Реферат: Модульная технология на уроках информатики в школе. Краткое описание дисциплины Основные дидактические принципы в обучении информатике

Использование модульного обучения на уроках информатики

ФГБОУ ВПО «Шадринский государственный педагогический институт», г. Шадринск

Научный руководитель – к. п.н., профессор

Современная жизнь предъявляет большие требования к педагогике и методике преподавания отдельных предметов. Как известно, в различных педагогических системах до сих пор применяются устаревшие методы и формы обучения. Несомненно, они проверены временем, но уже недостаточны для решения вопросов активизации и индивидуализации процесса обучения, а также повышения самостоятельности обучающихся и предоставления обучаемым действенных знаний и развития на их почве умений. В настоящее время в системе образования происходят большие перемены. В образовании сегодня провозглашен принцип вариативности , следствием которого является разработка различных вариантов содержания образования, научное создание и практическое обоснование новых идей. В этих условиях учителю необходимо ориентироваться в широком спектре современных технологий.

В последнее время в школах все более широкое применение находят информационные технологии , которые могут решить выше перечисленные проблемы. Вспомним крылатые слова: «Кто владеет информацией, тот владеет миром». Да, информация сегодня для человечества играет такую же роль, как возникновение письменности в древности. Примером информационных технологий может служить программированное обучение и возникшая на его основе модульная технология.

Исследованиями в этой области занимались такие ученые, как, и многие другие.

Модульное обучение, общие положения которого были сформулированы в конце 60-х гг. XX в. в США, возникло как альтернатива традиционному обучению, интегрируя в себе многие прогрессивные идеи, накопленные в педагогической теории и практике.

На современном этапе модульное обучение является одним из наиболее целостных и системных подходов к процессу обучения, обеспечивающим высокоэффективную реализацию дидактического процесса.

Модульное обучение - такая организация процесса учения, при которой учащийся работает с учебной программой, составленной из модулей .

К отличительным особенностям модульного обучения относят:

Обязательную проработку каждого компонента дидактической системы и наглядное проиллюстрирование его в модульной программе и модулях;

Четкую структуризацию содержания обучения, последовательное изложение теоретического материала, обеспечение учебного процесса дидактическими материалами и системой контроля усвоения знаний, позволяющими корректировать процесс обучения;

Вариативность обучения, адаптацию учебного процесса к индивидуальным возможностям и запросам обучающихся.

Цель модульного обучения - создание наиболее благоприятных условий для развития личности обучаемого путем обеспечения гибкого содержания обучения, приспособление дидактической системы к индивидуальным возможностям, запросам и уровню базовой подготовки обучаемого посредством организации учебно-познавательной деятельности по индивидуальной учебной программе.

Сущность модульного обучения состоит в относительно самостоятельной работе обучаемого по освоению индивидуальной программы, составленной из отдельных модулей (модульных единиц). Каждый модуль представляет собой законченное учебное действие, освоение которого идет по операциям-шагам (схема).

Целевые программы" href="/text/category/tcelevie_programmi/" rel="bookmark">целевая программа);

Банк информации: собственно учебный материал в виде обучающих программ;

Методическое руководство по достижению целей;

Практические занятия по формированию необходимых умений;

Контрольная работа, которая строго соответствует целям, поставленным в данном модуле.

Выделяют следующие черты модульного обучения :

1. Возможность индивидуализации обучения.

Модули, в зависимости от способов использования их содержания, могут быть построены для одного ученика или для обучения большой группы с применением индивидуализированного подхода к каждому. Могут быть альтернативные модули. Материал может усваиваться в удобном темпе.

2. Гибкость.

Модули могут группироваться в различные комплекты.

3. Свобода.

Самостоятельное изучение материала.

4. Активное участие обучающихся в педагогическом процессе.

Модуль всегда должен создавать условия для активной познавательной деятельности.

5. Роль учителя.

Модульное обучение – процесс субъективного взаимодействия ученика и учителя. Учитель освобождается от многократного повторения нового материала отдельным группам обучаемых. Учитель эффективнее использует свое время: больше внимания уделяет стимулированию, мотивации учения, личным контактам в процессе обучения.

6. Взаимодействие обучающихся в педагогическом процессе.

Эта черта отражается в стимулировании обучающихся к совместной работе по усвоению материалов модуля. Они могут вместе анализировать сложные вопросы, возможно, проверять усвоение знания. Возможно даже применение незаконченных модулей, чтобы обучающийся сам выбрал следующие пути учения.

Таким образом, можно сказать, что модульное обучение – это такая организация процесса учения, при которой учащийся работает с учебной программой, составленной из модулей .

Основанием для возникновения модульного обучения послужил ряд причин. Отказ от приоритета знаний, умений и навыков учащихся в чистом виде и перенос центра тяжести целей работы школы на развитие способности личности предъявляет новые требования к системе организации и проведения образовательного процесса в школе. Прежде всего, современный педагогический процесс должен быть направлен на достижение конкретных целей, которые в отличие от декларативных должны быть диагностичными.

Вторым существенным моментом модернизации организации проведения образовательного процесса в школе является согласование целей, времени протекания процесса и затрат ресурсов здоровья его участников. Несбалансированность указанных факторов приводит к перегрузке учащихся и учителей.

Технология модульного обучения является одним из направлений индивидуализированного обучения, позволяющего осуществлять самообучение, регулировать не только темпы работы, но и содержание учебного материала. Она позволяет создать такую систему обучения, которая бы обеспечивала познавательные потребности ребенка в соответствии с его возможностями.

Итак, сущность модульного обучения состоит в том, что оно основано на парадигме, суть которой состоит в том, что ученик должен учиться сам, а учитель обязан осуществлять управление его учением: мотивировать, организовывать, координировать, консультировать и контролировать. Эта технология интегрирует в себе многие прогрессивные идеи, накопленные в педагогической теории и практике.

Модуль представляет собой определенный объем учебной информации, необходимой для выполнения какой-либо конкретной деятельности. Он может включать несколько модульных единиц, каждая из которых содержит описание одной законченной операции или приема. Модульные единицы могут расширять и дополнять содержание модуля в зависимости от требований конкретной деятельности.

Каждый модуль имеет свои составляющие. Исходя из целей, модуль может быть познавательным (при изучении основ наук), операционным (для формирования способов деятельности) и смешанным. Необходимость дифференциации позволяет установить разные уровни овладения материалом, где нижним пределом должен быть уровень государственного стандарта .

По мнению, каждый модуль имеет свою структуру, отражающую основные элементы: цель (общая или специальная), входной контроль, планируемые результаты обучения (знания, умения, навыки), содержание, методы и формы обучения, процедуры оценки .

Следовательно, модуль состоит из нескольких структурных единиц, каждая из которых представляет собой объем знаний и умений, необходимых для выполнения одной законченной операции или изучения логически завершенной части учебной информации.

В структуре модуля, наряду с учебными элементами, обеспечивающими непосредственное усвоение информации, выделяют учебный элемент, раскрывающий цели модуля, его содержание; учебный элемент-резюме как обобщение информационного материала, представленного в модуле и элемент-контроль.

Под учебным модулем понимается относительно цельный и логически завершенный элемент построения учебного материала какого-либо предмета (дисциплины), соответствующий средней по объему учебной теме. Учебный модуль включает в себя блок – содержание учебного материала, блок – модуль предписания алгоритма деятельности.

В модульную систему обучения вписываются все системы методов, приемов, форм организации познавательной деятельности школьников. Модульный подход к подаче учебного материала позволяет успешно осуществлять внутрипредметные связи и межпредметные связи, «переносить» определенные блоки знаний из одного предмета в другой, интегрировать учебное содержание.

Итак, модульное обучение проявляется в двух аспектах: позиция ученика, который получает возможность самостоятельно работать с учебной программой, скорректированной в соответствии с его индивидуальными возможностями; позиция учителя, функции которого варьируются от информационно-координирующих до консультативно-координирующих .

Следовательно, модульное обучение – это четкая технология обучения, базирующаяся на научно обоснованных данных, не допускающая экспромтов, как это возможно в традиционном обучении, а рейтинговая оценка обучения позволяет с большей степенью доверительности характеризовать качество знаний.

Модуль состоит из циклов уроков (двух - и четырехурочных). Расположение и количество циклов в блоке могут быть любыми. Каждый цикл в этой технологии является своего рода мини-блоком и имеет жестко определенную структуру. Рассмотрим организацию четырехурочного цикла.

Первый урок цикла предназначен для изучения нового материала с опорой на максимально доступный комплекс средств обучения. Как правило, на этом уроке каждый учащийся получает конспект или развернутый план материала (заранее размноженный либо появляющийся на экране, мониторе одновременно с объяснением учителя). На этом же уроке проводится первичное закрепление материала, конкретизация информации в специальной тетради.

Цель второго урока – заменить собой домашнюю проработку материала, обеспечить его усвоение и проверку усвоения. Работа проходит в парах или малых группах. Перед уроком учитель воспроизводит на экране конспект, известный учащимся по первому уроку цикла, и проецирует вопросы, на которые необходимо им ответить. По организационной форме этот урок является разновидностью практикума.

Третий урок полностью отводится под закрепление. Сначала это работа со специальной тетрадью (на печатной основе), а затем выполнение индивидуальных заданий.

Четвертый урок цикла включает предварительный контроль, подготовку к самостоятельной работе и собственно самостоятельную работу. В модульно-блочной технологии применяются объяснительно-иллюстративный, эвристический, программированный методы обучения.

Фундаментом модульного обучения является модульная программа. Модульная программа представляет собой серию сравнительно небольших порций учебной информации, подаваемых в определенной логической последовательности.

Модульный принцип формирования учебного материала в курсе «Информатика» позволяет включать новые разделы, необходимость изучения которых вызывается (впрочем, как и содержание всего обучения в школе) потребностями общества.

Уровневое деление содержания, формулирование требований к знаниям и умениям учащихся должно адаптировать модуль к циклической модели построения школьного курса информатики: тема рассматривается на протяжении всего периода изучения предмета, но на каждом уровне (пропедевтический, базовый, профильный) все более углубленно и расширенно.

Рассмотрим модульное обучение информатике на примере темы «Компьютерная безопасность».

Тема может включать следующие модули :

Защита информации средствами операционной системы;

Защита и восстановление информации на жестких дисках;

Защита информации в локальных и глобальных сетях;

Правовые основы защиты информации.

