержание предложения «Купили 3 килограмма яблок» можно описать следующим образом: в предложении рассматривается такой объект, как яблоки, и его свойство - масса; для измерения массы использовали единицу массы -килограмм; в результате измерения получили число 3 - численное значение массы яблок при единице массы - килограмм.

Один и тот же объект может обладать несколькими свойствами, которые являются величинами. Например, для человека - это рост, масса, возраст и др. Процесс равномерного движения характеризуется тремя величинами: расстоянием, скоростью и временем, между которыми существуют зависимость, выражаемая формулой s = v·t.

Если величины выражают разные свойства объекта, то их называют величинами разного рода , или разнородными величинами . Так, например, длина и масса - это разнородные величины.

Величина - это то, что можно измерить. Такие понятия, как длина, площадь, объём, масса, время, скорость и т. д. называют величинами. Величина является результатом измерения , она определяется числом, выраженным в определённых единицах. Единицы, в которых измеряется величина, называют единицами измерения .

Для обозначения величины пишут число, а рядом название единицы, в которой она измерялась. Например, 5 см, 10 кг, 12 км, 5 мин. Каждая величина имеет бесчисленное множество значений, например длина может быть равна: 1 см, 2 см, 3 см и т. д.

Одна и та же величина может быть выражена в разных единицах, например килограмм, грамм и тонна - это единицы измерения веса. Одна и та же величина в разных единицах выражается разными числами. Например, 5 см = 50 мм (длина), 1 ч = 60 мин (время), 2 кг = 2000 г (вес).

Измерить какую-нибудь величину - значит узнать, сколько раз в ней содержится другая величина того же рода, принятая за единицу измерения.

Например, мы хотим узнать точную длину какой-нибудь комнаты. Значит нам нужно измерить эту длину при помощи другой длины, которая нам хорошо известна, например при помощи метра. Для этого откладываем метр по длине комнаты столько раз, сколько можно. Если он уложится по длине комнаты ровно 7 раз, то длина её равна 7 метрам.

В результате измерения величины получается или именованное число , например 12 метров, или несколько именованных чисел, например 5 метров 7 сантиметров, совокупность которых называется составным именованным числом .

Меры

В каждом государстве правительство установило определённые единицы измерения для различных величин. Точно рассчитанная единица измерения, принятая в качестве образца, называется эталоном или образцовой единицей . Сделаны образцовые единицы метра, килограмма, сантиметра и т. п., по которым изготавливают единицы для обиходного употребления. Единицы, вошедшие в употребление и утверждённые государством, называются мерами .

Меры называются однородными , если они служат для измерения величин одного рода. Так, грамм и килограмм - меры однородные, так как они служат для измерения веса.

Единицы измерения

Ниже представлены единицы измерения различных величин, которые часто встречаются в задачах по математике:

Меры веса/массы

  • 1 тонна = 10 центнеров
  • 1 центнер = 100 килограмм
  • 1 килограмм = 1000 грамм
  • 1 грамм = 1000 миллиграмм
  • 1 километр = 1000 метров
  • 1 метр = 10 дециметров
  • 1 дециметр = 10 сантиметров
  • 1 сантиметр = 10 миллиметров

  • 1 кв. километр = 100 гектарам
  • 1 гектар = 10000 кв. метрам
  • 1 кв. метр = 10000 кв. сантиметров
  • 1 кв. сантиметр = 100 кв. миллиметрам
  • 1 куб. метр = 1000 куб. дециметров
  • 1 куб. дециметр = 1000 куб. сантиметров
  • 1 куб. сантиметр = 1000 куб. миллиметров

Рассмотрим ещё такую величину как литр . Для измерения вместимости сосудов употребляется литр. Литр является объёмом, который равен одному кубическому дециметру (1 литр = 1 куб. дециметру).

Меры времени

  • 1 век (столетие) = 100 годам
  • 1 год = 12 месяцам
  • 1 месяц = 30 суткам
  • 1 неделя = 7 суткам
  • 1 сутки = 24 часам
  • 1 час = 60 минутам
  • 1 минута = 60 секундам
  • 1 секунда = 1000 миллисекундам

Кроме того, используют такие единицы измерения времени, как квартал и декада.

