Устойчивость системы. Понятие об устойчивости сау

ОСНОВЫ ТЕОРИИ УПРАВЛЕНИЯ

Тема 4. УСТОЙЧИВОСТЬ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

Диплом, это двадцать минут позора и кусок хлеба на всю жизнь. Временная функция многовариантна, характеристическое уравнение черт знает какого порядка, но система работает устойчиво. Стоит ли подводить под это дело еще и частотный анализ?

Владимир Кузьмин. Новосибирский геофизик Уральской школы. ХХ в.

Ты никогда не будешь достаточно знать, если не будешь знать больше чем достаточно.

Уильям Блейк.

Введение.

1. Критерии устойчивости. Понятие устойчивости системы. Условие устойчивости САУ. Алгебраические критерии устойчивости. Критерий Рауса. Критерий Гурвица.

2. Частотные критерии устойчивости. Принцип аргумента. Критерий устойчивости Михайлова. Критерий устойчивости Найквиста.

3. Запас устойчивости систем. Понятие структурной устойчивости. Понятие запаса устойчивости. Анализ устойчивости по логарифмическим частотным характеристикам.

4. Точность систем. Статическая точность. Динамическая точность.

5. Качество систем. Показатели качества систем управления. Показатели качества переходного процесса. Последовательное корректирующее устройство. Параллельное корректирующее устройство. Метод Солодовникова. Программы анализа качества процессов управления.

6. Случайные процессы в системах. Модели случайных сигналов. Фильтрация помех. Фильтр Винера. Частотная характеристика фильтра.

Введение

Важнейшей задачей анализа динамических систем управления является решение вопроса об их устойчивости. Техническое понятие устойчивости систем автоматического управления отражает свойство технической системы не только стабильно работать в нормальных режимах, но и "не уходить вразнос" при отклонении всевозможных параметров системы от номинала и влиянии на систему дестабилизирующих воздействий, т. е. способности системе возвращаться к равновесному состоянию, из которого она выводится возмущающими или управляющими воздействиями. Устойчивость системы - техническое требование в ряду более сложных требований, связанных с показателями качества и точности САУ.

4.1 . КРИТЕРИИ УСТОЙЧИВОСТИ .

Понятие устойчивости системы. Система находится в состоянии равновесия, если при отсутствии воздействия на систему возмущающих факторов ошибка регулирования (разность между заданным и фактическим состоянием системы) стремится к нулю. Под устойчивостью понимается способность динамической системы возвращаться в равновесное состояние после окончания действия возмущения, нарушившего это равновесие. Неустойчивая система после воздействия возмущения удаляется от равновесного состояния или начинает совершать вокруг него колебания с нарастающей амплитудой.

Возникновение неустойчивых (расходящихся) колебаний в системе можно проследить на примере следящей системы с обратной связью (рис. 4.1.1). Допустим, что в установившемся состоянии равновесия при опорном сигнале u o на регуляторе Р выходное состояние объекта управления ОУ равно y уст. Это состояние поддерживается сигналом рассогласования е уст, который формируется в регуляторе Р по разности опорного сигнала и сигнала обратной связи у ос-уст, т.е. е уст = u o -у ос-уст. В первый момент включения системы в силу инерционности обратной связи у ос = 0, а, следовательно, e(t) >> е уст, что вызывает нарастание выходной величины y(t), которая будет стремиться к y(t) >> у уст по крайней мере, до тех пор, пока сигнал обратной связи не начнет уменьшать значение e(t). Однако значительно возросшая величина y(t) через ОС передается на вход регулятора системы и может настолько существенно уменьшить значение e(t), что это может привести к последующему снижению величины выходного сигнала до значений y(t) << у уст, т.е. к возникновению колебательного процесса относительно равновесного состояния. При неблагоприятном соотношении параметров системы колебательный процесс может быть незатухающим и даже расходящимся. Пример такого процесса в концертной акустике хорошо известен – свист из динамиков, если коэффициент обратной связи от динамиков на микрофоны на определенных частотах становится положительным.

Устойчивость линейной системы определяется не характером возмущения, а структурой самой системы. Говорят, что система устойчива "в малом", если определен факт наличия устойчивости, но не определены ее границы. Система устойчива "в большом", когда определены границы устойчивости и то, что реальные отклонения не выходят за эти границы. Соответственно, и задача исследования систем на устойчивость может быть поставлена двояко:

1) устойчива ли система при заданном значении ее параметров;

2) в каких диапазонах можно изменять параметры системы, не нарушая ее устойчивости.

Вторая задача исследования имеет место при наладке и эксплуатации систем автоматического управления.

В соответствии с классическим методом решение дифференциального уравнения для системы ищется в виде:

y(t) = у св (t) + у вын (t). (4.1.1)

Здесь у св (t) – свободная составляющая, общее решение однородного дифференциального уравнения с нулевой правой частью:

a 0 y (n) + a 1 y (n-1) + ... + a n-1 y’ + a n y = 0,

т.е. когда все внешние воздействия сняты, и состояние системы определяются лишь собственной структурой.

Функция у вын (t) представляет собой частное решение неоднородного дифференциального уравнения, под которым понимается уравнение с ненулевой правой частью. Физически это означает, что к системе приложено внешнее воздействие u(t). Поэтому вторая составляющая общего решения называется вынужденной. Она определяет вынужденный установившийся режим работы системы при наличии на входе определенного воздействия u(t) или f(t) после окончания переходного процесса.

Можно провести аналогию между САУ и пружиной, колебания которой описываются аналогичным дифференциальным уравнением (рис. 4.1.2). Оттянем пружину, а затем отпустим, предоставив ее самой себе. Пружина будет колебаться в соответствии со свободной составляющей решения уравнения, характер колебаний будет определяться только структурой самой пружины. Если подвесить к пружине груз, то на свободные колебания наложится внешняя сила Р. После затухания колебаний, описываемых только свободной составляющей общего решения, система перейдет в новый установившийся режим, характеризуемый вынужденной составляющей у вын = y(t®∞). Если внешнее воздействие само будет изменяться по синусоидальному закону P = P o sin(wt+j), то после затухания переходного процесса система будет совершать вынужденные колебания с той же частотой, что и вынуждающая сила, то есть у вын = y max sin(wt+j).

Только устойчивая система является работоспособной. Основы строгой теории устойчивости динамических систем были разработаны акад. А. М. Ляпуновым в работе «Общая задача об устойчивости движения» (1892 г.). Понятия об устойчивости, вытекающие из этой работы, заключаются в следующем.

Если система описывается линейным дифференциальным уравнением, то ее устойчивость не зависит от величины возмущения. Линейная система, устойчивая при малых возмущениях, будет устойчива и при больших. Нелинейные системы могут быть устойчивы при малых возмущениях и неустойчивы при больших.

Наглядное представление о системах, устойчивых при малых и неустойчивых при больших возмущениях, дает поведение шара во впадине на рисунке слева. При малых воздействиях на шар и его малых отклонениях не выше края впадины шар возвращается в исходное положение и система шар - поверхность устойчива. При больших воздействиях с отклонением за край впадины шар не возвращается в исходное положение - система неустойчива. Поэтому устойчивость систем исследуется отдельно для случая малых и больших возмущений.

Проблема устойчивости обычно возникает в замкнутых системах из-за влияния обратной связи. Поэтому в дальнейшем устойчивость исследуется на примерах замкнутых систем, хотя методы исследования устойчивости универсальны.

Условие устойчивости САУ. Применительно к сигналам в САУ частное решение для вынужденной составляющей обычно имеет простой вид, не влияющий на устойчивость. Вопрос устойчивости сводится к выяснению устойчивости свободного движения системы и требует анализа характера решения уравнения свободного движения, составленного относительно отклонения выходной величины y(t) от установившегося состояния.

Как известно, передаточная функция любой линейной динамической системы может быть приведена к виду:

W(p) = K(p)/H(p) =

= / , (4.1.2)

где a и b - постоянные коэффициенты, которые представляют собой вещественные числа и выражаются через конкретные физические параметры элементов системы. Полином К(р) может не содержать членов с оператором р и представлять собой произведение коэффициентов передачи звеньев, образующих систему.

Важнейшим свойством выражения (4.1.2) является условие n≥m, т. е. порядок полинома Н(р) знаменателя передаточной функции не ниже порядка полинома К(р) ее числителя. Это условие вытекает из физических свойств звеньев реальных динамических систем.

Из выражения (4.1.2) передаточной функции системы можно получить дифференциальное уравнение системы в целом, как в разомкнутом, так и в замкнутом состоянии.

Уравнения разомкнутых систем. Если выражение (4.1.2) является передаточной функцией разомкнутой системы, то выражение

u(р) К(р) = y(p) Н(р), (4.1.3)

будет представлять собой операторное уравнение разомкнутой системы (уравнение в изображениях переменных). Положив в (4.1.3) u(p)=0, получим операторное уравнение свободного движения в разомкнутой линейной динамической системе:

y(p) H(p) = 0. (4.1.4)

Переходя в (4.1.4) к оригиналам, т. е. от операторного уравнения к дифференциальному, и обозначив y(t) = х, получаем дифференциальное уравнение свободного движения в разомкнутой линейной динамической системе

a 0 d n x/dt n + a 1 d n-1 x/dt n-1 +…+ a n-1 dx/dt +a n = 0 (4.1.5)

Характеристическим уравнением, соответствующим дифференциальному уравнению (4.1.5), будет

Н(р) = 0, a 0 p n +a 1 p n-1 +…+ a n-1 p+a n = 0. (4.1.6)

Отсюда следует: приравненный нулю знаменатель передаточной функции разомкнутой линейной динамической системы является характеристическим уравнением, соответствующим дифференциальному уравнению разомкнутой системы. В связи с этим многочлен Н(р)=0 называется характеристическим оператором системы.

Уравнение замкнутых систем. Пусть (4.1.2) является передаточной функцией разомкнутой системы. Для замкнутой системы в силу отрицательной главной обратной связи имеем u(t) = -y(t), и (4.1.3) принимает вид -К(р) y(р) = Н(р) y(р). Операторное уравнение свободного движения в замкнутой системе:

[К(р)+Н(р)]y(р) = 0, (4.1.7)

где К(р), Н(р) - соответственно числитель и знаменатель передаточной функции разомкнутой системы; y(р) - изображение координаты системы в точке ее замыкания.

На основании (4.1.7) можно записать характеристическое уравнение, соответствующее дифференциальному уравнению свободного движения в замкнутой системе

К(р) + Н(р) = 0. (4.1.8)

C учетом того, что W oc (p) = 1, передаточная функция замкнутой системы:

W зс (p) = W(p)/, (4.1.9)

где W(p)=K(p)/H(p) - передаточная функция разомкнутой системы. Или:

W зс (p) = K(p)/ = K(p)/H зс (p). (4.1.9")

На этом основании характеристическое уравнение замкнутой системы можно записать в виде

H зс (р) = K(p) + H(p) = 0. (4.1.10)

Таким образом, приравненная нулю сумма полинома числителя и полинома знаменателя передаточной функции разомкнутой системы или приравненный нулю полином знаменателя передаточной функции замкнутой системы являются характеристическим уравнением, соответствующим дифференциальному уравнению свободного движения в замкнутой системе.

Корни характеристических уравнений систем могут быть либо вещественными, либо попарно комплексно сопряженными. Решение однородного уравнения выражается через корни характеристического уравнения и коэффициенты перед экспонентами, которые могут быть вычислены через вычеты:

у св (t) =С n exp(p n t). (4.1.11)

Условие устойчивости систем по Ляпунову формулируется так: в устойчивой системе свободная составляющая решения уравнения динамики, записанного в отклонениях, должна стремиться к нулю, то есть затухать .

Из формулы (4.1.11) нетрудно вывести условие устойчивости линейных динамических систем: линейная система будет устойчива, если все вещественные корни и все вещественные части комплексных корней характеристического уравнения, соответствующего исходному дифференциальному уравнению свободного движения системы, будут отрицательными, что дает затухающие по экспоненте решения. Если имеются чисто мнимые корни, то в переходном процессе будут гармонические незатухающие компоненты.

Каждому отрицательному вещественному корню a i соответствует экспоненциально затухающая во времени составляющая у св (t) i , каждому положительному - экспоненциально расходящаяся, каждому нулевому корню соответствует у св (t) i = const (рис. 4.1.3).

Исходя из расположения на комплексной плоскости, корни с отрицательными вещественными частями называются левыми, с положительными - правыми (рис. 4.1.5). Поэтому условие устойчивости линейной САУ можно сформулировать следующим образом: для того, чтобы система была устойчива, необходимо и достаточно, чтобы все корни ее характеристического уравнения были левыми. Если хотя бы один корень правый, то система неустойчива. Если один из корней равен нулю, а остальные левые, то система находится на границе апериодической устойчивости. Если равны нулю вещественные части одной или нескольких пар комплексно сопряженных корней, то система находится на границе колебательной устойчивости.

Таким образом, исследование устойчивости системы сводится к определению знаков вещественных частей корней характеристического уравнения системы. Но решение уравнений четвертой и более высоких степеней может встречать затруднения. Поэтому применяются косвенные методы анализа устойчивости без определения корней характеристического уравнения, по определенным критериям устойчивости.