Изучение каждого модуля в теме «Компьютерная безопасность» должно предусматривать проведение теоретических и практических занятий и основываться на знании базовых разделов информатики и информационных технологий. В конце изучения каждого модуля проводится контроль качества его усвоения в форме контрольной работы. Завершается изучение темы итоговой контрольной работой, содержащей комплексное задание по содержанию всей темы. Итоговая контрольная работа может быть заменена проектным заданием, выполнение которого требует не только знания содержания темы, но и практических умений, навыков исследовательской деятельности, творческого подхода. Результаты проектной деятельности представляются публично, что служит развитию коммуникационных навыков, умения защищать свое мнение, критично и доброжелательно относиться к суждениям оппонентов.

Отличительной особенностью темы «Компьютерная безопасность» должно являться дополнительное программное и техническое обеспечение уроков. Выполнение практических заданий по внесению элементов защиты в настройки операционной системы и программного обеспечения персонального компьютера, а также выявлению и устранению неисправностей на жестких дисках требует как высокой подготовленности учителя, так и резервирования жестких дисков ЭВМ компьютерных классов программными и аппаратными методами.

Литература

1. , Качалов технологии. Учебное пособие для студентов педагогических вузов. – Шадринск, 20с.

2. Селевко образовательные технологии: Учебное пособие. – М.: Народное образование, 19с.

3. Телеева технологии. Учебное пособие. – Шадринск, 20с.

4. Чошанов технология проблемно-модульного обучения: Методическое пособие. – М.: Народное образование, 19с.

5. Юцявичене модульного обучения //Советская педагогика. – 1990. – № 1. – С. 55.

6. «Защита информации» - как тема и содержание учебного модуля предмета "Информатика" [Электронный ресурс]/ – Режим доступа: http://www. *****/ito/2002/I/1/I-1-332.html.

Практическая и научная актуальность модульно-рейтинговой технологии (МРТ) обучения.

Применение МРТ – способ решения проблемы нехватки учебного времени и объективности оценки знаний.

Этапы создания учебной системы с использованием МРТ: разбиение курса на модули, подробное описание каждого учебного модуля, разработка системы контроля, выполнение разбалловки для рейтинговой оценки знаний.

Из практического опыта применения МРТ обучения базовому курсу информатики.

Положительные результаты использования МРТ.

Положительные черты МРТ обучения.

Условия эффективности модульной технологии.

Скачать:


Предварительный просмотр:

преподавания базового курса информатики

На современном этапе развития образования наблюдается постепенный отказ от приоритетного формирования знаний, умений и навыков в чистом виде. Центр тяжести переносится на формирование и развитие способностей учащихся, особенно способности к самообразованию, к самостоятельному получению знаний, умений и отработке навыков. Все эти категории входят в понятие «компетентность». Воспитание компетентного человека становится конечной целью образовательного процесса в средней школе.

Я преподаю информатику с 1985 года, то есть с момента введения этого предмета в программу средней общеобразовательной школы. Прошла все этапы развития и становления этого предмета: безмашинный курс, программирование на отечественных «Электроника БК-0010», введение изучения информатики в начальной и неполной средней школе, массовый переход на использование IBM-PC-совместимых компьютеров. В обычных средних школах на изучение предмета «Информатика» в начальном и среднем звене отводится один час в неделю. Этого времени катастрофически мало для полного и глубокого изучения такого серьезного предмета. Передо мной всегда стояла проблема: уделяешь внимание теоретическому материалу – не остается времени на практические работы, серьезно займешься практикой – некогда изучать теорию. Другой проблемой было объективное оценивание по этому предмету, так как дети находились в неравных условиях. Кто-то имел дома компьютер и навыки работы на нем, а у кого-то возможность научиться была только в школе.

Найти выход из сложившейся многолетней проблемы мне помогла модульная технология преподавания информатики и рейтинговая система оценки. В них я увидела рациональное зерно и путь к повышению собственной компетентности и компетентности учащихся. Использование модульно-рейтинговой технологии (МРТ) преподавания базового курса информатики позволило мне:

  1. сократить время на изучение теоретической части за счет дифференциации содержания учебного материала и увеличения доли самостоятельной работы учащихся;
  2. повысить объективность оценки усвоения знаний, навыков и умений за счет эффективной системы контроля и применения рейтингового принципа оценивания;
  3. формировать у учащихся навыки самообразования, мобильность знаний, активность в учебной деятельности.

Модульная технология известна с 1972 года. После Всемирной конференции ЮНЕСКО 1972 года в Токио, обсуждавшей проблемы просвещения взрослых, она была рекомендована как наиболее пригодная для непрерывного обучения. Затем ценность этой технологии была определена не только для взрослых, но и для молодежи. Практическая и научная актуальность модульной технологии заключается:

  1. в сочетании новых подходов к обучению и традиций, накопленных с момента возникновения обычного комбинированного урока;
  2. в постепенности в обучении, поэтапном формировании умственных действий, что позволяет избежать шока у учащихся;
  3. в активности ученика в учебной деятельности, при которой он сам оперирует учебным содержанием, что ведет к более прочному и осознанному усвоению.

Моей задачей было создание адекватной учебной системы , включающей в себя циклическое (модульное) построение учебного материала с преобладающей учебно-познавательной деятельностью ученика и системы контроля с применением рейтингового принципа оценивания. Чтобы эта система реально работала необходимо:

  1. определить главную идею курса. Поставить конечную дидактическую цель. Сформировать частные дидактические цели;
  2. разбить курс на модули;
  3. составить тематическое планирование с указанием порядкового номера модуля в теме или разделе;
  4. сформировать содержание каждого модуля. Описать модули и определить их тип;
  5. разработать систему контроля по каждому модулю;
  6. выполнить разбалловку, применяя принцип рейтинга;
  7. обеспечить учащихся дидактическими материалами. Подготовить оценочные листы.

Приведу пример создания такой системы изучения информатики в 7 классе с использованием учебника И.Г.Семакина. Курс разбила на четыре модуля:

1) Понятие информации. Системы счисления. – 8 ч.

2) Устройство персонального компьютера. Программное обеспечение. – 10 ч.

3) Тексты в компьютерной памяти. Текстовые редакторы. – 9 ч.

4) Компьютерная графика. Графические редакторы. – 7 ч.

Сделала тематическое планирование и описание содержания теоретической и практической части каждого урока модуля по схеме:

№ урока

тема

теория

практика

вид отчета

балл

Модуль 1. Понятие информации. Системы счисления.

домашн.

практ.

тест

Введение в предмет.

Информатика как наука. Компьютер - универсальное средство для работы с информацией.

Знакомство с компьютерным классом, своим рабочим местом. ТБ и правила поведения в кабинете информатики.

№ 1

Информация и знания. Виды информации.

Информация как знания человека. Декларативные и процедурные знания.. Виды информации по способу восприятия и форме представления.

Знакомство с клавиатурой. Работа с клавиатурным тренажером.

№ 2

Определила тип каждого модуля :

1 модуль информационный, так как главное в нем – объем информации по теме;

2 модуль смешанный – теоретический материал и формирование и развитие способов деятельности практически преобладают в равных долях;

3 модуль операционный, так как главное в нем – формирование и развитие практических навыков;

4 модуль тоже смешанный.

Следует отметить, что большинство модулей базового курса смешанного типа. Модули можно также различать по месту в модульной программе курса: начальный, базовый, моновалентный – служит базой для одного очередного модуля и поливалентный – служит базой для двух или более следующих за ним модулей. По видам деятельности учеников и учителя на уроке модули бывают: с доминирующей деятельностью ученика по сравнению с обучающей деятельностью учителя; с полной самостоятельной деятельностью ученика.

Система контроля по модулям включает в себя домашние задания, практические работы, контрольное и итоговое тестирование. При подборе заданий и практических работ использую методическое пособие «Преподавание базового курса информатики в средней школе» авторов И.Г.Семакина и Т.Ю.Шеиной. Для каждого ученика делаю сборник домашних заданий, в классе на каждое рабочее место сборник с описанием содержания и хода практических работ, при проведении тестирования использую автоматизированную систему тестирования AS TEST, которая позволяет создавать тесты с любым количеством вопросов, фиксирует и сохраняет результат выполнения теста, позволяет анализировать ошибки.

У каждого ученика в тетради имеется оценочный лист , в который он заносит полученные баллы за все контрольные мероприятия по модулю и, таким образом, сам ведет учет своих успехов. Пример такого листа:

Оценочный лист за модуль 1 ученика ______________________________________

Вид

контроля

Домашнее задание

Тест

Практ.

работа

Оценка

за

модуль

№1

№2

№3

№4

№5

№6

№0

№1

№ 1

Баллы

Подсистема контроля основана на объективном измерении знаний учащихся. Систематическое (на каждом уроке) измерение знаний учащихся принципиально отличает МРТ от традиционного обучения, опирающегося на субъективное оценивание знаний. По всем видам контроля подбираются задания, и определяется количество баллов за каждый вид работы.

Разбалловка – распределение баллов по всем контрольным мероприятиям курса – является важной процедурой МРТ. Общий принцип разбалловки – число баллов пропорционально времени, отводимому на выполнение задания. Я использую многобалльную систему. В начале каждого учебного года принимается локальный акт по школе, согласно которому оценивание по информатике в 7-9 классах осуществляется по многобалльной системе. За каждый урок в классный журнал я выставляю не оценки, а баллы. Количество заработанных баллов за модуль составляет контрольный рейтинг учащегося. Кроме контрольного использую еще промежуточный рейтинг , который в любой момент времени равен сумме баллов, набранных к этому моменту по всем видам работ. А также максимальный рейтинг , равный сумме баллов, заработанной учащимся за весь курс. Рейтинг учащегося в любой момент времени можно перевести в привычную нам пятибалльную шкалу, установив определенные пороги, например: «5» - 75% от рейтинга, «4» - 60%, «3» - 50%. Эти пороги можно изменять, но они должны быть стабильными в течение всего учебного года. Можно использовать также поощрительный балл (за прилежание), который составляет 5-10% от контрольного рейтинга и учитывается только при выставлении оценки, но не влияет на текущий рейтинг учащегося.

Чтобы избежать рутинной работы при подсчете рейтинга учащихся, которая требует много времени, создала в Excel электронный журнал , в котором с помощью соответствующих формул подсчитывается текущий и контрольный рейтинг, а затем переводится в пятибалльную систему оценки для выставления результатов успеваемости за четверть.