  • квартал - 3 месяца
  • декада - 10 суток

Месяц принимается за 30 дней, если не требуется определить число и название месяца. Январь, март, май, июль, август, октябрь и декабрь - 31 день. Февраль в простом году - 28 дней, февраль в високосном году - 29 дней. Апрель, июнь, сентябрь, ноябрь - 30 дней.

Год представляет собой (приблизительно) то время, в течении которого Земля совершает полный оборот вокруг Солнца. Принято считать каждые три последовательных года по 365 дней, а следующий за ними четвёртый - в 366 дней. Год, содержащий в себе 366 дней, называется високосным , а годы, содержащие по 365 дней - простыми . К четвёртому году добавляют один лишний день по следующей причине. Время обращения Земли вокруг Солнца содержит в себе не ровно 365 суток, а 365 суток и 6 часов (приблизительно). Таким образом, простой год короче истинного года на 6 часов, а 4 простых года короче 4 истинных годов на 24 часа, т. е. на одни сутки. Поэтому к каждому четвёртому году добавляют одни сутки (29 февраля).

Об остальных видах величин вы узнаете по мере дальнейшего изучения различных наук.

Сокращённые наименования мер

Сокращённые наименования мер принято записывать без точки:

  • Километр - км
  • Метр - м
  • Дециметр - дм
  • Сантиметр - см
  • Миллиметр - мм

Меры веса/массы

  • тонна - т
  • центнер - ц
  • килограмм - кг
  • грамм - г
  • миллиграмм - мг

Меры площади (квадратные меры)

  • кв. километр - км 2
  • гектар - га
  • кв. метр - м 2
  • кв. сантиметр - см 2
  • кв. миллиметр - мм 2

  • куб. метр - м 3
  • куб. дециметр - дм 3
  • куб. сантиметр - см 3
  • куб. миллиметр - мм 3

Меры времени

  • век - в
  • год - г
  • месяц - м или мес
  • неделя - н или нед
  • сутки - с или д (день)
  • час - ч
  • минута - м
  • секунда - с
  • миллисекунда - мс

Мера вместимости сосудов

  • литр - л

Измерительные приборы

Для измерения различных величин используются специальные измерительные приборы. Одни из них очень просты и предназначены для простых измерений. К таким приборам можно отнести измерительную линейку, рулетку, измерительный цилиндр и др. Другие измерительные приборы более сложные. К таким приборам можно отнести секундомеры, термометры, электронные весы и др.

Измерительные приборы, как правило, имеют измерительную шкалу (или кратко шкалу). Это значит, что на приборе нанесены штриховые деления, и рядом с каждым штриховым делением написано соответствующее значение величины. Расстояние между двумя штрихами, возле которых написано значение величины, может быть дополнительно разделено ещё на несколько более малых делений, эти деления чаще всего не обозначены числами.

Определить, какому значению величины соответствует каждое самое малое деление, не трудно. Так, например, на рисунке ниже изображена измерительная линейка:

Цифрами 1, 2, 3, 4 и т. д. обозначены расстояния между штрихами, которые разделены на 10 одинаковых делений. Следовательно, каждое деление (расстояние между ближайшими штрихами) соответствует 1 мм. Эта величина называется ценой деления шкалы измерительного прибора.

Перед тем как приступить к измерению величины, следует определить цену деления шкалы используемого прибора.

Для того чтобы определить цену деления, необходимо:

  1. Найти два ближайших штриха шкалы, возле которых написаны значения величины.
  2. Вычесть из большего значения меньшее и полученное число разделить на число делений, находящихся между ними.

В качестве примера определим цену деления шкалы термометра, изображённого на рисунке слева.

Возьмём два штриха, около которых нанесены числовые значения измеряемой величины (температуры).

Например, штрихи с обозначениями 20 °С и 30 °С. Расстояние между этими штрихами разделено на 10 делений. Таким образом, цена каждого деления будет равна:

(30 °С - 20 °С) : 10 = 1 °С

Следовательно, термометр показывает 47 °С.