Проверку факта отрицательности вещественных частей корней можно выполнять тремя способами:

Вычислив корни непосредственно, с использованием готовых программ;

Связав расположение корней с коэффициентами характеристического уравнения для последующего аналитического исследования;

Судить об устойчивости по частотным характеристикам системы.

Первые два способа называют алгебраическими, последний - частотным. В инженерной практике необходимо иметь эффективные и удобные правила проверки устойчивости. Однако сам по себе критерий устойчивости не обязан быть необходимым и достаточным условием устойчивости системы.

Алгебраические критерии устойчивости.

Необходимое условие устойчивости. Если все корни характеристического уравнения левые (вещественные части всех корней отрицательны), то все коэффициенты уравнения имеют один знак, т.е. все значения a n либо больше нуля, либо меньше нуля одновременно. Равенство коэффициентов нулю не допускается (граница устойчивости). Доказательство очень простое и заключается в разложении полинома на простейшие множители. Они могут быть вещественные или комплексно - сопряжённые. Объединим последние в пары и перемножим, при этом в скобках нет ни одного отрицательного числа, а, следовательно, знак всех членов характеристического уравнения будет определяться знаком коэффициента a 0 . В дальнейшем будем рассматривать только уравнения, где a 0 > 0. В противном случае уравнение умножается на -1.

Рассмотренное условие при порядке системы больше 2 является необходимым, но не достаточным условием, и применяется для отсеивания заведомо неустойчивых систем. Необходимые и достаточные условия дают алгебраические критерии Рауса и Гурвица.

Критерий Рауса. Используется в виде алгоритма, по которому заполняется специальная таблица с использованием коэффициентов характеристического уравнения:

1) в первой строке записываются коэффициенты уравнения с четными индексами в порядке их возрастания;

2) во второй строке – аналогично коэффициенты с нечетными индексами;

3) остальные элементы таблицы определяется по формуле: c k,i = c k+1,i-2 - r i c k+1, i-1 , где r i = c 1,i-2 /c 1,i-1 , i ≥3 - номер строки, k - номер столбца.

4) Число строк таблицы на единицу больше порядка характеристического уравнения.

r 3 = c 11 /c 12

c 13 = c 21 -r 3 c 22

c 23 = c 31 -r 3 c 32

c 33 = c 41 -r 3 c 42

r 4 = c 12 /c 13

c 14 = c 22 -r 4 c 23

c 24 = c 32 -r 4 c 33

c 34 = c 42 -r 4 c 43

Чтобы система была устойчива, необходимо и достаточно, чтобы коэффициенты первого столбца таблицы Рауса c 11 , c 12 , c 13 ,... были положительными. Если это не выполняется, то система неустойчива, а количество правых корней равно числу перемен знака в первом столбце.

Достоинство - критерий прост в использовании независимо от порядка характеристического уравнения. Он удобен для использования на ЭВМ. Его недостаток - малая наглядность, трудно судить о степени устойчивости системы, насколько далеко отстоит она от границы устойчивости.

Критерий Гурвица. Гурвиц предложил другой критерий устойчивости. Из коэффициентов характеристического уравнения строится определитель Гурвица D по алгоритму:

1) по главной диагонали слева направо выставляются все коэффициенты характеристического уравнения от a 1 до a n ;

2) от каждого элемента диагонали вверх и вниз достраиваются столбцы определителя так, чтобы индексы убывали сверху вниз;

3) на место коэффициентов с индексами меньше нуля или больше n ставятся нули.

Чтобы система была устойчива, необходимо и достаточно, чтобы все коэффициенты характеристического уравнения и все n главных диагональных миноров матрицы Гурвица были положительны. Число определителей Гурвица равно порядку характеристического уравнения п.

Критерий Гурвица применяют при n ≤ 5. При больших порядках возрастает число определителей, и процесс становится трудоемким. Недостаток критерия Гурвица - малая наглядность. Достоинство - удобен для реализации на ЭВМ.

4.2 . ЧАСТОТНЫЕ КРИТЕРИИ УСТОЙЧИВОСТИ .

Частотные методы исследования устойчивости основаны на связи расположения корней характеристического полинома (обозначим его функцией D(р) для любого типа систем) с годографом этого полинома на комплексной плоскости, т.е. с графиком комплексной функции D(jw) при изменении w от 0 до ∞. Это графоаналитические методы, позволяющие по виду частотных характеристик систем судить об их устойчивости. Их достоинство - в простой геометрической интерпретации, наглядности и в отсутствии ограничений на порядок дифференциального уравнения.

Принцип аргумента. Запишем характеристический полином в виде

D(p) = a 0 (p-p 1) (p-p 2)… (p-p n) = 0,

Его корни: p i = a i + jw i = |p i | exp(j arg(p i)), где arg(p i) = arctg(w i /a i) + kp, |p i | - значения модулей корней.

Каждый корень можно изобразить вектором на комплексной плоскости (рис. 4.2.1а), тогда разность p - p i изобразится разностью векторов (рис. 4.2.1б), где p - любое число.

Если изменять значение p произвольным образом, то конец вектора p - p i будет перемещаться по комплексной плоскости, а его начало будет оставаться неподвижным, так как p i - это конкретное неизменное значение. В частном случае, если на вход системы подавать гармонические колебания с различной частотой w, то p = jw, а характеристический полином принимает вид:

D(jw) = a 0 (jw - p 1) (jw - p 2) ... (jw - p n).

При этом концы векторов jw - p i будут находиться на мнимой оси (рис. 4.2.1в). Если менять w от -∞ до +∞, то каждый вектор jw - p i будет поворачиваться относительно своего начала p i на угол +p для левых и -p для правых корней (рис. 4.2.1г).

Характеристический полином можно представить в виде

D(jw) = |D(jw)| exp(j arg(D(jw))),

где |D(jw)| = a 0 |jw-p 1 | |jw-p 2 | ... |jw-p n |, arg(D(jw)) = arg(jw-p 1) + arg(jw-p 2) + ... + arg(jw-p n).

Пусть из n корней m - правые, а n-m - левые, тогда угол поворота вектора D(jw) при изменении w от -∞ до ∞ равен

= (n-m)p - mp,

или при изменении w от 0 до +∞:

= (n - 2m) (p/2). (4.2.1)

Отсюда вытекает правило: изменение аргумента вектора D при изменении частоты от -∞ до +∞ равно разности между числом левых и правых корней уравнения D(p) = 0, умноженному на p, а при изменении частоты от 0 до +∞ эта разность умножается на p/2.

Это и есть принцип аргумента. Он положен в основе всех частотных критериев устойчивости. Мы рассмотрим два наиболее распространенных критерия: критерий Михайлова и критерий Найквиста.

Критерий устойчивости Михайлова . Так как для устойчивой системы число правых корней m = 0, то угол поворота вектора D(jw) составит

= np/2. (4.2.2)

Система будет устойчива, если вектор D(jw) при изменении частоты от 0 до +∞ повернется на угол np/2. При этом конец вектора опишет кривую, называемую годографом Михайлова. Для построения годографа выражение (4.1.6) записывается с заменой p на jw в форме:

a 0 p n +a 1 p n-1 +…+ a n-1 p+a n = D(jw) = P(w) + jQ(w),

где P(w) - вещественная часть, как сумма всех членов характеристического уравнения, содержащих j в четных степенях, Q - мнимая часть выражения. Годограф начинается на положительной полуоси при D(0) = a n , и, при изменении частоты от 0 до ∞, последовательно проходит против часовой стрелки n квадрантов комплексной плоскости, с уходом в бесконечность в n-ом квадранте (рис. 4.2.2а).

Если это правило нарушается (например, число проходимых кривой квадрантов не равно n, или нарушается последовательность прохождения квадрантов (рис. 4.2.2б)), то такая система неустойчива - это и есть необходимое и достаточное условие устойчивости по критерию Михайлова.

Критерий удобен своей наглядностью и используется, если известно уравнение замкнутой системы. Если кривая проходит вблизи начала координат, то система находится вблизи границы устойчивости и наоборот.

Критерий устойчивости Найквиста. Этот критерий основан на связи свойства устойчивости замкнутой системы с формой АФЧХ разомкнутой устойчивой системы. Разомкнутой системой являются все последовательно соединенные блоки от входа системы до точки замыкания обратной связи (рис. 4.2.3). Исследование разомкнутой системы проще, чем замкнутой, и его можно производить экспериментально.

Передаточная функция W pc разомкнутой системы:

W pс (jw) = K p c (jw)/H pc (jw),

с углом поворота фазы в соответствии с выражением (4.2.2):

D arg H рс (jw) = np/2, 0 ≤ w ≤ ∞. (4.2.3)

АФЧХ замкнутой системы описывается выражением:

W зс (jw)= W pc (jw) /. (4.2.4)

Обозначим знаменатель этого выражения через W 1 (jw):

W 1 (jw)=1+W pc (jw)=1+K p c (jw)/H pc (jw)=H(jw)/H pc (jw), (4.2.5)

где H(jw) = K pc (jw) + H pc (jw), характеристический полином замкнутой системы при р=jw.

В соответствии со свойствами передаточных функций порядок полинома Н(р) не превышает порядка полинома H pc (p), т.к. H(p)=K pc (p)+H pc (p), а порядок полинома K pc (p) меньше порядка полинома H pc (p). Поэтому критерий Михайлова для замкнутой системы соответствует выражению:

D arg H(jw) = (n - 2m) (p/2), 0 ≤ w ≤ ∞. (4.2.6)

где m - число правых корней системы, имеющей в замкнутом состоянии характеристический полином Н(р)=0.

Из (4.2.5) следует:

D arg W 1 (jw) = D arg H(jw) - D arg H pc (jw).

C учетом (4.2.3):

D arg W 1 (jw) = (n - 2m) (p/2) - np/2 = -mp. (4.2.7)

В устойчивой замкнутой системе правых корней в характеристическом уравнении нет, т. е. m=0, а, следовательно, условием устойчивости замкнутой системы будет:

D arg W 1 (jw) = 0. (4.2.8)

Условие (4.2.8) выполняется только тогда, когда кривая W 1 (jw) при изменении частоты от 0 до ∞ не охватывает начала координат комплексной плоскости. Действительно, только в этом случае результирующий поворот вектора W 1 (jw) при изменении w от 0 до ∞ будет равен нулю, так как возрастание угла j(w), обусловленное движением вектора W 1 (jw) в положительном направлении (против часовой стрелки), будет компенсироваться таким же убыванием j(w), обусловленным движением вектора W 1 (jw) в отрицательном направлении (по часовой стрелке).

Как видно из (4.2.5), переход на комплексной плоскости от годографа вектора W 1 (jw) к годографу вектора АФЧХ разомкнутой системы W pс (jw) осуществляется сдвигом кривой W 1 (jw) влево на -1, так как W pc (jw) = W 1 (jw) -1. С учетом этой операции, получаем следующую формулировку амплитудно-фазового критерия устойчивости Найквиста: линейная динамическая система, устойчивая в разомкнутом состоянии, устойчива и в замкнутом состоянии, если АФЧХ разомкнутой системы W pс (jw) при изменении частоты от 0 до ∞ не охватывает на комплексной плоскости точку с координатами (-1; j0) (рис. 4.2.4, годограф 2).

Более общая формулировка критерия Найквиста относится к системам, имеющим так называемую АФЧХ второго рода (рис. 4.2.4, годограф 1), когда W pс (jw) пересекает (неограниченное количество раз) вещественную ось левее точки Re W pc (w) = -1. Будем считать положительным переход годографа через вещественную ось, если он совершается сверху вниз, и отрицательным, если он совершается снизу вверх. Для таких годографов критерий Найквиста формулируется в следующем виде: линейная динамическая система, устойчивая в разомкнутом состоянии, устойчива и в замкнутом состоянии, если при изменении частоты от 0 до +∞ разность между числом положительных переходов годографа АФЧХ разомкнутой системы через участок вещественной оси (-1; -∞) и числом отрицательных переходов равна нулю. Из этого условия видно, что система, устойчивая в разомкнутом состоянии и имеющая АФЧХ в форме кривой 1 на рис. 4.2.4, устойчива и в замкнутом состоянии.

На рис. 4.2.5а приведены АФЧХ разомкнутых САУ, устойчивых в замкнутом состоянии, на рис. 4.2.5б - замкнутая САУ неустойчива.

На рис. 4.2.5в и 4.2.5г показаны АФЧХ разомкнутых астатических САУ, соответственно устойчивых и неустойчивых в замкнутом состоянии. Их особенность в том, что АФЧХ при w ® 0 уходит в бесконечность. В этом случае при использовании критерия Найквиста ее мысленно замыкают на вещественную ось по дуге окружности бесконечно большого радиуса.

Критерий Найквиста нагляден. Он позволяет не только выявить, устойчива ли система, но и, в случае, если она неустойчива, наметить меры по достижению устойчивости.

4.3 . ЗАПАС УСТОЙЧИВОСТИ СИСТЕМ .

Понятие структурной устойчивости. Астатическая система может быть неустойчивой по двум причинам: неподходящий состав динамических звеньев и неподходящие значения параметров звеньев.