Практический опыт применения модульно-рейтинговой технологии дал свои результаты, которые выразились в положительной динамике успеваемости и качества знаний в классах, в которых она применялась. Например, успеваемость за 2006-2007 учебный год в 7а классе:

Следующим положительным моментом считаю непрерывность в обучении – исчезли «белые пятна» в знаниях по информатике. В электронном журнале практически нет «нулей», то есть невыполненных заданий. У учеников появилась неподдельная заинтересованность в своих учебных результатах. Каждый учащийся, стремясь набрать максимальный рейтинг, выполняет все задания из своих дидактических материалов, самостоятельно отрабатывая теоретический материал курса, работая с учебником и дополнительной литературой. Практические работы и тесты выполняют на дополнительных занятиях, если пропустили урок или получили недостаточное количество баллов. У детей сложилось отношение к оценке не как к «наказанию» или «поощрению», а как к результату своей работы, они поняли, что не я (учитель) ставлю оценки, а они сами, своим трудом и старанием зарабатывают их. Это также является положительной чертой рейтинговой системы оценивания.

В заключении хочу отметить основные положительные черты модульно-рейтинговой технологии обучения:

  1. направленность на формирование мобильности знаний, критичности мышления учащихся;
  2. вариативность структуры модулей;
  3. дифференциация содержания учебного материала;
  4. обеспечение индивидуализации учебной деятельности;
  5. сокращение учебного времени без ущерба для глубины и полноты знаний учащихся;
  6. эффективная система рейтингового контроля и оценки усвоения знаний;
  7. высокий уровень активизации учащихся на уроке;
  8. формирование навыков самообразования.

Не всегда применение какой-либо технологии дает положительные результаты. Только практический опыт применения может выявить недостатки и достоинства той или иной системы обучения. К условиям эффективности модульной технологии можно отнести:

  1. соответствие уровня данного коллектива обучаемых структуре модульной программы, поэтому нужно создавать адекватную учебную систему, исходя из объективных и субъективных условий;
  2. соответствие возрастных особенностей психического развития применяемой технологии. Так, для учащихся 5-го класса модульная система не совсем подходит, потому что у них нет достаточных навыков самостоятельной работы;
  3. возможность применения модульной технологии к данному содержанию образования;
  4. владение учителем модульной технологией, его высокая мотивация в отработке данной системы обучения.

Приложение 1. Электронный журнал результатов.

Приложение 2. Презентация к выступлению на районном методическом объединении учителей физико-математического цикла по теме «Модульно-рейтинговая технология обучения информатике в 7 классе». Слайд 2

Зависимость усвоения информации от способов обучения Лекция, словесное сообщение Наглядные аудиоматериалы Чтение Демонстрация Работа в дискуссионной группе Практика через действие Немедленное применение знаний 5% 90% 10% 20% 30% 50% 75%

Адекватная модель учебной системы знаний, включающая модульные структуры по отдельным разделам дисциплины, поддающиеся контролю. Модель учебной системы Системное описание модулей Подсистема контроля Принцип рейтинга Контрольные мероприятия Разбалловка Поощрительный балл Электронный журнал

Модульная структура учебной системы Информатика Пропедевтический курс Базовый курс Профильный курс 5 кл. 6 кл. 8 кл. 7 кл. 9 кл. 10 кл. 11 кл. Модуль1 Введение в предмет. Понятие информации. Понятие СС. Модуль 2 Архитектура компьютера. Программное обеспечение компьютера. Модуль 3 Тексты в компьютере. Текстовые редакторы. Модуль 4 Компьютерная графика. Графические редакторы.

Подсистема контроля в МРТ основана на объективном и систематическом измерении знаний, умений и навыков учащихся. Система контроля Текущий контроль Рубежный контроль Итоговый контроль Практическое задание Домашнее задание Задание по теории Контрольная работа Контрольное тестирование Зачет по курсу Итоговое тестирование

Разбалловка – распределение баллов по всем контрольным мероприятиям учебного курса. Общий принцип разбалловки – число баллов пропорционально времени, отводимому на выполнение задания (многобалльная система). Использование поощрительного балла (балла за прилежание). Система оценки

Принцип рейтинга Максимальный рейтинг Р max равен сумме баллов, заработанной учащимся за весь курс. Контрольный рейтинг Р равен сумме баллов за модуль. Текущий рейтинг в любой момент времени равен сумме баллов, набранных к этому моменту по всем видам работ. Поощрительный балл варьируется в пределах 5-10% от Р или Р max и учитывается только при выставлении оценки, но не влияет на текущий рейтинг учащегося.

Перевод рейтинга учащегося в пятибалльную шкалу: «5» = 0,75 ∙ P «4» = 0,6 ∙ P «3» = 0,5 ∙ P Шкала оценок за тестирование Количество вопросов Оценка «5» Оценка «4» Оценка «3» 30 21 18 15 25 18 15 13 20 14 12 10 15 12 10 8 10 8 6 5



Введение

Глава 1. Планирование курса обучения информатике в средней школе

1 Уровень подготовки выпускника средней школы по информатике

2 Положительные и отрицательные стороны современного школьного курса

Глава 2. Реализация курса информатики в средней школе

1 Пути совершенствования курса информатики

2 Предложения по построению школьного курса информатики

Заключение

Список используемой литературы

Приложение


Введение


С момента введения в школу курса информатики накопился значительный опыт. На первом этапе курс был ориентирован на изучение основ алгоритмизации и программирования, а в дальнейшем на освоение и применение средств информационных технологий. Однако за последние годы коренным образом переосмыслены роль и место информатики в системе научных дисциплин, растущее значение информационной деятельности в развитии общества. За это время произошли значительные изменения во взглядах на школьную информатику, обосновано огромное общеобразовательное значение изучения информатики, что обуславливает необходимость расширения задач обучения информатике в школе и соответственно целесообразность переработки содержания курса, перехода к полноценному общеобразовательному курсу.

Общеобразовательная область, представляемая в учебном плане школы курсом информатики, может быть рассмотрена в двух аспектах:

·системно-информационная картина мира, общие информационные закономерности строения и функционирования систем различной природы;

·методы и средства получения, обработки, передачи, хранения и использования информации, решение задач с помощью средств новых информационных технологий.

Педагогические функции этой общеобразовательной области - формирование основ научного мировоззрения, развитие мышление школьников, подготовка к практической деятельности, труду, продолжению образования.

Проблема исследования: Разработано множество вариантов построения школьного курса информатики. В реальной действительности эти варианты быстро устаревают в силу обстоятельств быстро растущих компьютерных знаний и не могут обеспечить актуальную подготовку выпускников школ.

Объект исследования: Определение содержания, построение, планирование школьного курса информатики для подготовки выпускника школы к жизни и профессиональной деятельности в информационном обществе.

Предмет исследования: Варианты построения школьного курса информатики рассмотрены в условиях динамичного развития вычислительной техники и расширенной сферы ее применения.

Цель исследования: Обосновать и предложить вариант построения школьного курса информатики наиболее приемлемый к школам города Нижнекамска на данном этапе информатизации общества.

Задачи исследования:

-изучение литературы по построению курсов школьных дисциплин;

-изучение литературы по построению школьного курса информатики

-изучение стандарта по информатике

-выявление положительных и отрицательных сторон в имеющихся вариантах школьного курса информатики.

Актуальность исследования: Быстрое изменение различных сфер жизни в информационном обществе требует глубокого подхода к обучению в школе, особенно это необходимо при изучении информатики. Любые изменения курса начинаются с определения его содержания и построения, поэтому исследование направлено на эту часть курса.


Глава 1. Планирование курса обучения информатике в средней школе


В последнее десятилетие целевые установки нашей системы образования существенно изменились, о чем свидетельствует новый закон об образовании, провозгласивший наивысшей ценностью личность учащегося, его самобытность, самоценность, предоставивший каждому педагогу возможность конструировать свой курс по собственному усмотрению, и множество разработок новых (и обновленных старых) образовательных, моделей, их внедрение и т.д. Целью образования в настоящее время является создание условий развития личности учащихся, его самореализации, разрешение проблем личности средствами образования.

Кроме этих объективных особенностей нашего времени, относящихся ко всему образованию, существует ряд специфических особенностей информатики, контрастно отличающих ее от других образовательных областей. К ним можно отнести:

·Стремительное развитие информационных технологий, что не только не позволяет создать относительно статические курсы в образовании, но и кроме того требует энергичного и своевременного обновления материально-технической базы, программного обеспечения, постоянного повышения квалификации педагогов;

·В последние три десятилетия мир активно шагает в информационное общество. Основная масса учащихся по собственному разумению с помощью родителей и окружающих, средств массовой информации образовывается в области информатики и информационных технологий вне школьной программы. Это приводит к резкой разноуровневости образования детей, его отрывочному или поверхностному содержанию и не может служить основой для формирования информационной культуры;

·Педагогический ресурс преподавателей информатики в целом по стране выращен слабо. Многие преподаватели это выпускники математических факультетов университетов, технических вузов, которые не имели специальной подготовки преподавателя информатики. В силу этих причин преподаватели предъявляют принципиально различные целеполагания в преподавании курсов информатики и ИТ. В то время как именно целеполагание определяет деятельность в функциональном плане, позволяет осознать образ будущих результатов деятельности. Кроме того, по той же причине лишь недавно стали появляться учебники отвечающие педагогическим требованиям. Но таких немного и они не покрывают потребности современного образовательного процесса.

Учитывая названные причины, мы строим целеполагание в курсе информатики и ИТ прежде всего на основе личностно- ориентированной модели образования. Целью курса тогда становится создание условий для проявления и развития «самости» учащегося на основе средств и предметной области курсов информатики и ИТ, сохраняя его самобытность, поддерживая, создавая ситуации для самоутверждения, присвоения социального опыта, творческого подхода к осмыслению настоящего и апробирования элементов будущего. Далее, исходя из объявленной цели, мы определяем необходимые условия конструирования содержания и технологий образования:

·Учет интересов и целей каждого учащегося на основе личностного целеполагания, рефлексии и осуществлении проектной деятельности;

·Конструирование многообразного и многофункционального содержания учебного курса, что позволяет учесть особенности и потребности каждого ребенка. Участие самого ребенка в построении личностно-значимого содержания обеспечивается возможностью свободного выбора элементов (модулей), и их нелинейной комбинации;

·Создание продуктивного образовательного поля, возможности для творчества, активности, самостоятельности, самоуправления;

·Преемственность в содержании, возможность учета ситуативных моментов и расширение его границ с использованием субъективного опыта учащихся;

Для выполнения объявленных задач используем:

.Модульный подход в построении всего курса информатики и ИТ с предоставлением учащимся свободы выбора модуля;

.Элементы нелинейных технологии;

.Индивидуализацию в каждом модуле, теме, занятии на основе личностного целеполагания и рефлексии деятельности самими учащимися;

.Систему интеллектуальных соревнований. Под интеллектуальными соревнованиями мы понимали учебное развивающее мероприятие, отличающееся по содержанию - проблемностью, нестандартными заданиями, по форме - продуктивной активностью участников, методам - активизирующим мыслительную деятельность, партнерским стилем отношений. Интеллектуальные соревнования непременно включают в себя продуктивный мыслительный акт. На интеллектуальных соревнованиях усвоение содержания образования происходит в условиях дидактико-коммуникативной среды, обеспечивающей субъектно-смысловое общение, рефлексию, самореализацию личности. Содержательная часть интеллектуальных соревнований составляет вопросы и проблемы, исходящие из личностного опыта учащихся, при решении которых формируется собственный смысл учебного материала, а диалог выступает фактором актуализации смыслообразующей, рефлексивной и других функций личности;

.Проектный метод используется как основная технология в преподавании ряда модулей, либо как элемент педагогических технологий в других. Использование проектного метода на последней ступени курса создает условия для самоуправления, поиска информации, самоутверждения в образовательной среде.