Измерять различные величины в повседневной жизни приходится постоянно каждому из нас. Например, чтобы прийти вовремя в школу или на работу, приходится измерять время, которое будет потрачено на дорогу. Метеорологи для предсказания погоды измеряют температуру, атмосферное давление, скорость ветра и т. д.

Глава 4

Изучение величин в начальной школе

Лекция 15,

Основные величины, изучаемые

в начальной школе

1. Понятие величины

3. Масса и емкость.

4. Площадь.

6. Скорость.

7. Действия с именованными числами.

Понятие величины

В математике под величиной понимают такие свойства предме­тов, которые поддаются количественной оценке. Количественная оценка величины называется измерением. Процесс измерения пред­полагает сравнение данной величины с некоторой мерой, приня­той за единицу при измерении величин этого рода.

К величинам относят длину, массу, время, емкость (объем), пло­щадь и др.

Все эти величины и единицы их измерения изучаются в началь­ной школе. Результатом процесса измерения величины является определенное численное значение, показывающее - сколько раз вы­бранная мера «уложилась» в измеряемую величину.

В начальной школе рассматриваются только такие величины, результат измерения которых выражается целым положительным числом (натуральным числом). В связи с этим, процесс знакомст­ва ребенка с величинами и их мерами рассматривается в методике как способ расширения представлений ребенка о роли и возмож­ностях натуральных чисел. В процессе измерения различных ве­личин ребенок упражняется не только в действиях измерения, но и получает новое представление о неизвестной ему ранее роли на­турального числа. Число - это мера величины, и сама идея числа

была в большой мере порождена необходимостью количественной
оценки процесса измерения величин. ,

При знакомстве с величинами можно выделить некоторые об­щие этапы, характеризующиеся общностью предметных действий ребенка, направленных на освоение понятия «величина».

На 1-ом этапе выделяются и распознаются свойства и качества предметов, поддающихся сравнению.

Сравнивать без измерения можно длины (на глаз, приложени­ем и наложением), массы (прикидкой на руке), емкости (на глаз), площади (на глаз и наложением), время (ориентируясь на субъек­тивное ощущение длительности или какие-то внешние признаки этого процесса: времена года различаются по сезонным признакам в природе, время суток - по движению солнца и т. п.).

На этом этапе важно подвести ребенка к пониманию того, что есть качества предметов субъективные (кислое - сладкое) или объ­ективные, но не позволяющие провести точную оценку (оттенки цвета), а есть качества, которые позволяют провести точную оцен­ку разницы (на сколько больше - меньше).

На 2-ом этапе для сравнения величин используется промежу­точная мерка. Данный этап очень важен для формирования пред­ставления о самой идее измерения посредством промежуточных мер. Мера может быть произвольно выбрана ребенком из окружаю­щей действительности для емкости - стакан, для длины - кусочек шнурка, для площади - тетрадь и т. п. (Удава можно измерять и в Мартышках, и в Попугаях.)



До изобретения общепринятой системы мер человечество ак­тивно пользовалось естественными мерами - шаг, ладонь, локоть и т. п. От естественных мер измерения произошли дюйм, фут, ар­шин, сажень, пуд и т. д. Полезно побуждать ребенка пройти этот этап истории развития измерений, используя естественные меры своего тела как промежуточные.

Только после этого можно переходить к знакомству с общепри­нятыми стандартными мерами и измерительными приборами (ли­нейка, весы, палетка и т. д.). Это будет уже 3-й этап работы над знакомством с величинами.

Знакомство со стандартными мерами величин в школе связыва­ют с этапами изучения нумерации, поскольку большинство стан­дартных мер ориентировано на десятичную систему счисления: 1 м = 100 см, 1 кг = 1000 г и т. п. Таким образом, деятельность измерения в школе очень быстро сменяется деятельностью преоб­разования численных значений результатов измерения. Школьник практически не занимается непосредственно измерениями и рабо­той с величинами, он выполняет арифметические действия с за­данными ему условиями задания или задачи численными значе-


ниями величин (складывает, вычитает, умножает, делит), а также занимается так называемым переводом значений величины, выра­женной в одних наименованиях, в другие (переводит метры в сан­тиметры, тонны в центнеры и т. п.). Такая деятельность фактически формализует процесс работы с величинами на уровне численных преобразований. Для успешности этой деятельности нужно хоро­шо знать наизусть все таблицы соотношений величин и хорошо владеть приемами вычислений. Для многих школьников эта тема является трудной только по причине необходимости знать наизусть большие объемы численных соотношений мер величин.