Системы, неустойчивые по первой причине, называются структурно неустойчивыми. Это означает, что изменением параметров системы нельзя добиться ее устойчивости, нужно менять ее структуру.

Например, если система состоит из любого количества инерционных и колебательных звеньев, она имеет вид, показанный на рис. 4.3.1. При увеличении коэффициента усиления системы K каждая точка ее АФЧХ удаляется от начала координат, пока при некотором значении К крит АФЧХ не пересечет точку (-1, j0). При дальнейшем увеличении K, система будет неустойчива. И, наоборот, при уменьшении K такую систему, в принципе, можно сделать устойчивой, поэтому ее называют структурно устойчивой.

Если система астатическая, то n - порядок астатизма, равен количеству последовательно включенных интеграторов. При ее размыкании характеристическое уравнение системы имеет нулевые корни, поэтому при w®∞ АФЧХ стремится к ∞ (рис. 4.2.5в и 4.2.5г). Например, пусть W р (p) = K/(p(Tp+1)), тогда АФЧХ разомкнутой системы:

W(jw) = = P(w) + jQ(w).

Так как порядок знаменателя больше порядка числителя, то при w®0 имеем P(w)®∞, Q(w)® -j∞. Подобная АФЧХ представлена на рис. 4.3.2. Так как АФЧХ терпит разрыв, трудно сказать, охватывает ли она точку (-1,j0). В этом случае пользуются следующим приемом: если АФЧХ терпит разрыв, уходя в бесконечность при w®0, ее дополняют мысленно полуокружностью бесконечного радиуса, начинающейся на положительной вещественной полуоси и продолжающейся до АФЧХ в отрицательном направлении. После этого можно применить критерий Найквиста. Как видно из рисунка, система, имеющая одно интегрирующее звено, является структурно устойчивой.

Если система имеет два интегрирующих звена (порядок астатизма 2), ее АФЧХ уходит в бесконечность во втором квадранте (рис. 4.3.3). Например, пусть W р (p) = K/(p 2 (Tp+1)), тогда АФЧХ системы:

W(jw) = = P(w) + jQ(w).

При w®0 имеем P(w)® -∞, Q(w)® j∞. Такая система не будет устойчива ни при каких значениях параметров, то есть она структурно неустойчива.

Структурно неустойчивую систему можно сделать устойчивой, включив в нее корректирующие звенья (например, дифференцирующие) или изменив структуру системы, например, с помощью местных обратных связей.

Понятие запаса устойчивости. В условиях эксплуатации параметры системы по тем или иным причинам могут меняться в определенных пределах (старение, температурные колебания и т.п.). Эти колебания параметров могут привести к потере устойчивости системы, если она работает вблизи границы устойчивости. Поэтому стремятся спроектировать систему так, чтобы она работала вдали от границы устойчивости. Степень этого удаления называют запасом устойчивости.

Запас устойчивости по модулю характеризует удаление годографа АФЧХ разомкнутой системы от критической точки в направлении вещественной оси и определяется расстоянием h от критической точки до точки пересечения годографом оси абсцисс (рис. 4.3.4).

Запас устойчивости по фазе характеризует удаление годографа от критической точки по дуге окружности единичного радиуса и определяется углом j между отрицательным направлением вещественной полуоси и лучом, проведенным из начала координат в точку пересечения годографа с единичной окружностью.

Как уже отмечалось, с ростом коэффициента передачи разомкнутой системы растет модуль каждой точки АФЧХ и при некотором значении K = K кр АФЧХ пройдет через критическую точку (рис. 4.3.5а) и попадет на границу устойчивости, а при K > K кр замкнутая система станет неустойчива. Однако в случае АФЧХ типа 1 (рис. 4.2.4) (получаются из-за наличия внутренних обратных связей) не только увеличение, но и уменьшение K может привести к потере устойчивости замкнутых систем (рис. 4.3.5в). В этом случае запас устойчивости определяется двумя отрезками h 1 и h 2 , заключенными между критической точкой и АФЧХ.

Анализ устойчивости по ЛЧХ. Оценку устойчивости по критерию Найквиста удобнее производить по ЛЧХ разомкнутой системы. Очевидно, что каждой точке АФЧХ будут соответствовать определенные точки ЛАЧХ и ЛФЧХ.

Пусть известны частотные характеристики двух разомкнутых систем (1 и 2), отличающихся друг от друга только коэффициентом передачи K 1 < K 2 . Пусть первая система устойчива в замкнутом состоянии, вторая нет (рис. 4.3.7).

Если W 1 (p) - передаточная функция первой системы, то передаточная функция второй системы W 2 (p) = KW 1 (p), где K = K 2 /K 1 . Вторую систему можно представить последовательной цепочкой из двух звеньев с передаточными функциями K (Безинерционное звено) и W 1 (p), поэтому результирующие ЛЧХ строятся как сумма ЛЧХ каждого из звеньев. Поэтому ЛАЧХ второй системы: L 2 (w) = 20 lg K + L 1 (w), а ЛФЧХ: j 2 (w) = j 1 (w).

Пересечениям АФЧХ вещественной оси соответствует значение фазы j = -p. Это соответствует точке пересечения ЛФЧХ j = -p линии координатной сетки. При этом, как видно на АФЧХ, амплитуды A 1 (w) < 1, A 2 (w) > 1, что соответствует на ЛАЧХ значениям L 1 (w) = 20 lg A 1 (w) < 0 и L 2 (w) > 0.

Сравнивая АФЧХ и ЛФЧХ можно заключить, что система в замкнутом состоянии будет устойчива, если значению ЛФЧХ j = -p будут соответствовать отрицательные значения ЛАЧХ и наоборот. Запасам устойчивости по модулю h 1 и h 2 , определенным по АФЧХ соответствуют расстояния от оси абсцисс до ЛАЧХ в точках, где j = -p, но в логарифмическом масштабе.

Особыми точками являются точки пересечения АФЧХ с единичной окружностью. Частоты w c1 и w c2 , при которых это происходит, называют частотами среза.

В точках пересечения A(w) = 1 = > L(w) = 0 - ЛАЧХ пересекает горизонтальную ось. Если при частоте среза фаза АФЧХ j c1 > -p (рис. 4.3.7а кривая 1), то замкнутая система устойчива. На рис. 4.3.7б это выглядит так, что пересечению ЛАЧХ горизонтальной оси соответствует точка ЛФЧХ, расположенная выше линии j = -p. И, наоборот, для неустойчивой замкнутой системы (рис. 4.3.7а кривая 2) j c2 < -p, поэтому при w = w c2 ЛФЧХ проходит ниже линии j = -p. Угол j 1 = j c1 -(-p) является запасом устойчивости по фазе. Этот угол соответствует расстоянию от линии j = -p до ЛФЧХ.

Исходя из сказанного, критерий устойчивости Найквиста по логарифмическим ЧХ, в случаях, когда АФЧХ только один раз пересекает отрезок вещественной оси [-∞; -1], можно сформулировать так: для того, чтобы замкнутая система была устойчива необходимо и достаточно, чтобы частота, при которой ЛФЧХ пересекает линию j = -p, была больше частоты среза.

Если АФЧХ разомкнутой системы имеет сложный вид, то ЛФЧХ может несколько раз пересекать линию j = -p. В этом случае применение критерия Найквиста несколько усложняется. Однако во многих случаях данной формулировки критерия Найквиста оказывается достаточно.

4.4 . ТОЧНОСТЬ СИСТЕМ .

Понятие точности является центральным в теории автоматического управления, так как позволяет количественно выразить показатели качества систем. Различают точность, рассматриваемую в переходном процессе - динамическая точность, и точность в установившемся режиме - статическая точность.

Рассмотрим логарифмическую частотную характеристику системы в установившемся режиме при гармоническом входном воздействии (рис. 4.4.2). Жирной линией показан идеальный случай абсолютно точной системы. Реальная частотная характеристика отличается от идеальной и в некоторой полосе (w н, w в) не выходит за пределы допуска e. Такое же рассуждение справедливо и для ФЧХ. Задав допустимые границы точности по амплитуде и по фазе, получим область частот, где гарантируется данная точность - это полоса пропускания. Задавая требуемую рабочую частоту по приведенным выше формулам можно вычислить ошибку на этой частоте при гармоническом воздействии.

Общий способ повышения точности (в статическом и динамическом режимах) – обеспечение следующих оценок:

W зс (p) = W(p)/(1+W(p) » 1 - Мера точности воспроизведения задающего воздействия в замкнутой системе.

W с (p) = 1/(1+W(p) » 0 - Мера малости ошибки слежения.

Один из основных способов повышения точности - увеличение коэффициента k разомкнутой системы. При увеличении k оба приближённых равенства оценок выполняются всё более точно, что говорит об общем повышении точности, причём это повышение точности происходит при любой W(p).

Однако это не значит, что можно таким образом достичь любой желаемой точности. Здесь начинает сказываться одно из фундаментальных противоречий в рамках теории управления - противоречие между точностью системы и запасом устойчивости. При чрезмерном увеличении k возможна потеря устойчивости замкнутой системы. Годограф Найквиста, не охватывающий точку (-1; j0), но проходящий, например, из 3 квадранта во второй (см., например, кривую 1 на рис. 4.2.4), при увеличении k "раздувается" относительно начала координат и начинает охватывать эту точку, то есть нарушается условие критерия устойчивости Найквиста. Повышение точности всегда приводит к уменьшению запаса устойчивости по амплитуде.

Конкретные значения точности анализируемой системы проводятся разложением W e (p) в ряд Тейлора в окрестностях p=0 и анализом коэффициентов этого ряда.

Динамическая точность относится к более сложным задачам анализа систем, т.к. требует изучения всего переходного процесса. При достаточно большом значении модуля АФЧХ в разомкнутой системе передаточная функция прямой ветви имеет пренебрежимо малое значение, передаточная функция замкнутой системы будет в основном определяться цепью ОС. Если коэффициент передачи разомкнутой системы много больше единицы W(p)W oc (p) >>1 и |W(p)| >>1, то для замкнутой системы можно принять:

W зс (p) = W(p)/(1+W(p)W oc (p)) » 1/W oc (p),

что существенно упрощает анализ системы.

Для повышения динамической точности системы обычно используется принцип комбинированного управления по задающему воздействию (принцип инвариантности).

Добавим в стандартную структуру системы дополнительную передаточную функцию Y(p) » 1/(W(p)W oc (p)) так, чтобы сигнал ошибки вообще не зависел от задающего воздействия (рис. 4.4.3). Это можно выполнить введением в систему дополнительной ветви прохождения сигнала, и подобрать коэффициент передачи в этой ветви так, чтобы компенсировать нежелательный сигнал. Аналогичная операция может быть выполнена и на возмущающее воздействие f(p).

4.5 . КАЧЕСТВО СИСТЕМ .

Показатели качества систем управления. Требование устойчивости для системы относится к числу необходимых, но не может считаться достаточным. Система может быть устойчивой, но время затухания настолько велико или ошибка в установившемся режиме настолько большая, что практически данная система не может быть использована. Поэтому система должна быть не только устойчивой, но иметь определенный переходный процесс, а ошибки в установившихся режимах не должны превышать допустимых.

Характер переходного процесса линейной системы в отличие от устойчивости зависит не только от параметров системы, но и от вида возмущающего (задающего) воздействия и начальных условий. Чтобы сравнивать системы по характеру переходного процесса, из возможных воздействий выбирают типовые или наиболее неблагоприятные и определяют кривую переходного процесса при нулевых начальных условиях. В качестве типовых воздействий обычно принимают единичное ступенчатое воздействие, единичный импульс, линейно нарастающее и синусоидальное воздействие. Для большинства систем наиболее неблагоприятным является воздействие вида единичной ступенчатой функции a(t) =1(t). Реакция системы на единичное ступенчатое воздействие при нулевых начальных условиях называется переходной функцией системы. Для следящих систем обычно рассматривают переходную функцию H(t), вызванную изменением задающего воздействия 1(t), а для систем стабилизации - переходную функцию H f (t), вызванную изменением возмущающего воздействия f(t).

Точность системы в установившихся режимах оценивается с помощью статических и динамических ошибок. Эти ошибки по аналогии можно назвать показателем качества системы в установившихся режимах. Совокупность показателей качества переходного процесса и установившихся режимов называется показателями качества системы в целом.

Считается, что система обладает требуемым качеством, если ее показатели качества не превышают заданных значений, определенных назначением системы.

Рассмотрим поведение системы управления (рис. 4.5.1), предназначенной для решения задачи слежения - соблюдения заданного закона изменения выходной переменной y(t). Последнее выражается в виде целевого условия

y(t) → у*(t), e(t) → 0, (4.5.1)

e(t) = y*(t) - у(t),

где e(t) - ошибка (рассогласование) системы. При ненулевых начальных рассогласованиях система должна с течением времени обеспечить с некоторой степенью точности совпадение входного (задающего) y*(t) и выходного y(t) сигналов (устранение ошибки e(t)).

Мгновенное устранение возникающих рассогласований e(t) в реальных системах невозможно в силу инерционности систем регулирования и ограничений, накладываемых на управляющие воздействия. Практически неосуществимо и абсолютно точное выполнение асимптотических условий (4.5.1) в силу действующих возмущений и дестабилизирующих факторов. Указанные соображения приводят к необходимости введения специальных показателей качества, характеризующих эффективность решения той или иной задачи управления.