.Совместная деятельность всех участников личностно ориентированной модели образования реализуется через сотрудничество, когда все отношения партнерские, а все участники деятельности переходят в позицию субъекта. Сотрудничество - условие выращивания диалогичности и самоизменения каждого субъекта образовательной деятельности.

Весь курс разбит на модули, каждый из которых может быть при устаревании удален, доработан или обновлен полностью. Модули разделены на три ступени (вход на каждую зависит от желаний и готовности учащегося): пропедевтическая, технологическая, проектная. Учебные коллективы, в силу описанных выше причин, разновозрастные. Технологии обучения максимально индивидуализированы и позволяют учесть возраст учащегося и его подготовки в процессе занятий. Содержание внутри модулей на технологической и проектной ступенях определяется в совместном его конструировании педагогом и учащимся.

школьный курс информатика образование

1.1 Уровень подготовки выпускника средней школы по информатике


По окончании школьного курса информатики выпускник должен (обязан) иметь следующие знания, умения, навыки для продолжения обучения и полноценной жизни в информационном обществе:

1. Человек и информация

Учащиеся должны знать:

  1. определение информации в соответствии с содержательным подходом и кибернетическим (алфавитным) подходом;
  2. что такое информационные процессы;
  3. какие существуют носители информации;
  4. функции языка, как способа представления информации; что такое естественные и формальные языки;
  5. как определяется единица измерения информации - бит;
  6. что такое байт, килобайт, мегабайт, гигабайт;
  7. в каких единицах измеряется скорость передачи информации;
  8. что такое система счисления; в чем различие между позиционными и непозиционными системами счисления;
  9. основные этапы в истории развития средств хранения, передачи и обработки информации до изобретения ЭВМ

Учащиеся должны уметь:

  1. приводить примеры информации и информационных процессов из области человеческой деятельности, живой природы и техники;
  2. определять в конкретном процессе передачи информации источник, приемник, канал;
  3. приводить примеры информативных и неинформативных сообщений;
  4. приводить примеры сообщений, несущих 1 бит информации;
  5. измерять информационный объем текста в байтах (при использовании компьютерного алфавита);
  6. пересчитывать количество информации в различных единицах (битах, байтах, Кб, Мб, Гб);
  7. рассчитывать скорость передачи информации по объему и времени передачи, а также решать обратные задачи;
  8. переводить целые числа из десятичной системы счисления в другие системы и обратно;
  9. выполнять простейшие арифметические операции с двоичными числами;

2. Первое знакомство с компьютером

Учащиеся должны знать:

  1. правила техники безопасности при работе на компьютере;
  2. состав основных устройств компьютера, их назначение и информационное взаимодействие;
  3. основные характеристики компьютера в целом и его узлов (различных накопителей, устройств ввода и вывода информации);
  4. структуру внутренней памяти компьютера (биты, байты); понятие адреса памяти;
  5. типы и свойства устройств внешней памяти;
  6. типы и назначение устройств ввода-вывода;
  7. сущность программного управления работой компьютера.
  8. принципы организации информации на дисках: что такое файл, каталог (папка), файловая структура;
  9. назначение программного обеспечения и его состав.

Учащиеся должны уметь:

  1. включать и выключать компьютер;
  2. пользоваться клавиатурой;
  3. вставлять дискеты в накопители;
  4. ориентироваться в типовом интерфейсе: пользоваться меню, обращаться за справкой, работать с окнами;
  5. инициализировать выполнение программ из программных файлов;
  6. просматривать на экране директорию диска;
  7. выполнять основные операции с файлами и каталогами (папками): копирование, перемещение, удаление, переименование, поиск.

3. Текстовая информация и компьютер.

Учащиеся должны знать:

  1. способы представления символьной информации в памяти ЭВМ (таблицы кодировки, текстовые файлы);
  2. назначение текстовых редакторов (текстовых процессоров);
  3. основные режимы работы текстовых редакторов (ввод-редактирование, печать, орфографический контроль, поиск и замена, работа с файлами);

Учащиеся должны уметь:

  1. набирать и редактировать текст в одном из текстовых редакторов;
  2. выполнять основные операции над текстом, допускаемые этим редактором;
  3. сохранять текст на диске, загружать его с диска, выводить на печать;

4. Графическая информация и компьютер

Учащиеся должны знать:

  1. способы представления изображений в памяти ЭВМ; понятия о пикселе, растре, кодировке цвета, видеопамяти;
  2. какие существуют области применения компьютерной графики;
  3. назначение графических редакторов;
  4. назначение основных компонентов среды графического редактора: рабочего поля, меню инструментов, графических примитивов, палитры, ножниц, ластика и пр;

Учащиеся должны уметь:

  1. строить несложные изображения с помощью одного из графических редакторов;
  2. сохранять рисунки на диске и загружать с диска; выводить на печать;

5. Передача информации в компьютерных сетях

Учащиеся должны знать:

  1. что такое компьютерная сеть; в чем различие между локальными и глобальными сетями;
  2. назначение основных технических и программных средств функционирования сетей: каналов связи, модемов, серверов, клиентов, протоколов;
  3. назначение основных видов услуг глобальных сетей: электронной почты, телеконференций, распределенных баз данных и др;
  4. что такое Internet; какие возможности предоставляет пользователю Всемирная паутина - WWW;

Учащиеся должны уметь:

  1. осуществлять обмен информацией с файл-сервером локальной сети или с рабочими станциями одно-ранговой сети.

6. Введение в информационное моделирование

Учащиеся должны знать:

  1. что такое модель; в чем разница между натурной и информационной моделью;
  2. какие существуют формы представления информационных моделей (графические, табличные, вербальные, математические);

Учащиеся должны уметь:

  1. приводить примеры натурных и информационных моделей;
  2. ориентироваться в таблично-организованной информации;
  3. описывать объект (процесс) в табличной форме для простых случаев;

7. Базы данных

Учащиеся должны знать:

  1. что такое база данных, СУБД, информационная система;
  2. что такое реляционная база данных, ее элементы (записи, поля, ключи); типы и форматы полей;
  3. структуру команд поиска и сортировки информации в базах данных;
  4. что такое логическая величина, логическое выражение;
  5. что такое логические операции, как они выполняются.

Учащиеся должны уметь:

  1. открывать готовую БД в одной из СУБД реляционного типа;
  2. организовывать поиск информации в БД;
  3. редактировать содержимое полей БД;
  4. сортировать записи в БД по ключу;

8. Табличные вычисления на компьютере

Учащиеся должны знать:

  1. что такое электронная таблица и табличный процессор;
  2. основные информационные единицы электронной таблицы: ячейки, строки, столбцы, блоки и способы их идентификации;
  3. какие типы данных заносятся в электронную таблицу; как табличный процессор работает с формулами;
  4. основные функции (математические, статистические), используемые при записи формул в ЭТ;
  5. графические возможности табличного процессора.

Учащиеся должны уметь:

  1. открывать готовую электронную таблицу в одном из табличных процессоров;
  2. редактировать содержимое ячеек; осуществлять расчеты по готовой электронной таблице;
  3. выполнять основные операции манипулирования с фрагментами ЭТ: копирование, удаление, вставка, сортировка;
  4. получать диаграммы с помощью графических средств табличного процессора;
  5. создавать электронную таблицу для несложных расчетов.

9. Искусственный интеллект и базы знаний

Учащиеся должны знать:

  1. что такое модель знаний, база знаний;
  2. из чего строится логическая модель знаний;
  3. какие проблемы решает раздел информатики Искусственный интеллект.

Учащиеся должны уметь:

  1. различать декларативные и процедурные знания, факты и правила.

10. Информация и управление

Учащиеся должны знать:

  1. что такое Кибернетика; предмет и задачи этой науки;
  2. сущность кибернетической схемы управления с обратной связью; назначение прямой и обратной связи в этой схеме;
  3. что такое алгоритм управления; какова роль алгоритма в системах управления;
  4. в чем состоят основные свойства алгоритма;
  5. способы записи алгоритмов: блок-схемы, учебный алгоритмический язык;
  6. основные алгоритмические конструкции: следование, ветвление, цикл; структуры алгоритмов;
  7. назначение вспомогательных алгоритмов; технологии построения сложных алгоритмов: метод последовательной детализации и сборочный (библиотечный) метод.

Учащиеся должны уметь:

  1. при анализе простых ситуаций управления определять механизм прямой и обратной связи;
  2. пользоваться языком блок-схем, понимать описания алгоритмов на учебном алгоритмическом языке;
  3. выполнить трассировку алгоритма для известного исполнителя;
  4. составлять несложные линейные, ветвящиеся и циклические алгоритмы управления одним из учебных исполнителей;
  5. выделять подзадачи; определять и использовать вспомогательные алгоритмы.

11. Как работает компьютер

Учащиеся должны знать:

  1. представление целых положительных чисел в памяти компьютера;
  2. структуру машинной команды;
  3. состав процессора и назначение входящих в него элементов (арифметико-логического устройства, устройства управления, регистров);
  4. как процессор выполняет программу (цикл работы процессора);
  5. основные этапы развития информационно-вычислительной техники, программного обеспечения ЭВМ и информационных технологий.

Учащиеся должны уметь:

  1. переводить целые положительные числа во внутреннее машинное представление;
  2. осуществлять переход между двоичной и шестнадцатеричной формой внутреннего представления информации

12. Введение в программирование

Учащиеся должны знать:

  1. назначение языков программирования;
  2. в чем различие между языками программирования высокого уровня и машинно-ориентированными языками;
  3. что такое трансляция;
  4. назначение систем программирования;

Учащиеся должны уметь:

  1. работать с готовой программой на одном из языков программирования высокого уровня.