Наиболее сложна в этом плане работа с величиной «время». Дан­ная величина сопровождается наибольшим количеством чисто услов­ных стандартных мер, которые не только надо запомнить (час, минута, день, сутки, неделя, месяц и т. п.), но и выучить их соот­ношения, которые заданы не в привычной десятичной системе счис­ления (сутки - 24 часа, час - 60 минут, неделя - 7 дней и т. п.).

В результате изучения величин учащиеся должны овладеть сле­дующими знаниями, умениями и навыками:

1) познакомиться с единицами каждой величины, получить на­
глядное представление о каждой единице, а также усвоить соотно­
шения между всеми изученными единицами каждой из величин,
т. е. знать таблицы единиц и уметь их применять при решении прак­
тических и учебных задач;

2) знать, с помощью каких инструментов и приборов измеряют
каждую величину, иметь четкое представление о процессе измере­
ния длины, массы, времени, научиться измерять и строить отрез­
ки с помощью линейки.

Длина

Длина - это характеристика линейных размеров предмета (про­тяженности).

С длиной и с единицами ее измерения дети знакомятся на про­тяжении всех лет обучения в начальной школе.

Первые представления о длине дети получают в дошкольном возрасте, они выделяют линейную протяженность предмета: дли­ну, ширину, расстояние между предметами. К началу обучения в школе дети должны правильно устанавливать отношения «шире - уже», «дальше - ближе», «длиннее - короче».

В 1 классе с первых уроков математики дети выполняют зада­ния по уточнению пространственных представлений: что тоньше, книга или тетрадь; какой карандаш длиннее; кто выше, кто ниже. В 1 классе дети знакомятся с первой единицей длины - это санти­метр.


Сантиметр - метрическая мера длины. Сантиметр равен од­ной сотой доле метра, десятой доле дециметра. Записывается так: 1 см (без точки).

В 1 классе дети получают наглядное представление о сантимет­ре. Они выполняют следующие задания:

1) измеряют длину полосок с помощью модели сантиметра;

2) измеряют длину полосок с помощью линейки.

Чтобы измерить длину полоски, надо приложить к ней линей­ку так, чтобы начало полоски соответствовало цифре 0 на линей­ке. Число соответствующее концу полоски и есть ее длина.

Дети выполняют следующие виды заданий:

1) сравнение длин полосок с помощью мерок произвольной длины:

Сравни длины отрезков:


При выполнении задания ребенок ссылается на счет мерок: боль­ше мерок уложилось по длине отрезка, значит отрезок длиннее.

2) нахождение равных и неравных отрезков; определение, на
сколько один отрезок больше или меньше другого;

3) измерение отрезков и их сравнение с помощью линейки (из­
мерить длину отрезка; сравнить длины отрезков, начертить отре­
зок заданной длины).

Во 2 классе дети знакомятся с такими единицами измерения длины как дециметр и метр.

Дециметр - метрическая мера длины. Дециметр равен одной десятой доле метра. Записывается так: 1 дм (без точки).

Дети получают наглядное представление о дециметре как об от­резке равном 10 см и выполняют задания следующего характера:

1) измерение предметов с помощью модели дециметра (альбом,
книга, парта);

2) вычерчивание в тетради отрезка длиной 1 дм;

3) сравнение изученных величин:

1 дм * 1 см 14 см* 4 дм

4) преобразование величин:

Заполни пропуски:

2 дм = ...см


В основе выполнения заданий на сравнение и преобразование величин лежит знание соотношения: 1 дм = 10 см

Метр - основная мера длины. Метр введен в употребление в конце XVIII в. во Франции.

Во 2 классе дети получают наглядное представление о метре и знакомятся с основными метрическими соотношениями:

10 дм - 1м; 100см=1м

Дети учатся обозначать новую единицу длины: м (без точки), измерять предметы с помощью новой единицы длины (шнур, доска, класс). В качестве инструмента используется метровая линейка или портновская лента.