Выходная переменная возмущенной системы определяется суммой свободных и вынужденных составляющих движения:

y(t) = y св (t) + y в (t),

где в силу устойчивости системы выполняется условия

y св (t) → 0, y в (t) → y у (t), (4.5.2)

Условия (4.5.2) соответствуют переходному режиму системы, по окончанию которого система "переходит" в установившийся режим y y (t).

В зависимости от свойств системы переходный режим может оказаться достаточно быстрым или медленным, монотонным или колебательным. Для оценки поведения системы в переходном режиме вводятся динамические показатели качества, т. е. численные оценки быстродействия и колебательности системы (время переходного процесса, затухание, перерегулирование, и пр.).

Наиболее просто оценить качество переходного режима автономной системы, для которой вынужденная составляющая отсутствует. В установившемся режиме выходная переменная системы в идеальном случае должна быть идентична задающему воздействию, что соответствует нулевому значению установившейся ошибки.

Существует ряд универсальных приемов, позволяющих одновременно оценить динамические и/или точностные показатели системы, к которым относятся методика оценки качества по переходной функции, оценка по интегральным критериям и т. д.

Показатели качества переходного процесса. Переходная функция системы оценивается с помощью совокупности характеристик, называемых показателями качества переходного процесса. Принято использовать следующие стандартные показатели качества переходного процесса, отражённые на типичном графике 1 переходного процесса в следящей системе со ступенчатым задающим воздействием (рис. 4.5.2):

· t пп - время переходного процесса, по истечении которого отклонение управляемой величины y(t) относительно заданного значения y зад по абсолютному значению становится (и остается в дальнейшем) меньше определенной заданной величины e уст. Обычно принимается e уст = d y зад, d = 0.05. Время регулирования характеризует быстроту затухания переходного процесса.

· t у - время установления, промежуток времени, за который управляемая величина в первый раз достигает своего установившегося значения, характеризует скорость процесса управления.

· e уст - установившаяся ошибка (статическая точность, e уст = e(∞) =1- у уст.). Если e уст =0, то система астатическая.

· σ% - относительное перерегулирование (σ = (y max -y зад)/y зад). Обычно требуют, чтобы значение σ было менее 18%. Перерегулирование характеризует колебательные свойства процессов. При нулевом значении s процесс носит монотонный характер (график 2 на рис. 4.5.2), а при достаточно больших s приближается к незатухающему колебательному движению.

· n - число колебаний за время переходного процесса (≤3шт.).

Как известно (и следует из выражения (4.1.11), чем дальше полюсы характеристического уравнения системы находятся от границы устойчивости (слева от мнимой оси комплексной плоскости), тем выше скорость протекания переходных процессов в системе. Для количественной оценки быстродействия систем используется также понятие степени устойчивости , которой называется положительное число, соответствующее расстоянию от мнимой оси до ближайшего к ней корня p i:

a = - min Re p i . i = .

В общем случае, этому условию соответствует пара комплексно сопряженных корней

p 1,2 = -a ± jb,

c соответствующей наиболее медленной колебательной составляющей:

y i (t) = A exp(-at) sin(bt+j).

Отсюда, по затуханию колебательного процесса exp(-at) нетрудно определить время переходного процесса по заданной величине d:

t пп ≈ (1/a) ln(1/d).

Знак приближенности в данном случае отражает тот факт, что другие составляющие общего решения (4.1.11) также могут внести определенную долю в значение t пп, особенно, если вещественные части их полюсов близки по значениям к минимальному значению a.

По переходной характеристике и значению установившейся ошибки (ошибки при t>>t пп) можно оценить точность системы в режиме стабилизации - при постоянном входном или заданном воздействии у*(t)=const.

Эти показатели связаны с запасами устойчивости по амплитуде и по фазе. Поэтому, обеспечение стандартных показателей качества обеспечивает необходимую устойчивость. Задачу обеспечения показателей можно рассмотреть как оптимизационную. Как правило, эта задача оказывается многокритериальной и достаточно трудной для решения, в том числе, численного.

При синтезе САУ в системе обычно выделяются неизменяемая часть и изменяемая часть, в которую можно вносить коррективы. Неизменяемая часть системы задает возможность получения гарантированного качества. Классическим методом повышения качества системы является метод диаграмм В.В.Солодовникова. Практическая задача оптимизации обычно выполняется с использованием корректирующих устройств.

Последовательное корректирующее устройство. Передаточная функция разомкнутой скорректированной системы равна исходной, умноженной на передаточную функцию корректора. Корректирующее устройство включается последовательно в контуре системы в любом месте. Для исследования подходят ЛАЧХ, так как они складываются при последовательном соединении. ЛАЧХ и ЛФЧХ корректора находятся в виде разности желаемых и имеющихся частотных характеристик системы.

Типичным последовательным корректирующим устройством является ПИД- регулятор. Эти пропорционально-интегрально-дифференциальные регуляторы выпускаются в широком ассортименте и в разнообразных реализациях, включая программную на контроллерах.

ПИД-регулятор (рис. 4.5.3) имеет три параллельных канала: усилитель с коэффициентом k п, интегратор с коэффициентом k и, дифференциатор с коэффициентом k д. Усилитель позволяет изменить коэффициент усиления системы и уменьшить установившуюся ошибку: e уст =1/(1+k п k). Интегратор повышает порядок астатизма на 1. Увеличение k д повышает запас устойчивости и сглаживает переходный процесс, поэтому дифференциальную составляющую называют демпфированием. С помощью интегральной и пропорциональной составляющих можно обеспечить первый порядок астатизма и желаемую статическую точность в ущерб запасу устойчивости, а дифференциальная составляющая повышает запас устойчивости.

Параллельное корректирующее устройство имеет вид местной отрицательной ОС (рис. 4.5.4). Для синтеза параллельных корректирующих устройств использовать логарифмические частотные характеристики менее удобно, чем для последовательных. Существует ряд инженерных методов расчёта параллельных корректоров (например, метод диаграмм Никольса). Можно просто вычислять корректирующую W кор (p) по желаемой W зс (p).

W кор (p) = (W(p)- W зс (p))/(W(p)W зс (p)).

Одна из двух передаточных функций W кор (p) или W зс (p) обычно не является физически реализуемой. Тем не менее, всегда можно выбрать достаточно близкую реализуемую функцию.

Метод Солодовникова позволяет построить корректирующее звено для имеющейся системы так, чтобы обеспечит требуемые типовые показатели качества и запас устойчивости по амплитуде и фазе. Метод основан на имеющейся связи между частотной характеристикой и переходной функцией:

H(t) = (2/p) (P(w)/w) sin(wt) dw,

где P(w) – вещественная часть АФЧХ W(jw)=P(w)+jQ(w).

В.В. Солодовников доказал, что в любой системе имеются следующие зависимости между основными показателями качества переходного процесса и Р(ω).

- σ% > 18%, если есть "горб", т.е. Р мах > Р 0 ;

- σ% < 18%, если нет горба;

- σ% = 0, если производная dP/dω<0 и монотонно убывает. Требование монотонного убывания часто налагает неоправданные ограничения на конструкцию, достаточно обеспечивать σ% < 18%.

Диаграммы Солодовникова устанавливают связь между σ%, t пп, Р мах и ω с - частотой среза системы, то есть той частотой, где усиление системы равно 1 или L(ω с) = 0.

Область существенных частот (ω н, ω в) - это та часть частотной характеристики, которая в основном определяет качество системы. Диапазон ЛАЧХ для области существенных частот от +26дб. до -16дб. Уровень +26дб. соответствует усилению K=20 и соответствующей установившейся ошибке e уст =1/(1+К) ≈ 0.05, т.е. нижняя частота области существенных частот определяется статической точностью e уст ≈ 0.05 при ступенчатом входном воздействии. Левее частоты ω н ЛАЧХ не ниже +26дб, если не требуется астатизма, либо имеет наклон в зависимости от порядка астатизма. Уровень -16дб. соответствует малости влияния высокочастотных составляющих переходного процесса на уровне ≈ 10%. Наклон ЛАЧХ в области существенных частот должен быть -20дб./дек. На диаграмме Солодовникова по горизонтали отложена второстепенная величина Р мах /Р 0 , которая в настоящее время используется редко, а по вертикальным осям отложены σ%, t пп и ω с.

Использовать диаграммы Солодовникова (рис. 4.5.5) можно по-разному. Обычно применяется такая методика. Уточняют, какие показатели качества могут быть сформулированы заказчиком, и остальные параметры, необходимые для построения корректирующего устройства, определяют по диаграммам Солодовникова. По графикам можно, например, определить при заданном перерегулировании и времени переходного процесса частоту среза системы: (σ%, t пп) → ω с, n, ∆A, ∆φ. Причём последние три параметра обеспечиваются автоматически. Тогда алгоритм синтеза САУ при исходно заданных σ%, t пп может быть, например, таким:

· По диаграммам определяем ω с (выражение ω с через t пп).

· Строим область существенных частот, что даёт нам основную часть желаемой ЛАЧХ. Достраиваем высокочастотную часть произвольно и низкочастотную часть, исходя из требуемого порядка астатизма.

· Синтезируем последовательное корректирующее звено, обеспечивающее такую ЛАЧХ. Использование методики Солодовникова гарантирует показатели качества замкнутой системы и запасы устойчивости по амплитуде на уровне ∆A%=200 (коэффициент усиления может быть увеличен в два раза), и по фазе на уровне ∆φ =35˚.

Программы анализа качества процессов управления. Современные инструментальные средства анализа и синтеза систем управления представлены множеством различных специализированных программных пакетов и комплексов, которые позволяют в диалоговом режиме выполнять операции над матрицами и полиномами, вычислять временные и частотные характеристики, строить корневые годографы, анализировать чувствительность и устойчивость, проверять управляемость и наблюдаемость системы, находить ее полюса и нули, сравнивать переходные процессы в системе по интегральным критериям и находить лучший, определять параметры и характеристики стохастических сигналов на входе и на выходе системы, составлять и преобразовывать математические модели исследуемой системы.

Эти программные средства обладают развитым сервисом, что позволяет строить и сравнивать графики нескольких процессов, изображать взаимные зависимости, фазовые кривые и портреты, строить характеристики и диаграммы, изображать и преобразовывать структурные модели системы, при этом графические построения могут быть выполнены в двух- и трехмерном представлении.

Известны фирменные и университетские программные пакеты анализа и синтеза систем управления: LSАР – США (Ливерморская национальная лаборатория) ТUТSIМ – США (Станфордский университет); СLADP – Великобритания (Кембридж); КЕDDС – Германия (Рурский университет); МАТRIХ - фирмы Integrated Systems Inc.; SIMULINK в среде МАТLАВ известной фирмы Маth Works Inc.; МАRS – Украина (Институт кибернетики). Среди отечественных инструментальных программных средств известны разработки Академии авиационного и космического приборостроения, Санкт-Петербург; Московского инженерно-физического института; Московского государственного технического университета; Института проблем управления РАН, Москва.

Программные комплексы ТUТSIМ, МАТRIХ, SIMULINK позволяют исследовать модели любых динамических систем, которые испытывают любые внешние воздействия. Комплексы обеспечивают команды изменения структуры модели, ее параметров, выходных блоков и диапазонов рассчитываемых данных; команды одиночного и многократного запуска, останова и продолжения процесса моделирования с выводом графиков и числовых данных на экран, принтер или в файл; команды графического сервиса, позволяющие изображать оси, сетку, маркировку, комментарии к графикам, строить фазовые кривые или взаимозависимости и прочее. Комплексы располагают различными функциональными блоками для моделирования любых непрерывных и дискретных, линейных и нелинейных динамических систем, испытывающих детерминированные и стохастические воздействия.

4.6 . СЛУЧАЙНЫЕ ПРОЦЕССЫ В СИСТЕМАХ .

В реальных системах имеются помехи (возмущения), действующие в каналах передачи информации. Часто не имеется никакой, кроме статистической, информации об этих факторах, что заставляет считать эти параметры случайными величинами с заранее неизвестными законами распределения. Так возникает задача управления в условиях неопределенности. Здесь имеются два аспекта: управление в условиях неопределенности и задача борьбы с помехами.

Модели случайных сигналов. Случайные процессы и отображающие их сигналы будем считать функциями времени, принимающими случайные значения. В каждый момент времени, значение случайного процесса есть случайная величина x(t). Основной характеристикой случайной величины в момент времени t является функция p(x,t) - плотность вероятности в момент t. Плотность вероятности определяет функции математического ожидания и дисперсии случайных величин:

M x (t) =x(t) p(x,t) dx, D x (t) =(x(t)-M x (t)) 2 p(x,t) dx.

Для описания статистической взаимосвязи значений x(t) в разные моменты времени вводятся корреляционная функция сигнала x(t):

K x (t 1 ,t 2) = M[(x(t 1)-M x (t 1)) (x(t 2)-M x (t 2))],

и взаимная корреляционная функция сигналов x(t) и y(t):

K x у (t 1 ,t 2) = M[(x(t 1)-M x (t 1)) (y(t 2)-M y (t 2))].