1.2 Положительные и отрицательные стороны современного школьного курса


В последние годы в развитии информатики как учебной дисциплины наблюдается кризис, вызванный тем, что:

задача 1-го этапа введения школьного предмета информатика в основном выполнена;

Все школьники знакомятся с основными компьютерными понятиями и элементами программирования. Пока решалась эта задача, передний край научной и практической информатики ушел далеко вперед, и стало неясно, в каком направлении двигаться дальше;

Исчерпаны возможности учителей информатики, как правило, либо не являющимися профессиональными педагогами, либо не являющимися профессиональными информатиками и прошедшими лишь краткосрочную подготовку в институте усовершенствования учителей;

Отсутствуют взвешенные, реалистичные учебники;

Из-за различия условий для преподавания информатики в различных школах (разнообразия типов средств вычислительной техники) и появившейся у школ относительной свободы в выборе профилей классов, учебных планов и образовательных программ появился значительный разброс в содержании обучения информатики.

В существенной степени проявилось и изменение парадигмы исследований в области информационных технологий и их приложении на практике. В начальный период своего существования школьная информатика питалась в основном идеями из практики использования информационных технологий в научных исследованиях, технической кибернетике, АСУ и САПР. В связи с кризисом финансирования научных учреждений и исследований, фактической остановкой наукоемких производств и их перепрофилированием общая научная ориентация курса информатики утратила актуальность. Значительно снизилась исходная мотивация школьников к изучению научно-ориентированных предметов и успеваемость по ним. Явно проявляется социальный запрос, направленный на бизнес ориентированные применения информационных технологий, пользовательские навыки использования персональных компьютеров для подготовки и печати документов, бухгалтерских расчетов и т.д. Однако, большинство общеобразовательных учебных заведений не готово к реализации этого запроса в силу отсутствия соответствующей учебной вычислительной техники и недостаточной подготовке учителей информатики.

Компьютер является не просто техническим устройством, он предполагает соответствующее программное обеспечение. Решение указанной задачи связано с преодолением трудностей, обусловленных тем, что одну часть задачи - конструирование и производство ЭВМ - выполняет инженер, а другую - педагог, который должен найти разумное дидактическое обоснование логики работы вычислительной машины и логики развертывания живой человеческой деятельности учения. В настоящее время последнее приносится пока что в жертву логике машинной; ведь для того чтобы успешно работать с компьютером, нужно, как отмечают сторонники всеобщей компьютеризации, обладать алгоритмическим мышлением.

Другая трудность состоит в том, что средство является лишь одним из равноправных компонентов дидактической системы наряду с другими ее звеньями: целями, содержанием, формами, методами, деятельностью педагога и деятельностью учащегося. Все эти звенья взаимосвязаны, и изменение в одном из них обусловливает изменения во всех других. Как новое содержание требует новых форм его организации, так и новое средство предполагает переориентацию всех других компонентов дидактической системы. Поэтому установка в школьном классе или вузовской аудитории вычислительной машины или дисплея есть не окончание компьютеризации, а ее начало - начало системной перестройки всей технологии обучения.

Преобразуется прежде всего деятельность субъектов образования - учителя и ученика, преподавателя и студента. Им приходится строить принципиально новые отношения, осваивать новые формы деятельности в связи с изменением средств учебной работы и специфической перестройкой ее содержания. И именно в этом, а не в овладении компьютерной грамотностью учителями и учениками или насыщенности классов обучающей техникой, состоит основная трудность компьютеризации образования.

Выделяются три основные формы, в которых может использоваться компьютер при выполнении им обучающих функций: а) машина как тренажер; б) машина как репетитор, выполняющий определенные функции за преподавателя, причем машина может выполнять их лучше, чем человек; в) машина как устройство, моделирующее определенные предметные ситуации. Возможности компьютера широко используются и в такой неспецифической по отношению к обучению функции, как проведение громоздких вычислений или в режиме калькулятора.


Глава 2. Реализация курса информатики в средней школе


Изучение программирования, прежде всего, служит более глубокому пониманию процессов создания и функционирования компьютерных прикладных программ, выполняет развивающую функцию (что крайне важно при обучении школьников!). Как известно, часов под предмет отводится немного. Но, учитывая сегодняшнюю школьную действительность (перенасыщение общего учебного плана общеобразовательной школы, перегруженность учащихся), когда даже специализированные в области информатики учебные заведения не могут себе позволить существенное увеличение часов в учебном плане, учителям информатики приходится с этим мириться. В этой связи одним из важнейших факторов улучшения качества преподавания предмета становится наиболее оптимальное определение состава тем и совершенствование организационной формы их подачи.

Отмеченная выше специфика структуры предмета зачастую подталкивает учителя к выбору приоритетов в процессе обучения: отдать предпочтение общетеоретической, программной или программистской части. И порой осуществляется перекос в построении курса в ту или другую сторону.

Тем не менее, на мой взгляд, в данном случае вопрос о выборе приоритетов ставить нецелесообразно, хотя, безусловно, в рамках упомянутой структуры определенные акценты в учебной программе предмета должны быть расставлены посредством наиболее оптимального подбора тем. В целом же необходимо исходить из одинаковой важности общетеоретической, программной и программистской (развивающей у учащихся алгоритмический образ мышления и позволяющей им освоить принципы алгоритмизации и базовые элементы программирования) частей.

На мой взгляд, важнейшую роль играет, прежде всего, эффективная организация процесса обучения. Именно на организационном уровне возможно решение многих возникающих в учебном процессе проблем. Можно выделить следующие основные принципы организации обучения информатике:

) Жесткое разделение теоретических и лабораторно-практических занятий. Причем теоретические занятия желательно проводить НЕ в компьютерном классе. Опыт работы свидетельствует о том, что наличие компьютеров (даже выключенных) на таких занятиях действует отвлекающее и мешает учебному процессу. Общеизвестно, что многие учителя вообще не осуществляют подобного разделения, а 90% учителей проводят теоретические занятия в компьютерном классе (правда, иногда и из-за отсутствия в школе дополнительных свободных помещений). Тем не менее именно такое жесткое деление дисциплинирует как учащихся, так и учителя; способствует систематизации изучаемого материала, лучшей концентрации внимания учащихся, улучшению восприятия и повышению качества применения изученного теоретического материала при выполнении практических заданий. Метод некоторых учителей объяснил и сразу попробовали на компьютере, как правило, не улучшает, а только ухудшает процесс усваивания материала. Использование подобных методов возможно лишь при изучении работы с некоторыми прикладными программами, когда неприемлемым становится объяснение на пальцах, и только при недостаточной технической оснащенности школы, поскольку в таких случаях наиболее оптимальным является объяснение с использованием демонстрационного экрана. На теоретических занятиях необходима строго систематизированная подача материала с выполнением учащимися соответствующих записей в тетрадях.

) Параллельное преподавание общетеоретического, программного и программистского блоков курса - т. е. чередование соответствующих тем. Помимо постепенного изучения тем каждого из блоков курса, такой форме преподавания способствует также необходимость отработки на практических занятиях пройденного теоретического материала по программированию. При этом для обеспечения систематизированных записей учащимся необходимо иметь отдельные тетради для каждого из блоков курса.

) Выполнение учащимися под руководством преподавателя, помимо практических заданий по программированию на компьютерах, тренировочных упражнений и заданий в устной и письменной форме БЕЗ компьютера. Такая форма занятий способствует развитию алгоритмического мышления, воспитанию алгоритмической культуры и внутреннему пониманию языка программирования.

) Помимо контролирующих мероприятий на компьютерах, обязательное проведение письменных самостоятельных и контрольных работ с целью проверки уровня знаний.

Перечисленные выше принципы позволяют в условиях объективно сложившейся к настоящему времени высокой плотности и разносторонности курса предмета Информатика существенно повысить эффективность его преподавания, качество усвоения учащимися учебного материала.


2.1 Пути совершенствования курса информатики


Анализ опыта преподавания курса основ информатики и вычислительной техники, новое понимание целей обучения информатике в школе, связанное с углублением представлений об общеобразовательном, мировоззренческом потенциале этого учебного предмета показывают необходимость выделения нескольких этапов овладения основами информатики и формирования информационной культуры в процессе обучения в школе.

Первый этап (II - IV классы) - пропедевтический. На этом этапе происходит первоначальное знакомство школьников с компьютером, формируются первые элементы информационной культуры в процессе использования учебных игровых программ, простейших компьютерных тренажеров и т. д.

На втором этапе (V - VI классы) происходит углубление первоначальных знаний, закрепление навыков использования компьютера в повседневной жизни.

Третий этап (VII- IX классы) - базовый курс, обеспечивающий обязательный общеобразовательный минимум подготовки школьников по информатике. Он направлен на овладение учащимися методами и средствами информационной технологии решения задач, формирование навыков сознательного и рационального использования компьютера в своей учебной, а затем профессиональной деятельности. Изучение базового курса формирует представления об общности процессов получения, преобразования, передачи и хранения информации в живой природе, обществе, технике.

Целесообразность переноса начала систематического изучения информатики в V - IX классы помимо необходимости в условиях информатизации школьного образования широкого использования знаний и умений по информатике в других учебных предметах на более ранней ступени обусловлена также двумя другими факторами: во-первых, положительным опытом обучения информатике детей этого возраста как в нашей стране, так и за рубежом и, во-вторых, существенной ролью изучения информатики для развития мышления, формирования научного мировоззрения школьников именно этой возрастной группы. Представляется, что содержание базового курса может сочетать в себе все три существующие сегодня основные направления обучения информатике в школе, отражающие важнейшие аспекты общеобразовательной значимости информатики:

) мировоззренческий аспект, связанный с формированием представлений о системно-информационном подходе к анализу окружающего мира, о роли информации в управлении, специфике самоуправляющихся систем, общих закономерностях информационных процессов в системах различной природы;

) пользовательский аспект, связанный с формированием компьютерной грамотности, подготовкой школьников к практической деятельности в условиях широкого использования информационных технологий;

) алгоритмический (программистский) аспект, связанный в настоящее время уже в большей мере с развитием мышления школьников.

Четвертый этап (Х - XI классы) - продолжение образования в области информатики как профильного обучения, дифференцированного по объему и содержанию в зависимости от интересов и направленности допрофессиональной подготовки, школьников.

Данная программа объединяет несколько программ обучения, а также дополняет их. В частности, программа третьего и четвертого этапов соответствует государственному стандарту и дополнена более глубоким изучением предлагаемых в стандарте программ и дополнительным изучением программного обеспечения (издательских систем, пакета программ Corel).