Учащиеся выполняют следующие задания:

1) сравнение:

Поставь знак сравнения 1 м * 99 см 1 м * 9 дм

2) преобразование величин:

Вырази единицы величин одного наименования через другие:

3 м 2 дм = ... дм

Выполняя преобразования, дети используют таблицы соотно­шений единиц длины: 1 м = 10 дм, 3 м - это в 3 раза больше, значит, 3 м = 30 дм, да еще 2 дм - всего получается 32 дм.

Заполни пропуски: 56 дм = ... м... дм

Рассуждение: 56 дм - столько метров, сколько в числе 56 десятков.

В прежних учебниках системы 1-4 с километром дети знако­мились в 3 классе, в новом издании этого учебника (2001) кило­метр изучают в 4 классе.

Километр - это метрическая мера длины. Километр равен 1000 м. Записывается так 1 км (без точки). Детей можно познакомить с тем, что «кило» в переводе на русский обозначает «тысяча», «ки­ло-метр» - тысяча метров. Довольно трудно дать наглядное пред­ставление о километре, поскольку это достаточно большая мера длины. Учителя часто предлагают такой образ: размотаем катуш­ку ниток, а потом представим себе, что размотано 10 катушек ниток и вытянуто в длину - это и есть километр (стандартная катушка содержит 100 м). Полезно проделать такой опыт хотя бы с одной катушкой, поскольку ребенку трудно представить себе даже дли­ну катушки ниток, не говоря уже о километре:


Сравни: Заполни пропуски:

1 км * 1000 м 1 000 см = ... м

2 м 50 см * 2 м 5 см 5 000 м =... км

В 4 классе в задания для преобразования и сравнения величин вводится новая единица:

Миллиметр - метрическая мера длины. Миллиметр равен од­ной тысячной доле метра, т. е. десятой доле сантиметра. Записыва­ется так: 1 мм (без точки).

1 см - 10 мм

Школьники выполняют задания вида:

1) измерение предметов (гвоздь, шуруп), выражение результа­
тов в миллиметрах;

2) вычерчивание отрезков разной длины: (9 мм, 6 мм, 2 см 3 мм);

3) преобразование величин:

Заполни пропуски: 620 мм = ... см

Рассуждение: в 620 мм столько сантиметров, сколько в числе 620 десятков.

Заполни пропуски: 72 км 276 м = ... м

Рассуждение: вначале переводим километры в метры: 1 км = 1000 м, 72 км = 72 000 м да еще 276 м - 72 276 м

4) сравнение:

Сравни: 1 км * 100 м 7200 мм * 72 км

В 4 классе составляется сводная таблица:
1 км = 1000 м 1 м = 100 см 1 см = 10 мм

1 м = 10 дм 1 дм = 10 см

После составления данной таблицы детям предлагают задания на подбор подходящих единиц измерения:

Заполни пропуски: 1... = 10 ... 1... = 100 ... 1... = 1000 ...

Это первоначальное понятие величины является непосредственным обобщением более конкретных понятий: длины, площади, объёма, массы и т. п. Каждый конкретный род величины связан с определённым способом сравнения физических тел или др. объектов. Например, в геометрии отрезки сравниваются при помощи наложения, и это сравнение приводит к понятию длины: два отрезка имеют одну и ту же длину , если при наложении они совпадают; если же один отрезок накладывается на часть другого, не покрывая его целиком, то длина первого меньше длины второго. Общеизвестны более сложные приёмы, необходимые для сравнения плоских фигур по площади или пространственных тел по объёму .