Отметим, что K x (t,t) = D x (t), т.е. при t 1 = t 2 = t это есть дисперсия в момент времени t.

Стационарным случайным процессом называется такой случайный процесс, для которого корреляционная функция зависит не от абсолютных значений t 1 и t 2 , а только от их разности K(t 1 ,t 2) = K(t 1 -t 2) = K(t). Дисперсия и математическое ожидание для стационарного случайного процесса являются константами. Стационарный случайный процесс для САУ не меняет своих статистических характеристик за время жизни системы.

Спектральная плотность S(ω) стационарного случайного процесса, есть преобразование Фурье от корреляционной функции K(τ). Соответственно, корреляционная функция K(τ) есть обратное преобразование Фурье спектральной плотности S(ω):

S(w) = K(t) exp(-jwt) dt, K(t) = (1/2p)S(w) exp(jwt) dw.

Спектральная плотность случайного процесса описывает разложение мощности процесса по гармоническим составляющим. Можно выразить дисперсию через интеграл от спектральной плотности. Это означает, что дисперсия есть суммарная мощность случайного процесса, распределённая по частоте:

D = K(0) = (1/2p)S(w) dw.

Фильтрация помех. Будем считать, что в САУ помехи могут быть в двух основных местах: помеха в канале управления (к управлению добавляется помеха W) и помеха в канале измерения (выходной сигнал измеряется с помехой V). Наиболее общая задача фильтрации шума - максимально возможное подавление обеих помех.

Если рассмотреть шумовой сигнал с бесконечным равномерным спектром, то ему будет соответствовать корреляционная функция в виде d-функции:

S(ω) = s 2 = const; K(τ) = (s 2 /2π) δ(τ); D = K(0) =∞.

Эти три уравнения описывают “белый шум” с интенсивностью s 2 . Ясно, что такой сигнал не может быть физически реализован в силу бесконечной мощности. Можно, однако, реализовать сколь угодно близкий к этому случайный процесс, называемый "розовым шумом". Формально розовый шум получается при пропускании белого шума через любое реальное звено. При этом ограничивается спектр сигнала, так как никакое реальное звено не может пропускать бесконечную полосу частот. В результате, у реального розового шума может быть сколь угодно широкий, но убывающий спектр, а его корреляционная функция может очень быстро убывать, что означает малую связь значений процесса в разные моменты времени.

Задачу фильтрации помех будем решать как оптимальную, то есть искать условия наибольшего подавления помех. Помехи будем считать случайными процессами с известными корреляционными функциями (спектральными характеристиками). Алгоритмы управления и фильтрации могут быть реализованы по отдельности, и их одновременное функционирование в замкнутой системе не мешает друг другу. Другими словами, оптимальный фильтр можно рассчитывать отдельно от регулятора в том смысле, что характеристическое уравнение замкнутой системы оказывается равным произведению уравнений подсистемы регулирования и подсистемы фильтрации.

При анализе и синтезе фильтров используется аддитивная модель входного сигнала: u(t) = s(t)+q(t), где s(t) - полезная составляющая сигнала управления, q(t) - составляющая шумов и помех. Синтез оптимальных фильтров производится с максимальным использованием известной априорной информации как о сигналах, которые необходимо выделять, так и о шумах и помехах. Как правило, используется информация о природе полезного сигнала и шума, об их спектральном составе, о корреляционных и взаимных корреляционных характеристиках. Наличие определенных особенностей (различий) в характеристиках сигнала и шума позволяет реализовать фильтр вообще и оптимальный фильтр в частности. Если такие особенности отсутствуют, постановка задачи становится некорректной.

При наличии помех абсолютно точное выделение полезного сигнала методами линейной фильтрации, как правило, невозможно. Результат фильтрации

z(t) = h(t) ③ u(t-t) (4.6.1)

отличается от s(t) на величины e(t) = z(t)-s(t), которые являются абсолютными значениями погрешности воспроизведения полезного сигнала по координатам t. Качество фильтра оценивается средним значением квадрата величины e(t):

. (4.6.2)

Выражение (4.6.2) дает возможность определить функцию h(t) фильтра по критерию минимума среднего квадратического отклонения выходного сигнала от его действительной или заданной формы.

Фильтр Винера является оптимальным фильтром формирования из входного сигнала u(t) выходного сигнала z(t) при известной форме полезного сигнала s(t), который содержится во входном сигнале в сумме с шумами. В качестве критерия его оптимизации используется среднее квадратическое отклонение сигнала z(t) на выходе фильтра от заданной формы сигнала s(t). Подставим уравнение свертки (4.6.1) в раскрытой форме интегральной свертки в выражение (4.6.2) и получим отклонение e 2 выходного сигнала z(t) от заданной формы выходного сигнала s(t):

Минимум выражения (4.6.3) определяет функцию импульсного отклика h(t) оптимального фильтра. При этом для оптимального фильтра действительно выражение:

h(t) ③ K u (t) = K zu (t). (4.6.4)

Другими словами, свертка функции отклика оптимального фильтра с функцией автокорреляции входного сигнала должна быть равна функции взаимной корреляции выходного и входного сигналов.

Отметим, что K u (t) = R u (t)+R q (t), где R u - функция автокорреляции сигнала, R q - функция автокорреляции шума, а K zu (t) = B zs (t)+B zq (t), где B zs - функция взаимной корреляции сигналов z(t) и s(t), B zq - функция взаимной корреляции сигнала z(t) и помех q(t). Подставляя данные выражения в (4.6.4), получаем:

h(n) ③ = B zs (t)+B zq (t). (4.6.5)

Частотная характеристика фильтра находится преобразованием Фурье левой и правой части уравнения (4.6.5):

H(w) = W zs (w)+W zq (w),

H(w) = / , (4.6.6)

где W s (w) - R s (t) и W q (w) - R q (t) - энергетические спектры (плотности мощности) сигнала и помех, W zs (w) - B zs (t) - взаимный энергетический спектр входного и выходного сигналов, W zq (w) - B zq (t) - взаимный энергетический спектр выходного сигнала и помех.

Обычно имеет место статистическая независимость полезного сигнала, а, следовательно, и сигнала z(t), от шумов, при этом B zq = 0 и фильтр называют оптимальным по сглаживанию шумов при заданной форме выходного сигнала:

H(w) = W zs (w) / , (4.6.7)

Фильтр (4.6.7) оптимален в том смысле, что максимизирует отношение мощности сигнала к мощности шума по всему интервалу сигнала, но не в каждой индивидуальной точке.

Выражения (4.6.6-4.6.7) достаточно наглядно демонстрируют физический смысл формирования передаточной функции фильтра. При воспроизведении сигнала частотная функция взаимной корреляции входного сигнала с выходным W zs (плотность взаимной мощности) повторяет частотную функцию автокорреляции W s (плотность мощности сигнала). Плотность мощности статистических шумов W q распределена по частотному диапазону равномерно, в отличие от плотности мощности сигнала W s , которая, в зависимости от формы сигнала, может занимать любые частотные интервалы спектрального диапазона. На частотах, где сосредоточена основная энергия сигнала, имеет место W s (w)>>W q (w) и H(w) Þ 1 (как минимум, больше 0.5). Там, где значение W s (w) становится меньше W q , коэффициент передачи фильтра становится меньше 0.5, и в пределе H(w)=0 на всех частотах, где полностью отсутствуют частотные составляющие сигнала.

Таким образом, оптимальные фильтры учитывают особенности спектрального состава сигналов и способны формировать передаточные функции выделения полезных частот сигналов из любых диапазонов спектра с максимальных подавлением шумов на всех частотах спектрального диапазона, не содержащих полезных сигналов, при этом границы усиления-подавления устанавливаются автоматически по заданному уровню шумов.

литература

1. Мирошник И.В. Теория автоматического управления. Линейные системы: Учебное пособие для вузов. - СПб.: Питер, 2005. - 336 с.

2. Повзнер Л.Д. Теория систем управления: Учебное пособие для вузов. - М.: Изд. МГГУ, 2002. - 472 с.

7. Туманов М.П. Теория автоматического управления: Лекции. URL: http://elib.ispu.ru/library/lessons/Tihonov_2/index.htm.

8. Туманов М.П. Теория управления. Теория линейных систем автоматического управления: Учебное пособие. – МГИЭМ. М., 2005, 82 с. URL: http://window.edu.ru/window_catalog/files/r24738/5.pdf.

11. Михайлов В.С. Теория управления. – К.: Выща школа, 1988.

12. Зайцев Г.Ф. Теория автоматического управления и регулирования. – К.: Выща школа, 1989.

О замеченных опечатках, ошибках и предложениях по дополнению: [email protected].

Copyright ©2008-2009 Davydov А.V.

Система автоматического управления имеет инерционности различной физической природы, которые замедляют процессы. Единичный скачок, который обычно рассматривается в качестве тестового сигнала САУ (рисунок 1), может быть разложен в ряд:

Рисунок 1. Типовая структура САУ

Наличие инерционностей обуславливает сдвиг по фазе сигнала обратной связи
относительно входного, причем фазовый сдвиг зависит как от номера гармоники, так и от постоянных времени. Так для апериодического звена 1-го порядка фазовый сдвиг определяется:

. (2)

Рисунок 2. Фазовый сдвиг на выходе САУ

Поскольку на входе САУ действует бесконечный спектр гармонических составляющих, то среди них найдется такая гармоника, фазовый сдвиг которой равен
(рисунок 2), т.е. выходной сигнал будет в противофазе с входным.

Так как обратная связь отрицательная, то на входе системы он действует в фазе с входным (пунктир на рисунке 2), причем сигнал обратной связи действует в тот момент, когда
.

Пусть амплитуда гармонической составляющей, фазовый сдвиг которой
, равна 0.5, а коэффициент передачи системы по этой гармонике больше единице, например равен 2. Тогда на выходе сигнал после первого периода
, после второго периода
, после третьего
и т.д., т.е. процесс расходящийся (неустойчив) (рисунок 3).

Рисунок 3. Переходный процесс для гармоники
при k >1.

Если коэффициент передачи системы для гармоники, фазовый сдвиг которой
, меньше единицы, то процесс будет затухать (система устойчива).

Таким образом, замкнутая система будет устойчивой, если коэффициент передачи её для гармонической составляющей, фазовый сдвиг, которой равен
, меньше единицы.

Если коэффициент передачи для указанной гармоники равен единице, то система находится на границе устойчивости и выходная координата изменяется по гармоническому закону с постоянной амплитудой.

Для системы (рисунок 1) выходная координата определяется:

Причинами отклонения САУ от положения равновесия являются изменение входной величины
и возмущающих воздействий
.

Если
и
т.е. причины отклонения системы от положения равновесия отсутствуют, то
.

Если при отсутствии причин отклонения
,
знаменатель
, то это означает, что выходная координата
может принимать любые отличные от нуля значения, поскольку в этом случае имеем:

. (4)

Следовательно, в системе возникает незатухающие колебания при условии:

. (5)

Заметим, что это условие похоже на условие самовозбуждения усилителя с ООС Баркгаузена: самовозбуждение системы имеет место, когда усиливается столько напряжения или другой величины, сколько его (её) отводится по каналу обратной связи:

. (6)

1.2 Определение устойчивости систем автоматического управления

Любая система автоматического управления (САУ) должна быть работоспособной, т.е. нормально функционировать при воздействий возмущений различного рода. Работоспособность САУ определяется ее устойчивостью, которая является одной из основных динамиче­ских характеристик системы.

Устойчивость - свойство системы возвращаться в исходное положение равновесия или близкий к нему режим после окончания действия возмущения, вызвавшего отклонение системы от положения равновесия. Неустойчивая работа может возникнуть в любой САУ с обратной связью, при этом, система удаляется от положения равновесия.

Если известна функция веса системы ω(t ) , то линейная си­стема устойчива, если ω(t ) остается ограниченной при любых ограниченных по величине входных возмущениях:

, (7)

где с - const .

Следовательно, об устойчивости системы можно судить по общему решению линеаризованного однородного дифференциального уравнения замкнутой САУ, поскольку устойчивость не зависит от вида описываемого возмущения. Система устойчива, если переходная составляющая затухает во времени:

. (8)

Если
, то САУ неустойчива.

Если
не стремится ни к нулю, ни к бесконечности то система находится на границе устойчивости.

Поскольку общее решение дифференциального уравнения зависит от вида корней характеристического уравнения САУ, то определение устойчивости можно производить без непосредственного решения од­нородного дифференциального уравнения.

Если характеристическое уравнение линейного дифференциально­го уравнения с постоянными коэффициентами САУ имеет вид

то его решение, следующее:

, (10)

где c - постоянные интегрирования;

p t - корни характеристического уравнения.

Следовательно, САУ устойчива, если

(11)

Таким образом, для того, чтобы линейная САУ была устойчивая, необходимо и достаточно, чтобы вещественные части всех корней ха­рактеристического уравнения системы были отрицательны

R e p i < 0, (12)

а) для вещественных корней p i < 0,

, (12.а)

для вещественных корней p i > 0;

; (12.б)

б) для комплексных корней типа p i =α± при α< 0

, (12.в)

для комплексных корней p i =α± при α> 0

, (12.г)

Следовательно, САУ устойчива, если все корни характеристического уравнения (9) располагаются в левой полуплоскости комплекс­ной плоскости корней. Система находится на границе устойчивости, если хотя бы один вещественный корень или пара комплексных кор­ней находятся на мнимой оси. Различают апериодическую и колебательную границы устойчивости.