Программа первого (пропедевтического) этапа обучения основана на совмещении двух линий - алгоритмической и пользовательской. Урок в II - IV классах делится на две половины (по 20 - 25 мин). Первая половина урока отводится на изучение алгоритмической линии (безмашинный метод), вторая половина - пользовательской линии (с применением компьютера). Деление урока обусловлено тем, что детям 6 - 10 лет по медицинским показаниям не рекомендуется проводить за компьютером непрерывно более 20 - 25 мин.

Программа пользовательского аспекта для учащихся II - XI классов приведена ниже.

Представляет собой программы обучения по двум линиям обучения (алгоритмической и пользовательской) (II - IV классы) и по пользовательской линии (V - XI классы), соответствующей программе курса.


2.2 Предложения по построению школьного курса информатики


Основные направления совершенствования профильного обучения информатике в старших классах общеобразовательной школы.

Развитие содержания профильного обучения информатике:

·с учетом тенденции к усилению общеобразовательных мировоззренческих функций информатики как учебного предмета в инвариантной части курса следует расширить содержание таких линий, как линия информационных процессов, представление информации, формализация и моделирование, телекоммуникации;

·необходимо предусмотреть в содержании обучения вопросы представления и использования информации, а не только рассмотрения вопросов процесса обработки информации на основе алгоритмов, т.е. рассмотреть вопросы об информационных основах процессов управления, что имеет важное мировоззренческое и практическое значение;

·линия информационных технологий должна получить дальнейшее развитие, в ряде аспектов следует изменить методику изучения информационных технологий - важным аспектом методики обучения информационным технологиям является развитие единого подхода к их изучению, формирование представлений о научных основах информационных технологий, а реализация этого подхода может быть отражена на основе следующих принципов:

o- изучение информационных технологий не должно быть сведено к освоению конкретных средств информационных и коммуникационных технологий, необходимо, прежде всего, формировать научные основы, базу для освоения новых технологий;

o- необходимой предпосылкой усвоения информационных технологий является предварительное изучение вопросов строения, видов, свойств, форм представления и т.д. информации, способов ее записи, алгоритмов ее преобразования, которые рассматриваются в курсе информатики;

o- при изучении информационных технологий, с одной стороны, должны получить развитие и конкретизацию все основные содержательные линии общеобразовательного курса информатики (информации, представления информации, информационных процессов, алгоритмов, формализации и моделирования, информационных технологий, телекоммуникаций), с другой стороны, эти содержательные линии выступают научной основой изучаемых информационных технологий;

o- ключевыми вопросами изучения информационных технологий, обеспечивающими единство методического подхода к их изучению, являются вопросы единства средств и методов представления информации разного типа, функциональной полноты и минимизации операций по обработке информации, алгоритмической основы реализации технологий.

oопределить содержание вариативных частей профильных курсов информатики в соответствии с современными представлениями о профильной дифференциации содержания обучения информатике на старшей ступени школы.

Совершенствование организации учебного процесса (методов, средств и организационных форм обучения) по информатике на старшей ступени школы в условиях профильного обучения:

·обеспечение учебного процесса учебно-методической литературой;

·увеличение учебного времени на изучение информатики;

·применение новых методов обучения (метод учебных проектов и т.д.), направленных на реализацию личностно-ориентированного подхода к обучению;

·организация не только фронтальной работы, но и групповой и индивидуальной работы учащихся;

·обновление программных средств, используемых в поддержку изучаемого материала курса;

·развитие системы дополнительного образования (дополнительные занятия, факультативы, кружки, организация курсов дистанционного обучения с использованием сети Интернет и пр.);

·предоставление во внеурочное время возможности ученикам самостоятельной работы за компьютером с выходом в Интернет.

Создание условий для реализации эффективного профильного обучения информатике в старших классах школы:

·оснащение учебных заведений современными средствами информатизации (компьютерами с соответствующим программным обеспечением, сканер и другие средства информатизации);

·подключение к сети Интернет;

·повышение квалификации учителей информатики.


Заключение


Любая педагогическая деятельность, естественно, должна начинаться с осмысления ее цели. На выбор цели преподавания конкретной дисциплины существенное влияние оказывают целевые установки всей системы образования, место и роль учебной дисциплины в общем содержании образования, ее особенности, интересы и потребности учащихся.

Цель обучения на современном этапе определяется как обеспечение прочного и сознательного овладения учащимися основами знаний о процессах преобразования, передачи и использования информации и на этой основе раскрытие учащимся значения информационных процессов в формировании современной научной картины мира, роли информационной технологии и вычислительной техники в развитии современного общества; привитие им навыков сознательного и рационального использования компьютеров в своей учебной, а затем профессиональной деятельности.

Исходя из опыта работы наиболее оптимальной структурой базового курса предмета Основы информатики и вычислительной техники представляется его построение из трех крупных равноправных тематических блоков: общетеоретического, блока системных и прикладных программ и блока основ программирования. Такое построение курса объективно оправдывается стоящей перед ним основной задачей, которая заключается в формировании у учащихся определенного фундамента знаний в сфере компьютерных информационных технологий и соответствующего культурного уровня. А это подразумевает в равной степени и знание принципов функционирования ЭВМ, и навыки работы с современными программными продуктами, и алгоритмический образ мышления со знанием базовых элементов программирования.

Сегодня, когда спорят о том, нужен ли какой-либо учебный раздел или даже предмет в школе, часто отталкиваются от того, пригодятся ли эти знания в жизни…

Прежде всего хочу сказать, что критерий «не пригодится в жизни» - это вообще не критерий. Или, во всяком случае, неверно сформулированный критерий.

Лично я наиболее продуктивным считаю такой: давайте спросим себя, что нужно изучать в российской школе, чтобы ее выпускники стали более конкурентоспособными на мировом рынке труда.

Информатика дает несколько особых знаний и умений, без которых невозможно ни быть успешным на рынке труда сегодня, ни получить образование, которое позволит остаться успешным завтра. Во-первых, школьники должны овладеть каким-то языком для описания новой информатической реальности. Козьма Прутков замечательно сформулировал: «Многие вещи нам недоступны не потому, что наши понятия слабы, а потому, что сии вещи не входят в круг наших понятий». Только кажется, что этот язык будет освоен автоматически, в «процессе жизни»…

Второй очень важный момент. Информатика должна развивать алгоритмический стиль мышления, который, кстати, не способна в полной мере развить математика. Задачи на составление алгоритмов и кодирование информации - это интеллектуальный тренинг, который, грубо говоря, делает людей умнее. Исторически сложилось несколько систематических курсов - «практикумов», которые были призваны делать людей умнее. За пределами математики были успешны практикумы по «мертвым» языкам - латыни и греческому. Их грамматическая система была достаточно сложной и представляла собой некоторую формальную систему, практическое освоение которой требовало систематических интеллектуальных усилий. Еще одна формальная система, некогда популярная в образовании, - римское право. Навыки, развитые в курсе информатики, дают существенный вклад в уровень общей интеллектуальной подготовки. А этот уровень на современном рынке труда ценится не меньше, чем конкретные навыки.

Но, в-третьих, и конкретные навыки очень важны. В Америке школьник лупит по клавиатуре, не глядя на нее, со скоростью 60 слов в минуту. «Клавиатурная грамотность» американских школьников есть национальное достояние США. Страна, в которой школьникам дают возможность научиться этому, богаче и мощнее, чем та страна, в которой школьники в своей массе этого не умеют. Без «клавиатурной грамотности» успешная карьера сегодня труднопредставима. То же верно и для так называемой «компьютерной грамотности».


Список используемой литературы


1.Закон РФ «об образовании».

.О направлении дополнительных вариантов учебных планов средних общеобразовательных школ на 1989/90 учебный год //Информ. сб. М-ва народного образования РСФРС. - 1989. - №32.

.О направлении учебных планов на 1990/92 учебный год. Письмо Минобразования РСФРС от 25.01.91 №1369/15 //Вестник образования. Справочно-информационное издание М-ва образования РСФРС. - 1991. -№3. - С.62-78.

.Основные компоненты содержания информатики в образовательных учреждениях. Приложение 2 к решению Коллегии Минобразования РФ от 22 февраля 1995 №4/1//ИНФО.- 1995.-№4.- С.17-36.

.Самовольнова Л.Е. Курс информатики и базисный учебный план //ИНФО. - 1993.- №3.

.Уваров А.Ю. Информатика в школе: вчера, сегодня, завтра //ИНФО. - 1990. - №4.

.Хеннер Е.К. Проект стандарта образования по основам информатики и вычислительной технике //ИНФО. - 1994. - №2.

.Горячев А.В. О понятии «Информационная грамотность» // Информатика и образование. - 2001. - №№3,8.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

Казахский национальный педагогический университет имени Абая

Институт математики, физики и информатики

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ

«»

Для обучающегося по специальности

5В011100 - «Информатика »

Алматы, 2013

Учебно-методический комплекс дисциплины для обучающегося составлен на основании:

· Государственного общеобязательного стандарта высшего профессионального образования по специальности 05В011100 - Информатика;

· Рабочего учебного плана по специальности 05В011100 - Информатика.

Составитель

к.п.н., доцент Абдулкаримова Г.А

Учебно-методический комплекс дисциплины «Методика преподавания информатики » для обучающегося по специальности 5В011100- «Информатика». – Алматы: КазНПУ им.Абая, 2013 . – 104 с.

С О Д Е Р Ж А Н И Е

Стр.
1. Силлабус...........................................................................................
2. Тезисы лекций........................................................................................
3. Самостоятельная работа студентов под руководством преподавателя (СРСП) .....................................................................
4. Самостоятельная работа студентов..................................................
5. Лабораторные работы.............................................................................
6. Задания для самопроверки и подготовки к экзамену, тесты…………
7. Литература...............................................................................................
8. Глоссарий...........................................................................................

СИЛЛАБУС ДИСЦИПЛИНЫ ДЛЯ СТУДЕНТОВ

Информация о дисциплине

Краткое описание дисциплины

«Методика преподавания информатики» обеспечивает методическую подготовку студентов и реализует следующие цели: подготовка методически грамотного учителя информатики, способного: проводить уроки на высоком научно-методическом уровне; организовать внеклассную работу по информатике в школе; оказать помощь учителям предметникам, желающим использовать ИКТ в обучении.

Основные задачи курса «Методика преподавания информатики »: подготовить будущего учителя информатики к методически грамотной организации и проведению занятий по информатике; формировать приемы проведения занятий по информатике, развить творческий потенциал, необходимый для преподавания информатики в условиях дифференциации школ.