Свойства

В соответствии со сказанным, в пределах системы всех однородных величин (то есть в пределах системы всех длин или всех площадей, всех объёмов) устанавливается отношение порядка : две величины а и b одного и того же рода или совпадают (а = b) , или первая меньше второй (а < b ), или вторая меньше первой (b < a ). Общеизвестно также в случае длин, площадей, объёмов и то, каким образом устанавливается для каждого рода величины смысл операции сложения. В пределах каждой из рассматриваемых систем однородных величин отношение а < b и операция а + b = с обладают следующими свойствами:

  1. Каковы бы ни были а и b , имеет место одно и только одно из трёх соотношений: или а = b , или а < b , или b < a
  2. Если а < b и b < c , то а < с (транзитивность отношений «меньше», «больше»)
  3. Для любых двух величин а и b существует однозначно определённая величина с = а+b
  4. а + b = b+ а (коммутативность сложения)
  5. а + (b + с) = (а + b)+ с (ассоциативность сложения)
  6. а + b > а (монотонность сложения)
  7. Если а > b , то существует одна и только одна величина с , для которой b + с = а (возможность вычитания)
  8. Каковы бы ни были величины а и натуральное число n , существует такая величина b , что nb = a (возможность деления)
  9. Каковы бы ни были величины а и b , существует такое натуральное число n , что а < nb . Это свойство называется аксиомой Евдокса , или аксиомой Архимеда . На нём вместе с более элементарными свойствами 1-8 основана теория измерения величин, развитая древнегреческими математиками.

Если взять какую-либо длину l за единичную, то система s" всех длин, находящихся в рациональном отношении к l , удовлетворяет требованиям 1-9. Существование несоизмеримых (см. Соизмеримые и несоизмеримые величины) отрезков (открытие которых приписывается Пифагору, 6 в. до н. э.) показывает, что система s" ещё не охватывает системы s всех вообще длин.

Чтобы получить вполне законченную теорию величин, к требованиям 1-9 надо присоединить ещё ту или иную дополнительную аксиому непрерывности, например:

10) Если последовательности величин a1 обладают тем свойством, что bn - an < с для любой величины с при достаточно большом номере n , то существует единственная величина х , которая больше всех an и меньше всех bn .

Свойства 1-10 и определяют полностью современное понятие системы положительных скалярных величин. Если в такой системе выбрать какую-либо величину l за единицу измерения, то все остальные величины системы однозначно представляются в виде а = al , где а - положительное действительное число.

Другие подходы


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Величина" в других словарях:

    Сущ., ж., употр. сравн. часто Морфология: (нет) чего? величины, чему? величине, (вижу) что? величину, чем? величиной, о чём? о величине; мн. что? величины, (нет) чего? величин, чему? величинам, (вижу) что? величины, чем? величинами, о чём? о… … Толковый словарь Дмитриева

    ВЕЛИЧИНА, величины, мн. величины, величинам (книжн.), и (разг.) величины, величинам, жен. 1. только ед. Размер, объем, протяжение вещи. Величина стола достаточная. Комната громадной величины. 2. Всё, что можно измерить и исчислить (мат. физ.).… … Толковый словарь Ушакова

    Размер, формат, калибр, доза, рост, объем, протяжение. Ср … Словарь синонимов

    Ы; мн. чины; ж. 1. только ед. Размер (объём, площадь, протяжённость и т.п.) какого л. объекта, предмета, имеющего видимые физические границы. В. здания. В. стадиона. Величиной с булавку. Величиной в ладонь. Отверстие большей величины. В… … Энциклопедический словарь

    величина - ВЕЛИЧИНА1, ы, ж Разг. О человеке, выделяющемся среди других, выдающемся в какой л. области деятельности. Н. Коляда крупная величина в современной драматургии. ВЕЛИЧИНА2, ы, мн величины, ж Размер (объем, протяженность, площадь) предмета, который… … Толковый словарь русских существительных

    Современная энциклопедия

    ВЕЛИЧИНА, ы, мн. ины, ин, жен. 1. Размер, объём, протяжённость предмета. Площадь большой величины. Измерить величину чего н. 2. То, что можно измерить, исчислить. Равные величины. 3. О человеке, выдающемся в какой н. области деятельности. Этот… … Толковый словарь Ожегова

    величина - ВЕЛИЧИНА, размер, размеры … Словарь-тезаурус синонимов русской речи

    Величина - ВЕЛИЧИНА, обобщение конкретных понятий: длины, площади, веса и т.д. Выбор одной из величин данного рода (единицы измерения) позволяет сравнивать (соизмерять) величины. Развитие понятия величина привело к скалярным величинам, характеризующимся… … Иллюстрированный энциклопедический словарь