Если хотя бы один корень характеристического уравнения САУ равен нулю, то система находится на апериодической границе устой­чивости. Характеристическое уравнение в этом случае (a n = 0) име­ет следующий вид:

Система в том случае устойчива по отношению к скорости изменения регулируемой величины, по отношению же к реализуемой величи­не система нейтральна (нейтрально устойчивая система).

Если в характеристическом уравнении САУ имеется хотя бы па­ра чисто мнимых корней, то система находится на границе колебательной устойчивости. В этом случае в системе имеют место незатухающие гармонические колебания.

Таким образом, для выяснения устойчивости САУ следует решить характеристическое уравнение, т.е. найти его корни. Отыскание кор­ней характеристического уравнения возможно, поскольку W 3 (p ) обыч­но представляет собой отношение двух алгебраических полиномов. Од­нако такой прямой метод для определения устойчивости оказывается весьма трудоемким, особенно при n > 3. Кроме того, для определения устойчивости необходимо знать только знаки корней и необязательно знать их значение, т.е. непосредственное решение характеристического уравнения дает “лишнюю информацию”. Поэтому для опре­деления устойчивости целесообразно иметь косвенные методы определения знаков корней характеристического уравнения, не решая его. Эти косвенные методы определения знаков корней характеристическо­го уравнения без непосредственного его решения - критерии устойчивости.

7.1. Понятие устойчивости САУ

Понятие устойчивости является важнейшей качественной оценкой динамических свойств САР. Устойчивость САР связана с характером её поведения после прекращения внешнего воздействия, которое может быть оценено решением дифференциального уравнения, описывающего работу системы. Общая теория устойчивости разработана А.М. Ляпуновым. Линейная система называется устойчивой, если ее выходная координата остается ограниченной при любых ограниченных по абсолютной величине входных воздействиях. Устойчивость линейной системы определяется ее характеристиками и не зависит от действующих воздействий.
В общем случае решение уравнения имеет вид: y(t)= y B (t) + y n (t)
где y B (t) - решение однородного уравнения (переходная или свободная составляющая); y n (t) - установившееся значение регулируемой величины (вынужденная составляющая) - решение уравнения с правой частью. Устойчивость работы системы определяется переходной составляющей. Если переходная составляющая процесса управления после прекращения внешнего воздействия стремится к нулю, то такая система является устойчивой. Другими словами устойчивость системы - это есть затухание ее переходных процессов.
Если свободная составляющая стремится к конечному значению или имеет вид гармонических колебаний с постоянной амплитудой, то система считается нейтральной. В том случае, если свободная составляющая неограниченно возрастает или имеет вид гармонических колебаний с возрастающей амплитудой, то система считается неустойчивой.
Оценка устойчивости производится на основе результатов исследования свободной составляющей, которая представляет собой решение однородного дифференциального уравнения (характеристического уравнения): D(p) = a 0 p n + a 1 p n-1 + ... + a n = 0 (4.1)
Переходная составляющая решения уравнения в общем виде y ni (t) = A i e α i t * sin(β i t + φ i) , где α i ± jβ i - корни характеристического уравнения; A i ,Φ i - постоянные.
При этом переходная составляющая с ростом времени стремится к нулю, если вещественные части корней α i отрицательны, в противном случае амплитуда колебаний переходной составляющей возрастает (рис.4.1).

Рис.4.1. Графики переходных составляющих

Пара мнимых корней (α i =0) характеристического уравнения позволяет получить переходную составляющую в виде автоколебаний с постоянной амплитудой:

Полученные корни характеристического уравнения могут быть представлены в виде точек на комплексной плоскости (рис.4.2.).


Рис.4.2. Расположение корней САУ на комплексной плоскости корней

Для устойчивых систем необходимо и достаточно, чтобы все корни характеристического уравнения лежали слева от мнимой оси комплексной плоскости корней. Если хотя бы один вещественный корень или пара комплексных сопряженных корней находится справа от мнимый оси, то система является неустойчивой. Если имеется нулевой корень или пара чисто мнимых корней, то система считается нейтральной (находящейся на границе устойчивости и неустойчивости). Таким образом, мнимая ось комплексной плоскости является границей устойчивости.

С целью упрощения анализа устойчивости систем разработаны ряд специальных методов, которые получили название критерии устойчивости. Критерии устойчивости делятся на две разновидности: алгебраические (критерий Гурвица ) и частотные (критерии Михайлова и Найквиста ). Алгебраические критерии являются аналитическими, а частотные - графоаналитическими. Критерии устойчивости позволяют также оценить влияние параметров системы на устойчивость.

Алгебраический критерий Гурвица находит широкое применение при анализе САР. Первоначально, из коэффициентов уравнения (4.1) составляется матрица главного определителя:

По диагонали матрицы от верхнего левого угла записываются по порядку все коэффициенты уравнения (4.1.), начиная с а1. Затем каждый столбец матрицы дополняется таким образом, чтобы вверх от диагонали индексы коэффициентов увеличивались, а вниз - уменьшались.
Для устойчивости системы необходимо и достаточно, чтобы при а0>0 все угловые определители (миноры) были также положительными, т.е.

и т.д.

Последний определитель Гурвица, как видно из приведенной выше матрицы, равен Δ n =a n *Δ n-1 . Поэтому его положительность сводится при Δ n-1 >0 к условию a n >0. Для систем первого и второго порядка критерий Гурвица сводится просто к положительности коэффициентов ai. Если определитель Δ n =0, то система находится на границе устойчивости. Из условия Δ n-1 =0 можно определить параметры, при которых система находится на границе устойчивости, например, критический коэффициент усиления разомкнутой САУ К кр.

Критерий Михайлова предполагает построение годографа на комплексной плоскости. Для построения годографа из характеристического уравнения замкнутой системы (4.1) путем подстановки p=jω получают аналитическое выражение вектора M(jω):
M(jω)=a 0 (jω) n +a 1 (jω) n-1 +...+a n (4.2)
Уравнение (4.2) является комплексным и может быть представлено в виде:

Построение годографа производится по уравнению вектора M(jω) при изменении часты от 0 до + . Оценка устойчивости системы осуществляется по углу поворота годографа при изменении частоты 0<ω< , т.е. по приращению Δ аргумента M(jω)

, (4.3)

где m - число правых корней характеристического полинома; n - порядок характеристического уравнения системы.
Тогда для устойчивости линейной системы n-го порядка необходимо и достаточно, чтобы изменение аргумента годографа M(jω) при изменении от 0 до + равнялось n , так как m=0 для обеспечения устойчивости системы.
Критерий Михайлова формулируется так: система устойчива, если годограф Михайлова M(jω) при изменении от 0 до + , начинаясь на положительной части действительной оси, обходил последовательно в положительном направлении (против часовой стрелки) n квадрантов и в n-м квадранте уходил в .
Если годограф начинается в нулевой точке комплексной плоскости или проходит через эту точку при определенной частоте, то система считается нейтральной. В этом случае P(ω) = 0 и Q(ω) = 0.
Из этих уравнений можно определить значения параметров, при которых система находится на границе устойчивости (критические значения). На рис.4.3 приведены годографы Михайлова для устойчивых и неустойчивых САУ.


Рис.4.3. Годографы Михайлова

Имеется вторая формулировка критерия Михайлова: для устойчивости системы необходимо и достаточно, чтобы корни уравнений P(ω) = 0 и Q(ω) = 0 перемежались (чередовались), т.е. годограф последовательно пересекал оси комплексной плоскости. Этой формулировкой удобно пользоваться для исследования устойчивости систем до пятого порядка включительно. По уравнению (4.3) можно определить количество правых корней в неустойчивых системах.

7.4. Частотный критерий устойчивости Найквиста

Критерий Найквиста - частотный критерий, позволяющий по виду амплитудно-фазовой частотной характеристики разомкнутой системы оценить устойчивость работы замкнутой системы. АФЧХ может быть получена экспериментально или аналитически. Аналитическое построение АФЧХ производится обычными методами. Критерий Найквиста формулируется по разному в зависимости от того, устойчива разомкнутая система или нет.
Если разомкнутая система устойчивая, то для устойчивости замкнутой системы необходимо и достаточно, чтобы АФЧХ разомкнутой системы при изменении частоты от 0 до не охватывала точку с координатами -I, j0. Если АФЧХ разомкнутой системы проходит через точку с координатами -I, j0, то система будет нейтральной. На рис.4.4 представлены АФЧХ разомкнутых статических систем. Критерий Найквиста позволяет наглядно проследить влияние изменения параметров передаточной функции на устойчивость системы.


Рис.4.4. АФЧХ разомкнутых САУ

АФЧХ астатической системы, начинаясь на вещественной положительной полуоси, при ω->0 дугой бесконечно большого радиуса перемещается на угол, равный -ν , где ν - порядок астатизма. На рис.4.5 изображена АФЧХ устойчивой в замкнутом состоянии астатической системы первого порядка.


Рис.4.5. АФЧХ астатической САУ первого порядка

Если разомкнутая система неустойчива, то для устойчивости замкнутой системы необходимо и достаточно, чтобы АФЧХ разомкнутой системы охватывала точку с координатами (-1, j0) и при изменении частоты от 0 до оборачивалась вокруг нее против часовой стрелки m раз, где m - число правых полюсов разомкнутой системы.
Существуют два класса САУ: абсолютно устойчивые и условно устойчивые. В первом классе систем только увеличение коэффициента усиления разомкнутой системы может привести к потере устойчивости, а условно устойчивая система может стать неустойчивой как при увеличении, так и при уменьшении коэффициента усиления.
Для абсолютно устойчивых систем вводится понятие запаса устойчивости по амплитуде (модулю) и запаса устойчивости по фазе. Запасы устойчивости определяют на частоте среза ω ср, на которой A(ω ср)=1.
Запас устойчивости по амплитуде задается некоторой величиной 1/а (рис.4.6), которая показывает, во сколько раз можно увеличить коэффициент усиления разомкнутой системы, чтобы САУ оказалась на границе устойчивости.


Рис.4.6. АФЧХ абсолютно устойчивой системы

Запас устойчивости по фазе задается некоторым углом φ (рис.4.6). В хорошо демпфированных системах запас устойчивости по амплитуде составляет примерно 6-20 дБ, что составляет 2÷10 в линейном масштабе, а запас по фазе от 30 до 60°.
Наиболее удобно для исследования устойчивости использовать построенные л.а.х. и л.ф.х., располагая их друг под другом так, чтобы оси ординат совмещались и выбирая одинаковые масштабы оси абсцисс (рис.4.7).


Рис.4.7. ЛЧХ абсолютно устойчивой системы

По ЛЧХ разомкнутой системы можно определить запасы устойчивости: запас по фазе φ зап отсчитывается по л.ф.х. на частоте среза ω ср и равен φ зап =π - φ(ω ср), а запас по амплитуде L зап соответствует значению л.а.х. на частоте, при которой л.ф.х. равна -π (рис.4.7). Если φ(ω ср)=-&pi, то система находится на границе устойчивости. Критический коэффициент усиления разомкнутой системы K кр определяется из выражения 20*lg(K кр)=20*lg(K раз) + L зап.
Критерием Найквиста удобно пользоваться для исследования устойчивости систем с запаздыванием. В этом случае строятся ЛЧХ разомкнутой САУ с запаздыванием W τ (jω) = W(jω) * e -jωτ . Логарифмическая частотная характеристика не изменяется, а л.ф.х. сдвигается вниз на величину -ω i τ, где ω i - значение частоты в конкретной точке. Критическое значение времени чистого запаздывания τ кр, при котором САУ будет на границе устойчивости, находится по формуле: .
Чтобы спроектировать систему с заданными показателями качества, строят запретную область вокруг точки с координатами (-1, j0), в которую не должна заходить АФЧХ разомкнутой системы, как показано на рис.4.8.

7.5. Логарифмический частотный критерий.

Логарифмический критерий – это частотный критерий, позволяющий судить об устойчивости замкнутой САУ по виду логарифмической характеристики разомкнутой системы. Этот критерий основан на однозначной связи ЛФЧХ и АФЧХ систем автоматического управления. При этом рассматриваются САУ, базирующиеся на использовании устойчивых разомкнутых систем. Кроме того, рассматриваются системы с астатизмом не выше второго порядка.

Как следует из критерия устойчивости Найквиста в устойчивых САУ фазовый сдвиг может достигать значения только при модулях комплексной передаточной функции, меньшем чем единица. Это позволяет легко определить устойчивость по виду ЛАЧХ и ЛФЧХ.

Формулировка критерия : для устойчивости системы в замкнутом состоянии необходимо и достаточно, чтобы в диапазоне частот, где ЛАЧХ разомкнутой системы больше нуля число переходов фазовой характеристики прямой снизу верх превышало на число переходов сверху вниз, где а – число корней характеристического уравнения разомкнутой системы, лежащих в правой полуплоскости.