В результате изучения студент должен продемонстрировать: понимание роли и значения школьного курса информатики в формировании всесторонне развитой личности школьника; знание цели изучения школьной информатики во всех трех аспектах – образования, развития, воспитания; знание основных концепций обучения информатике; знание содержательных и методических аспектов преподавания школьной информатики на разных уровнях обучения; знание содержания работы учителя по организации, планированию и обеспечению уроков информатики; знание традиционных и инновационных методов обучения, управление умственной деятельностью учащихся; различных организационных форм занятий; использование программной поддержки курса и ее методическую целесообразность; организацию занятия по информатике для развития интереса к предмету у учащихся различных возрастных групп.

Компетенции , формируемые в результате освоения дисциплины:

Готовность использовать нормативные правовые документы в своей профессиональной деятельности;

Способность использовать навыки публичной речи, ведения дискуссии;

Осознание социальной значимости своей будущей профессии, обладание мотивацией к осуществлению профессиональной деятельности;

Владение основами речевой профессиональной культуры;

Способность разрабатывать и реализовывать учебные программы базовых и элективных курсов в различных общеобразовательных учреждениях;

Способность использовать возможности образовательной среды для формирования универсальных видов учебной деятельности и обеспечения качества учебно-воспитательного процесса;

Способность организовать сотрудничество обучающихся, поддерживать активность и инициативность, самостоятельность обучающихся и их творческие способности;

Способность разрабатывать инновационные педагогические технологии с учетом особенностей образовательного процесса, задач воспитания и развития личности:

Способность использовать основные методы научного исследования в учебно-воспитательной деятельности.

3. Пререквизиты дисциплины: общеобразовательный курс информатики, «Педагогика».

4. Постреквизиты дисциплины: Элективные курсы методического цикла.

Календарно-тематический план.

Наименование тем дисциплины недели Аудиторные занятия Вид задания Всего (ч.)
Лекц. (ч.) Лаб. (ч.) СРСП(ч.) СРС (ч.)
Структура и содержание обучения основам информатики
Базовый курс школьной информатики:
Дифференцированное обучение информатике на старшей ступени школы
Программное обеспечение по курсу информатики
Компьютерные телекоммуникации в системе общего среднего образования
Информатика в высшей школе
Оборудование школьного кабинета информатики
Планирование учебного процесса по информатике
Формы дополнительного изучения информатики и ее приложений в школе
Организация проверки и оценки результатов обучения.
Методика изучения информационных процессов:
Методика изучения основ алгоритмизации и программирования
Методика изучения устройства компьютера
Методика изучения информационных технологий:
Методика изучения формализации и моделирования
Итого

Литература для изучения

1. Лапчик М.П., Рагулина М.И., Самылкина Н.Н., Семакин И.Г., Хеннер Е.К. Теория и методика обучения информатике. - Москва «Академия», 2008. – 592 с.

2. Лапчик М.П., Рагулина М.И., Смолина Л.В. Теория и методика обучения информатике. Лаборторный практикум. Уч. пособие для студентов вузов / Под. ред. М.П. Лапчика. –Омск: Изд-во ОмГПУ, 2004. -312 с.

3. Педагогическая практика в системе подготовки учителя информатики и математики: Методические рекомендации / Под общей ред. М.П. Лапчика. – Омск: Изд-во ОмГПУ, 2004. -188 с.

4. Софонова Н.В.Теория и методика обучения информатике. Учебное пособие. М., 2004 г.

Дополнительная:

1.Полат Е.С. и др. Новые педагогические и информационные технологии в системе образования: Учебное пособие для студентов педвузов и системы повышения квалификации педкадров. Москва: «Академия», 1999. -224 стр.

2. Бидайбеков Е.Ы., Абдулкаримова Г.А. Информатика и средства информатики в спецкурсах и спецсеминарах. Учебно-методическое пособие. г. Алматы, АГУ им.Абая, 2002 г. 80 с.

Нормативная литература

1. Государственный общеобязательный стандарт среднего образования (начального, основного среднего, общего среднего образования). ГОСО РК 2.3.4.01 – 2010.

  1. Методические рекомендации по организации профильного обучения в школах РК. Алматы, 2009 г.

Интернет - источники:

http://www.bogomolovaev.narod.ru

Критерии оценки

Требования преподавателя.

В процессе изучения дисциплины студент должен выполнять следующие требования: занятия, внесенные в расписание, должны посещаться в обязательном порядке, контроль проводится преподавателем на каждом занятии; сдача всех видов контроля производится студентом в установленные графиком дисциплины сроки, в случае отсутствия студента на занятии по уважительной причине (подтвержденной документально) возможна сдача пропущенного вида контроля в более поздние сроки. Максимально возможный балл в этом случае умножается на 0, 8.


ТЕЗИСЫ ЛЕКЦИЙ

Лекция 1.

Тема: Методика преподавания информатики в системе педагогических знаний

План:

Предмет методики преподавания информатики и место в системе профессиональной подготовки учителя информатики. Информатика как наука и учебный предмет в школе. Связь методики преподавания информатики с педагогикой, психологией и информатикой. Методическая система обучения информатике в средней общеобразовательной школе. Общая характеристика ее основных компонентов (цели, содержание обучения, методы, формы и средства обучения).

Введение в 1985 г. в среднюю школу отдельного общеобразовательного предмета «Основы информатики и вычислительной техники» дало старт формированию новой области педагогической науки, объектом которой является обучение информатике. Следуя официальной классификации научных специальностей, этот раздел педагогики, исследующий закономерности обучения информатике на современном этапе ее развития в соответствии с целями, поставленными обществом, в настоящее время получил название «Теория и методика обучения и воспитания (информатике; по уровням образования)». Даже при очевидной неудобочитаемости приведенной трактовки научного направления видно, что строка классификатора демонстрирует явное стремление к максимальной цельности и полноте этого раздела педагогической науки. Из приведенной формулировки следует, что к теории и методике обучения информатике нужно относить исследование процесса обучения информатике везде, где бы он ни проходил и на всех уровнях: дошкольный период, школьный период, все типы средних учебных заведений, высшая школа, самостоятельное изучение информатики, дистанционные формы обучения и т.п. Каждая из перечисленных областей в настоящее время ставит свои специфические проблемы перед современной педагогической наукой. Нас в данном случае в первую очередь будет интересовать та область методики информатики, которая рассматривает обучение информатике в средней школе в рамках общеобразовательного предмета информатики.

Понятно, что определение методики информатики как науки об обучении информатике само по себе еще не означает существования этой научной области в готовом виде. Теория и методика обучения информатике в настоящее время интенсивно развивается; школьному предмету информатики уже более полутора десятка лет, но многие задачи в новой педагогической науке возникли совсем недавно и не успели получить еще ни глубокого теоретического обоснования, ни длительной опытной проверки.

В соответствии с общими целями обучения методика преподавания информатики ставит перед собой следующие основные задачи: определить конкретные цели изучения информатики, а также содержание соответствующего общеобразовательного предмета и его место в учебном плане средней школы; разработать и предложить школе и учителю-практику наиболее рациональные методы и организационные формы обучения, направленные на достижение поставленных целей; рассмотреть всю совокупность средств обучения информатике (учебные пособия, программные средства, технические средства и т.п.) и разработать рекомендации по их применению в практике работы учителя.

Говоря иными словами, перед методикой преподавания информатики, как и перед всякой предметной школьной методикой, ставится традиционная триада основных вопросов:

зачем учить информатике?

что надо изучать?

как надо обучать информатике?

Методика преподавания информатики - молодая наука, но она формируется не на пустом месте. Опережающие фундаментальные дидактические исследования целей и содержания общего кибернетического образования, накопленный отечественной школой еще до введения предмета информатики практический опыт преподавания учащимся элементов кибернетики, алгоритмизации и программирования, элементов логики, вычислительной и дискретной математики, проработка важных вопросов общеобразовательного подхода к обучению информатике имеют в общей сложности почти полувековую историю. Будучи фундаментальным разделом педагогической науки, методика информатики опирается в своем развитии на философию, педагогику, психологию, информатику (в том числе школьную информатику), а также обобщенный практический опыт средней школы.

Из всей совокупности методико-педагогических знаний и опыта, объединяемых методикой информатики, выделяется учебный предмет «Теория и методика обучения информатике», который согласно Государственному образовательному стандарту высшего профессионального образования входит в образовательно-профессиональную программу подготовки учителя по специальности «Информатика». Впервые учебный курс «Методика преподавания информатики» был введен в учебные планы педвузов в 1985 г. в связи с организацией подготовки учителей по дополнительной специальности «Информатика» на базе физико-математических факультетов. С 1995 г. действует Государственный стандарт высшего педагогического образования по специальности «Информатика». В педвузах стала расширяться подготовка «профильных» учителей информатики. В то же время справедливо отмечалось, что в течение весьма длительного периода содержание методической подготовки будущего учителя информатики - наиболее слабая часть (и наиболее слабо обеспеченная часть) его профессиональной подготовки.

Вопросы и задания

1. Приведите определение информатики. Когда она возникла и на какой основе?

2. Что общего между кибернетикой и информатикой?

3. Приведите и опишите структуру информатики как науки.

4. Что является предметом и объектом информатики?

5. Дайте определение термина «Школьная информатика».

Лекция 2.

Тема: Система целей и задач обучения информатике в школе

План:

Цели и задачи обучения основам информатики в школе, педагогические функции курса информатики (формирование научного мировоззрения, развитие мышления и способностей учащихся, подготовка школьников к жизни и труду в информационном обществе, к продолжению образования).

Компьютерная грамотность, как исходная цель введения курса информатики в школу и информационная культура, как перспективная цель обучения информатике в школе.

Цели образования вообще, как и общего школьного образования, в частности, являются прерогативой государства, которое на основе действующей законодательной базы формирует общие принципы своей педагогической политики. На этой основе формулируются и главные задачи общеобразовательной школы:

Обеспечение усвоения учащимися системы знаний, определяемой общественными и производственными потребностями;

Формирование научного миропонимания, политической, экономической, правовой культуры, гуманистических ценностей и идеалов, творческого мышления, самостоятельности в пополнении знаний;

Удовлетворение национально-культурных потребностей населения, воспитание физически и морально здорового поколения;

Выработка у молодежи осознанной гражданской позиции, человеческого достоинства, стремления к участию в демократическом самоуправлении, ответственности за свои поступки.

Описанные выше проектируемые результаты образовательно-воспитательной деятельности школы могут быть сгруппированы в три основные общие цели, которые ставятся перед системой общего школьного образования: образовательные и развивающие цели; практические цели; воспитательные цели.