В частном случае для устойчивой разомкнутой системы (а=0) необходимым и достаточным условием замкнутой системы является необходимость выполнения следующего условия. В диапазоне частот, где , фазовая частотная характеристика не должна пересекать прямой , или пересекать ее одинаковое число раз снизу вверх и сверху вниз.

Рис. 6. ЛФЧХ устойчивой и неустойчивой САУ

Критическим значением коэффициента преобразования называется такое его значение, при котором АФЧХ проходит через точку (-1, j0) и система находится на границе устойчивости.

Запасом по модулю называется величина в децибеллах, на которую нужно изменить коэффициент преобразования САУ, чтобы привести ее к границе устойчивости.

,

где - частота, при которой фазовая характеристика равна .

Запасом устойчивости по фазе называется угол, на который нужно повернуть амплитудно-фазовую характеристику разомкнутой системы, чтобы замкнутая САУ оказалась на границе устойчивости.

,

где – значение ФЧХ на частоте среза системы, для которой выполняется условие .

6.1. Понятие устойчивости систем автоматического управления

Динамика САУ характеризуется переходным процессом, возникающим в ней под действием какого-либо возмущения (управляющего воздействия, помехи, изменения нагрузки и др.). Вид переходного процесса в САУ зависит как от свойств самой САУ, так и от вида действующего на неё возмущения. В зависимости от вида переходного процесса в САУ различают следующие их разновидности.

Устойчивая САУ – система, которая при установившихся значениях возмущающих воздействий спустя некоторый промежуток времени возвращается к установившемуся состоянию равновесия.

Неустойчивая САУ – система, которая при установившихся значениях возмущающих воздействий не возвращается к установившемуся состоянию равновесия. Отклонение системы от состояния равновесия будет либо всё время увеличиваться, либо непрерывно изменяться в форме незатухающих постоянных колебаний.

Графики кривых переходных процессов, характерные для устойчивых и неустойчивых САУ, представлены на рис. 6.1. Очевидно, что работоспособная САУ должна быть устойчивой.

а) Примеры устойчивости и неустойчивости некоторой системы можно также иллюстрировать на следующих примерах (рис. 6.2). На рис. 6.2а приведён пример неустойчивой системы – при малейшем отклонении шара от начального устойчивого положения он скатывается по склону поверхности и в исходное положение не возвращается; рис. 6.2б иллюстрирует пример устойчивой системы, поскольку при любом отклонении шар обязательно возвратится к первоначальному положению; рис. 6.2в показывает систему, устойчивую при некоторых малых возмущающих воздействиях. Как только возмущающее воздействие превышает некоторую величину, система теряет устойчивость. Такие системы называют устойчивыми в малом и неустойчивыми в большом, поскольку устойчивость связана с величиной начального возмущающего воздействия.
б)
Рис. 6.1. Виды кривых переходного процесса в устойчивой (а) и в неустойчивой (б) САУ: 1 – апериодический переходный процесс; 2 – колебательный переходный процесс

Анализ работоспособности или устойчивости линейной САУ можно провести с использованием её математической модели. Как было показано ранее, линейная САУ может быть описана дифференциальным уравнением (2.1). Решение данного дифференциального уравнения в общем случае имеет вид (2.3)

где – свободная составляющая решения уравнения (2.1), которая определяется начальными условиями и свойствами рассматриваемой САУ;



– вынужденная составляющая решения уравнения (2.1), определяемая возмущаемыми воздействиями и свойствами рассматриваемой САУ.

Устойчивость САУ характеризуется процессами, происходящими внутри самой САУ. Эти процессы определяются видом свободной составляющей решения уравнения (2.1). Следовательно, для того чтобы САУ была устойчива, необходимо выполнение следующего условия:

В свою очередь, в общем виде может быть представлена как

где – корни, получаемые при решении характеристического уравнения (2.7). В табл. 6.1 приводятся некоторые разновидности переходных процессов в САУ, в зависимости от вида корней характеристического уравнения (2.7).

Таблица 6.1

Разновидности переходных процессов в САУ в зависимости от вида корней

характеристического уравнения (2.7)


Окончание табл. 6.1

m – комплексных сопряжённых корней, действительная часть которых отрицательная: колебательный затухающий устойчивая
корни де­й­­­ст­ви­те­льные, поло­жительные, при этом апериодический расходящийся неустойчивая
среди корней (п.1) присутствует m – комплексных сопряжённых корней, действительная часть которых положительная: колебательный расходящийся неустойчивая
среди корней (п.1) присутствует пара комплексных корней, действительная часть которых равна нулю: незатухающие колебания система на грани устойчивости (чисто теоретический случай)


Для выполнения условия (6.1) необходимо, чтобы каждое слагаемое выражение (6.2) при t®¥ стремилось бы к нулю. Как следует из анализа приводимых в табл. 6.1 примеров переходных процессов в САУ, для этого необходимо, чтобы все корни характеристического уравнения (2.7) были отрицательные вещественные или комплексные с отрицательной действительной частью. Если среди корней характеристического уравнения (2.7) будет хотя бы один положительный вещественный корень или пара сопряжённых комплексных корней с положительной действительной частью, тогда рассматриваемая САУ будет неустойчива, поскольку слагаемое уравнения (6.2), соответствующее данному корню, при t®¥ будет неограниченно увеличиваться.

На рис. 6.3 и 6.4 приведены примеры расположения корней характеристического уравнения САУ на комплексной плоскости, соответствующие устойчивой и неустойчивой САУ. Как следует из этих примеров, для того чтобы САУ была устойчива, необходимо, чтобы все корни характеристического уравнения САУ находились слева от мнимой оси.

Для анализа устойчивости САУ по виду корней её характеристического уравнения требуется найти аналитическое решение дифференциального уравнения (2.1), что является достаточно трудоёмкой задачей, а в некоторых случаях – невозможной. Поэтому на практике широкое распространение получили критерии устойчивости, под которыми понимается следующее.

Критерий устойчивости – совокупность признаков, позволяющих иметь представление о знаках корней характеристического уравнения без решения самого уравнения. Существуют следующие разновидности критериев устойчивости:

− алгебраические критерии устойчивости (критерии Вышнеградского, Рауса, Гурвица). Для анализа устойчивости САУ в данном случае используются коэффициенты характеристического уравнения системы;

− частотные критерии устойчивости (критерии Найквиста, Михайлова). Данные критерии устойчивости предполагают применение частотных характеристик системы.

Применение того или иного критерия устойчивости позволяет судить об устойчивости САУ более просто и эффективно, чем при решении описывающего её дифференциального уравнения (2.1). Кроме этого, некоторые критерии устойчивости позволяют установить причину неустойчивости САУ и наметить пути по достижению устойчивости системы.

6.2. Алгебраический критерий устойчивости Гурвица

Данный вид алгебраического критерия является наиболее распространённым на практике для исследования устойчивости САУ. Исходными данными для исследования устойчивости в данном случае является характеристическое уравнение замкнутой САУ

Из коэффициентов характеристического уравнения (6.3) составляется матрица (6.4), размерность которой равна порядку характеристического уравнения (6.3). Матрица (6.4) составляется по следующему правилу: по главной диагонали выписываются последовательно коэффициенты характеристического уравнения, начиная с C 1 . Столбцы таблицы, начиная с главной диагонали, заполняются вверх по возрастающим индексам, вниз – по убывающим. Все коэффициенты с индексами ниже нуля и выше степени порядка характеристического уравнения n заменяются нулями.

Условия устойчивости по Гурвицу: для устойчивости САУ, имеющей характеристическое уравнение (6.3), необходимо и достаточно, чтобы все коэффициенты характеристического уравнения (6.3) были положительны, а также были положительны n определители, составленные из коэффициентов уравнения (6.3) на основе матрицы (6.4). Для составления определителя 1,2, …, n -го порядка берутся 1,2, …, n столбцов и строк. Приводимые ниже примеры иллюстрируют это правило.

Пример 1 . Для САУ, имеющей характеристическое уравнение 2–го порядка:

матрица (6.4) запишется как

Определители D 1 , D 2 , составленные на основе (6.6), имеют вид

C 0 , C 1 , C 2 будут больше нуля, а также будут положительны определители (6.7) и (6.8).

Пример 2. Для САУ, имеющей характеристическое уравнение 3-го порядка:

матрица (6.4) запишется как

Определители D 1 D 3 , составленные на основе (6.10), имеют вид

Согласно критерию устойчивости Гурвица данная система будет устойчивой при условии, что коэффициенты C 0 C 3 будут больше нуля, а также будет положительным определитель (6.12).

Пример 3. Для САУ, имеющей характеристическое уравнение 4-го порядка:

матрица (6.4) запишется как

Определители D 1 D 4 , составленные на основе (6.15), имеют вид

Согласно критерию устойчивости Гурвица данная система будет устойчивой при условии, что коэффициенты C 0 C 4 будут больше нуля, а также будут положительны определители (6.16)–(6.19).

Алгебраический критерий Гурвица позволяет наглядно оценить влияние того или иного параметра на устойчивость САУ в целом. Предположим, что для рассматриваемой САУ, математическая модель которой имеет характеристическое уравнение (6.3), необходимо исследовать влияние значения параметра С n на устойчивость. Для этого, придавая ряд допустимых значений для С n , вычисляем n определителей, составленных из коэффициентов уравнения (6.3) на основе матрицы (6.4). Каждый из определителей D i где i=0,..,n будет представлять собой функцию, зависящую от параметра С n , которую можно представить в виде графика (рис. 6.5). Изобразив на одном графике функции D i (С n) , где i=0,.., n , определяем на оси абсцисс отрезок изменения С n , на протяжении которого все n определителей будут положительные (на рис. 6.5 этот отрезок выделен жирной линией). Следовательно, согласно критерию Гурвица при значениях С n , которые принадлежат выделенному отрезку, система будет устойчивой. Если после построения графиков функции D i (С n) , где i=0,.., n , на оси абсцисс невозможно выделить отрезок изменения С n , на протяжении которого все n определителей будут положительные (рис. 6.6), это говорит о том, что изменением значения С n привести САУ к состоянию устойчивости невозможно.

Применение алгебраического критерия устойчивости Гурвица предполагает, что дифференциальное уравнение, описывающее САУ (6.3), известно и достаточно точно известны его коэффициенты. В некоторых случаях на практике выполнить данные условия невозможно. Кроме этого, с увеличением порядка характеристического уравнения САУ (6.3) увеличивается сложность вычисления определителей, составляемых на основе матрицы (6.4). Поэтому на практике получили распространение также частотные критерии устойчивости, которые позволяют оценить устойчивость системы, даже если дифференциальное уравнение (2.1) неизвестно, а в наличии имеются экспериментальные частотные характеристики рассматриваемой САУ.

6.3. Частотный критерий оценки устойчивости Найквиста

Частотные критерии устойчивости в настоящее время получили широкое признание. Один из таких критериев – критерий Найквиста или частотный амплитудно-фазовый критерий. Данный вид критерия является следствием теоремы Коши. Доказательство справедливости критерия Найквиста приводится в . Рассматриваемый критерий позволяет судить об устойчивости замкнутой САУ посредством исследования АФЧХ этой САУ в разомкнутом состоянии, поскольку данное исследование выполнить проще.

Исходными данными для исследования устойчивости САУ с помощью критерия Найквиста является её АФЧХ, которая может быть получена либо экспериментально, либо с использованием известного выражения для передаточной функции разомкнутой САУ (3.6) путём замены p=jw .

Условия устойчивости по Найквисту:

1) если САУ устойчива в разомкнутом состоянии, то амплитудно-фазовая характеристика данной САУ, получаемая при изменении w от –¥ до +¥ j 0);

2) если система неустойчива в разомкнутом состоянии и имеет k корней в правой полуплоскости, то АФЧХ САУ при изменении w от –¥ до +¥ должна охватывать k раз точку на комплексной плоскости с координатами (–1, j 0). Угол поворота вектора W(jw) должен составлять при этом 2p k .

Замкнутая САУ будет устойчива, если при изменении w от 0 до +¥ разность между числом положительных и отрицательных переходов годографа АФЧХ разомкнутой системы через отрезок вещественной оси (–¥ , –1) будет равна k/2 , где k – число правых корней характеристического уравнения разомкнутой системы. За отрицательный переход годографа вектора W(jw) считается его переход из нижней полуплоскости в верхнюю при возрастании w . За положительный переход годографа вектора W(jw) принимается его переход из верхней полуплоскости в нижнюю при той же последовательности изменения частоты.

При отрицательном знаке у комплексной частотной характеристики указанные выше положения определяются точкой (+1, j 0).

Критерий Найквиста справедлив также для случая, когда полином С(p) в (3.6) САУ имеет нулевой корень, что соответствует значению АФЧХ, равному бесконечности. Для исследования устойчивости таких САУ необходимо мысленно дополнить годограф АФЧХ окружностью бесконечного радиуса и замкнуть годограф с вещественной полуосью в кратчайшем направлении. Далее проверить соблюдение условий устойчивости по Найквисту и сделать выводы.

Примеры АФЧХ устойчивых и неустойчивых САУ приведены на рис. 6.7, 6.8.

6.4. Логарифмический критерий устойчивости

Данный критерий устойчивости есть интерпретация частотного критерия устойчивости Найквиста в логарифмической форме. Рассмотрим две АФЧХ (рис. 6.9), соответствующие разомкнутой САУ, при этом АФЧХ (1) соответствует САУ, неустойчивой в разомкнутом состоянии, АФЧХ (2) – САУ, устойчивой в разомкнутом состоянии. Введём характерные точки рассматриваемых АФЧХ: w 1с , w 2с – точки, соответствующие частотам, при которых амплитуды векторов W(jw) соответственно систем (1) и (2) становятся равными единице. Данная частота носит название частоты среза. На комплексной плоскости эта точка соответствует точке пересечения АФЧХ с окружностью единичного радиуса, центр которой находится в начале координат (на рис. 6.9 эта окружность изображена пунктирной линией). Эта же точка соответствует точке пересечения ЛАЧХ с осью абсцисс (рис. 6.10); w 1 p , w 2 p – точки, соответствующие частотам, при которых фазы векторов W(jw) соответственно систем (1) и (2) становятся равными –180 О. На комплексной плоскости эта точка соответствует точке пересечения АФЧХ с вещественной отрицательной полуосью. Эта же точка соответствует точке пересечения ЛФЧХ с осью абсцисс при условии, что ЛАЧХ и ЛФЧХ изображаются на одном графике в форме, представленной на рис. 6.10.

Рис. 6.9. АФЧХ САУ: 1 – неустойчивой в разомкнутом состоянии; 2 – устойчивой в разомкнутом состоянии Рис. 6.10. ЛАЧХ и ЛФЧХ неустойчивой (1) и устойчивой (2) САУ

Согласно критерию устойчивости Найквиста, если САУ устойчива в разомкнутом состоянии, то амплитудно-фазовая характеристика данной САУ, получаемая при изменении w от –¥ до +¥ , не должна охватывать точку на комплексной плоскости с координатами (–1, j 0). Другими словами, как следует из рис. 6.9, система будет устойчива, если w p >w с , в противном случае (w p ) система будет неустойчива. Если проводить анализ об устойчивости системы по ЛАЧХ и ЛФЧХ (рис. 6.10), тогда можно утверждать, что если частота среза w с располагается на оси частот левее частоты w p , то такая САУ будет устойчива в разомкнутом состоянии, в противном случае САУ в разомкнутом состоянии будет неустойчивой.

Если число точек пересечения АФЧХ и отрицательной вещественной полуоси на отрезке (–¥ , –1) при изменении w от 0 до +¥ больше одной (рис. 6.11), тогда, для того чтобы САУ была устойчива в замкнутом состоянии, необходимо, чтобы количество таких точек на отрезке (–¥ , –1) было чётным. При этом ЛФЧХ должна пересечь чётное количество раз ось абсцисс на отрезке от 0 до частоты среза w с (рис. 6.12).

Для устойчивости САУ в замкнутом состоянии, которые в разомкнутом состоянии неустойчивы и имеют k -корней, лежащих справа от мнимой оси, логарифмический критерий устойчивости может быть сформулирован следующим образом: подобные САУ будут устойчивы, если разность чисел положительных и отрицательных переходов ЛФЧХ и отрицательных переходов ЛФЧХ через значение –180°, лежащих на отрезке от 0 до w С , будет равна k/2 . Напомним, что за положительный переход характеристики принимается её переход из верхней полуплоскости в нижнюю при возрастании w . За отрицательный переход характеристики принимается её переход из нижней полуплоскости в верхнюю при той же последовательности изменения частоты. Частотные характеристики САУ, неустойчивой в разомкнутом состоянии и устойчивой в замкнутом состоянии, у которой k=1 , приведены на рис. 6.13, 6.14.

6.5. Частотный критерий оценки устойчивости Михайлова

Исходными данными для исследования устойчивости САУ с помощью критерия Михайлова является АФЧХ замкнутой системы, которая может быть получена с помощью характеристического полинома замкнутой САУ (3.35), имеющего порядок n :

Условия устойчивости по Михайлову: если вектор , характеризующий замкнутую САУ, при изменении w от –¥ до +¥ описывает в положительном направлении (не изменяя направления) угол, равный np (где n – степень характеристического полинома (6.20)), то такая САУ будет устойчивой. В противном случае САУ будет неустойчивой. Доказательство данного утверждения приводится в .

Поскольку годограф кривой вектора передаточной функции замкнутой САУ симметричен, допускается ограничиться рассмотрением лишь его части, соответствующей изменениям w от 0 до +¥ . При этом угол, описываемый вектором , при изменении w от 0 до +¥ уменьшится вдвое.

На рис. 6.15, 6.16 приведены примеры годографов вектора , соответствующие устойчивой, неустойчивой и нейтральной САУ (системы, находящейся на грани устойчивости).

6.6. Построение областей устойчивости САУ

Рассмотренные выше критерии устойчивости позволяют определить, устойчива рассматриваемая САУ при заданных параметрах или нет. Если САУ неустойчива, часто приходится искать ответ на вопрос: в чём причина неустойчивости, и определить пути её устранения. Кроме оценки устойчивости, на практике часто возникает необходимость определения путей повышения динамических показателей САУ. Перечисленные задачи могут быть решены с помощью существующих критериев устойчивости САУ, однако наиболее эффективно они решаются путём построения областей устойчивости и неустойчивости САУ.

Предположим, что рассматриваемая САУ неустойчива и при этом она может быть представлена линейным дифференциальным уравнением (2.1), характеристическое уравнение которого будет иметь следующий вид (6.3):

Далее предположим, что коэффициенты С 0 –С n -1 данного характеристического уравнения заданы, а коэффициент С n может изменяться в диапазоне С n (min) С n (max) . Задавая ряд значений для С n из указанного диапазона, находим в пределах этого диапазона отрезки, на протяжении которых С n имеет такие значения, при которых САУ будет устойчивой (рис. 6.17), т.е. все корни характеристического уравнения (6.21) будут лежать на комплексной плоскости слева от мнимой оси. Граничные точки «отрезков устойчивости» соответствуют значениям С n , при которых САУ находится на грани устойчивости.

В уравнении (6.21) могут изменяться два и более коэффициентов. Если в нём изменяются два коэффициента (предположим, что это С 0 и С n ), тогда проводится исследование зависимости устойчивости САУ от значений коэффици-

ентов С 0 и С n путем задания ряда значений этим коэффициентам из некоторых допустимых диапазонов и проверка устойчивости САУ при выбранных значениях С 0 и С n . В этом случае области устойчивости будут представлять собой некоторые участки на плоскости координат изменяемых коэффициентов С 0 и С n (рис. 6.18). Границей устойчивости системы в данном случае будет кривая, ограничивающая области устойчивости.

Если в характеристическом уравнении изменяются в некоторых допустимых пределах три параметра (например, С 0 , С 1 и С n ), тогда при исследовании зависимости устойчивости САУ от значений С 0 , С 1 и С n будет найдена область устойчивости САУ, которая будет представлять собой часть пространства, ограниченную некоторой сложной поверхностью (рис. 6.19). Эта сложная поверхность в данном случае будет границей устойчивости САУ.

Рис. 6.19. Область устойчивости САУ при изменении трёх параметров
(С 0 , С 1 и С n )

В общем случае, если предположить, что в характеристическом уравнении (6.21) все входящие в него коэффициенты С 0 -С n могут изменяться в некоторых допустимых пределах, тогда устойчивость САУ можно рассматривать как логическую функцию, определённую в некотором многомерном пространстве. В одних точках этого многомерного пространства эта функция будет принимать значение «Истина» (САУ устойчива), в других – «Ложь» (САУ неустойчива). Каждой точке такого пространства (пространства коэффициентов) будут соответствовать определённые значения С 0 -С n , которые являются его координатами. Гиперповерхность, ограничивающая область устойчивости САУ, будет являться границей области устойчивости в рассматриваемом пространстве коэффициентов.

При определении областей устойчивости САУ может быть выделена одна область устойчивости, может быть выделено несколько областей устойчивости, а может быть не выделено ни одной.

Понятие об устойчивости

Понятие устойчивости системы управления связано со способностью возвращаться в состояние равновесия после исчезновения внешних сил, которые вывели ее из этого состояния.

Устойчивость - это свойство системы возвращаться в исходное или близкое к нему установившееся состояние после всякого выхода из него в результате какого-либо воздействия.

Из данного определения следует, что устойчивость связана с характером переходных процессов и состоянием системы после окончания переходного процесса, т.е. является основной динамической характеристикой системы. Поэтому анализ устойчивости САУ является основной проблемой в теории автоматического управления.

В зависимости от характера переходного процесса различают три основных случая поведения системы после приложения возмущающего воздействия:

1) система не может восстановить равновесного состояния, значение управляемой переменной все больше отклоняется от заданного (рисунок 6.1, а); такой процесс называется расходящимся, а система – неустойчивой;

2) система возвращается к равновесному состоянию, значение управляемой переменной отличается от заданного на величину статической погрешности системы; такой переходной процесс будет сходящимся, а система - устойчивой (рисунок 6.1, б);

3) система характеризуется установившимся периодическим движением; такой процесс называется незатухающим колебательным, а система будет находится на границе асимптотической устойчивости (рисунок 6.1, в).

Рисунок 6.1 Поведение системы после приложения возмущающего воздействия

Рассмотрим, от чего зависит устойчивость системы и чем она определяется. Пусть динамика линейной системы описывается линейным дифференциальным уравнением с постоянными коэффициентами:

Решение такого линейного неоднородного уравнения в общем случае из двух составляющих:

, (6.2)

y уст (t) - частное решение неоднородного уравнения (6.1) с правой частью, описывающее вынужденный режим системы, устанавливающийся по окончании переходного процесса; такие режимы нами были рассмотрены в предыдущем параграфе;

y п (t) - общее решение однородного уравнения , которое описывает переходный процесс в системе, вызванный данным возмущением.

Очевидно, что система будет устойчива, если переходные процессы y п (t) , вызванные любыми возмущениями, будут затухающими, т.е. с течением времени y п (t) будет стремиться к нулю (рисунок 6.1, б).

Решение y п (t) однородного дифференциального уравнения имеет вид:


, (6.3)

C i - постоянные интегрирования, определяемые начальными условиями и возмущениями;

l i - корни характеристического уравнения:

Таким образом, переходный процесс y п (t) представляет собой сумму составляющих, число которых определяется числом корней l i характеристического уравнения (6.4).

В общем случае корни характеристического уравнения являются комплексными, образуя пары сопряженных корней:

где a i может быть как положительной, так и отрицательной величиной, причем корень вещественный, если b j =0 и мнимый, если a i =0 .

Каждая пара таких корней определяет составляющую переходного процесса, равную:

и определяются через и .

Нетрудно увидеть, что эта составляющая представляет собой синусоиду: с затухающими колебаниями, если a i <0 ; с расходящимися колебаниями, если a i >0 ; с незатухающими синусоидальными колебаниями при a i =0 .

Таким образом, условием затухания данной составляющей переходного процесса является отрицательность действительной части корня характеристического уравнения системы.

Если b=0 , то процесс определяется только вещественной частью корня a и является апериодическим. В общем случае, переходный процесс в системе состоит из колебательной и апериодической составляющих. Если хотя бы один корень имеет положительную действительную часть, он даст расходящуюся составляющую переходного процесса и система будет неустойчива. Отсюда следует, что общим условием затухания всех составляющих, а значит и всего переходного процесса в целом, является отрицательность действительной части всех корней характеристического уравнения системы, т.е. всех полюсов (нулей знаменателя) передаточной функции системы.

Наиболее наглядно вышеизложенное можно проиллюстрировать, если изобразить корни характеристического уравнения на комплексной плоскости (рисунок 6.2). В этом случае найденное выше условие устойчивости можно сформулировать так: условием устойчивости системы является расположение всех корней характеристического уравнения системы, т.е. полюсов передаточной функции системы, в левой комплексной полуплоскости, или, говоря короче, все корни должны быть «левыми». Наличие корня на мнимой оси означает, что система находится на границе устойчивости.

Рисунок 6.2 Изображение корней характеристического уравнения на комплексной плоскости

Итак, на первый взгляд задача исследования устойчивости не представляет затруднений, так как достаточно определить расположение корней характеристического уравнения на комплексной плоскости. Однако определение корней характеристического уравнения, имеющего порядок выше третьего, сопряжено со значительными трудностями, в связи с чем и возникает проблема исследования устойчивости систем, динамические процессы в которых описываются дифференциальными уравнениями высокого порядка.

Частичное решение этой проблемы найдено косвенным путем. Разработан ряд признаков, по которым можно судить о знаках действительных частей корней характеристического уравнения системы и тем самым об устойчивости системы, не решая самого характеристического уравнения. При этом обычно встречаются две постановки задачи исследования устойчивости системы:

1)заданы все параметры системы и необходимо определить, устойчива ли система при этих значениях параметров;

2)необходимо определить значения некоторых параметров (при заданных остальных), при которых система устойчива.

Математическая формулировка условий, которым должны удовлетворять коэффициенты характеристического уравнения или какие-либо функции этих коэффициентов, чтобы система была устойчивой, называется критерием устойчивости.