Общие цели обучения информатике определяются с учетом особенностей информатики как науки, ее роли и места в системе наук, в жизни современного общества. Рассмотрим, как основные цели, характерные для школы в целом, могут быть отнесены к образованию школьников в области информатики.

Образовательная и развивающая цель обучения информатике в школе - дать каждому школьнику начальные фундаментальные знания основ науки информатики, включая представления о процессах преобразования, передачи и использования информации, и на этой основе раскрыть учащимся значение информационных процессов в формировании современной научной картины мира, а также роль информационной технологии и вычислительной техники в развитии современного общества. Изучение школьного курса информатики призвано также вооружить учащихся теми базовыми умениями и навыками, которые необходимы для прочного и сознательного усвоения этих знаний, а также основ других наук, изучаемых в школе. Усвоение знаний из области информатики, как и приобретение соответствующих умений и навыков призвано существенно влиять на формирование таких черт личности, как общее умственное развитие учащихся, развитие их мышления и творческих способностей.

Практическая цель школьного курса информатики - внести вклад в трудовую и технологическую подготовку учащихся, т.е. вооружить их теми знаниями, умениями и навыками, которые могли бы обеспечить подготовку к трудовой деятельности после окончания школы. Это означает, что школьный курс информатики должен не только знакомить с основными понятиями информатики, которые, безусловно, развивают ум и обогащают внутренний мир ребенка, но и быть практически ориентированным - обучать школьника работе на компьютере и использованию средств новых информационных технологий.

В целях профориентации курс информатики должен давать учащимся сведения о профессиях, непосредственно связанных с ЭВМ и информатикой, а также различными приложениями изучаемых в школе наук, опирающимися на использование ЭВМ. Наряду с производственной стороной дела практические цели обучения информатике предусматривают также и «бытовой» аспект - готовить молодых людей к грамотному использованию компьютерной техники и других средств информационных и коммуникационных технологий в быту, в повседневной жизни.

Воспитательная цель школьного курса информатики обеспечивается, прежде всего, тем мощным мировоззренческим воздействием на ученика, которое оказывает осознание возможностей и роли вычислительной техники и средств информационных технологий в развитии общества и цивилизации в целом. Вклад школьного курса информатики в научное мировоззрение школьников определяется формированием представления об информации как одном из трех основополагающих понятий науки: веществе, энергии и информации, лежащих в основе строения современной научной картины мира. Кроме того, при изучении информатики на качественно новом уровне формируется культура умственного труда и такие важные общечеловеческие характеристики, как умение планировать свою работу, рационально ее выполнять, критически соотносить начальный план работы с реальным процессом ее выполнения.

Изучение информатики, в частности, построение алгоритмов и программ, их реализация на ЭВМ, требующие от учащихся умственных и волевых усилий, концентрации внимания, логичности и развитого воображения, должны способствовать развитию таких ценных качеств личности, как настойчивость и целеустремленность, творческая активность и самостоятельность, ответственность и трудолюбие, дисциплина и критичность мышления, способность аргументировать свои взгляды и убеждения. Школьный предмет информатики, как никакой другой, предъявляет особый стандарт требований к четкости и лаконичности мышления и действий, потому что точность мышления, изложения и написания - это важнейший компонент работы с компьютером.

Хорошо известно, как трудно иногда подвести ученика к догадке, как решить задачу. В курсе же информатики дело не только в догадке, ее нужно четко и педантично реализовать в алгоритме для ЭВМ, абсолютно точно записать этот алгоритм на бумаге и/или безошибочно ввести его с клавиатуры. При изучении нового курса у школьников должно постепенно складываться негативное отношение ко всякой нечеткости, неконкретности, расплывчатости и т.п. Было бы наивно полагать, что эти важные черты личности при изучении предмета информатики формируются сами по себе. Здесь требуется кропотливая работа учителя, причем необходимо сразу учесть эти особенности информатики и не попустительствовать небрежности учащихся, даже если в каком-то конкретном случае это и не несет немедленных неприятностей.

Ни одна из перечисленных выше основных целей обучения информатике не может быть достигнута изолированно друг от друга, они прочно взаимосвязаны. Нельзя получить воспитательный эффект предмета информатики, не обеспечив получения школьниками основ общего образования в этой области, так же как нельзя добиться последнего, игнорируя практические, прикладные стороны содержания обучения.

Общие цели школьного образования в области информатики, как триада основных целей, остающихся по своей общедидактической сути весьма расплывчатыми (хотя и вполне устойчивыми), при наложении на реальную учебную сферу трансформируются в конкретные цели обучения. И вот тут оказывается, что формулирование конкретных целей обучения предмету информатики очень непростая дидактическая задача.

И все же, из чего складываются и что влияет на формирование целей школьного образования в области информатики?

В образовательном стандарте по «Информатике и ИКТ» сформулированы цели изучения предмета, которые разнесены для начальной, основной и для старшей школы. В основной школе изучение информатики и ИКТ направлено на достижение следующих целей:

Освоение знаний, составляющих основу научных представлений об информации, информационных процессах, системах, технологиях и моделях;

Овладение умениями работать с различными видами информации с помощью компьютера и других средств информационных и коммуникационых технологий (ИКТ);

Развитие познавательных интересов, интеллектуальных и творческих способностей средствами ИКТ;

Воспитание ответственного отношения к информации с учетом правовых и этических аспектов её распространения; избирательного отношения к полученной информации;

Выработка навыков применения средств ИКТ в повседневной жизни, при выполнении индивидуальных и коллективных проектов, в учебной деятельности, дальнейшем освоении профессий, востребованных на рынке труда.

В старшей школе на базовом уровне ставятся такие цели:

Освоение системы базовых знаний, отражающих вклад информатики в формирование современной научной картины мира, роль информационных процессов в обществе, биологических и технических системах;

Овладение умениями применять, анализировать, преобразовывать информационные модели реальных объектов и процессов, используя при этом информационные и коммуникационные технологии, в том числе при изучении других школьных дисциплин;

Развитие познавательных интересов, интеллектуальных и творческих способностей путем освоения и использования методов информатики и средств ИКТ при изучении различных учебных предметов;

Воспитание ответственного отношения к соблюдению этических и правовых норм информационной деятельности;

Приобретение опыта использования информационных технологий в индивидуальной и коллективной учебной и познавательной, в том числе проектной деятельности.

В старшей школе на профильном уровне ставятся такие цели:

Освоение и систематизация знаний, относящихся: к математическим объектам информатики; к построению описаний объектов и процессов, позволяющих осуществлять их компьютерное моделирование; к средствам моделирования; к информационным процессам в биологических, технологических и социальных системах;

Овладение умениями строить математические объекты информатики, в том числе логические формулы и

Программы на формальном языке, удовлетворяющие заданному описанию; создавать программы на языке программирования по их описанию; использовать общепользовательские инструменты и настраивать их для нужд пользователя;

Развитие алгоритмического мышления, способностей к формализации, элементов системного мышления;

Воспитание чувства ответственности за результаты своего труда; формирование установки на позитивную социальную деятельность в информационном обществе, на недопустимость действий, нарушающих правовые, этические нормы работы с информацией;

Приобретение опыта проектной деятельности, создания, редактирования, оформления, сохранения, передачи информационных объектов различного типа с помощью современных программных средств; построения компьютерных моделей, коллективной реализации информационных проектов, информационной деятельности в различных сферах, востребованных на рынке труда.

Перечисленные цели школьного курса информатики и ИКТ можно сгруппировать в три основные общие цели: образовательная, практическая и воспитательная. Эти общие цели обучения определяются с учетом места информатики в системе наук и жизни современного общества.

Образовательная цель обучения информатике – дать каждому школьнику начальные фундаментальные знания основ науки информатики, включая представления о процессах преобразования, передачи и использования информации, и на этой основе раскрыть значение информационных процессов в формировании научной картины мира, роль информационных технологий и компьютеров в развитии современного общества. Необходимо вооружить учащихся базовыми умениями и навыками для прочного усвоения этих знаний и основ других наук. Реализация образовательной цели в соответствии с законами дидактики способствует общему умственному развитию учащихся, развитию их мышления и творческих способностей. Практическая цель – предполагает вклад в трудовую и технологическую подготовку учащихся, вооружение их знаниями, умениями и навыками, необходимыми для последующей трудовой деятельности. Учащихся следует не только знакомить с теоретическими основами информатики, но и обучать работе на компьютере и использованию средств современных информационных технологий; знакомить с профессиями, непосредственно связанными с ЭВМ. Воспитательная цель реализуется мировоззренческим воздействием на ученика путем осознания им значения вычислительной техники и информационных технологий для развития цивилизации и общества. Важным является формирование представления об информации как одного из трех фундаментальных понятий науки: материи, энергии и информации. Использование в обучении современных информационных технологий формирует культуру умственного труда. Изучение информатики требует от учащихся определенных умственных и волевых усилий, концентрации внимания, логики и воображения. В курсе информатики ученику следует учиться четко и педантично реализовывать алгоритм своих действий, уметь абсолютно точно записывать его на бумаге и безошибочно вводить в компьютер. Это постепенно отучает учеников от неточности, нечеткости, неконкретности, расплывчатости, небрежности и т.п.

Разумеется, все эти три цели взаимосвязаны и не могут реализовываться в отрыве друг от друга. Нельзя получить воспитательный эффект, игнорируя практическую сторону содержания обучения.

Общие цели в реальном учебном процессе трансформируются в конкретные цели обучения. Однако это оказывается непростой задачей, что подтверждается многолетним опытом преподавания информатики в школе. На формулировку конкретных целей влияет то обстоятельство, что наука информатика сама находится в стадии интенсивного развития. Кроме того, изменение парадигмы образования, в частности его стандартов, порождает изменение содержания этих целей, увеличивает долю субъективизма в их определении.

Когда впервые вводился курс ОИВТ в 1985 году, то выдвигалась стратегическая цель «…всестороннее и глубокое овладение молодежью вычислительной техникой», что в то время рассматривалось как важный фактор ускорения научно‐технического прогресса в нашей стране и ликвидации намечавшегося отставания от передовых индустриальных стран Запада. Основными целями курса тогда были:

Формирование представлений учащихся об основных правилах и методах реализации решения задач на ЭВМ;

Освоение элементарных умений пользоваться микрокомпьютерами для решения задач;

Ознакомление с ролью ЭВМ в современном производстве.

Ученые и методисты тогда считали, что введение курса информатики создаст возможности для изучения школьных предметов на качественно новом уровне за счет повышен наглядности, возможности моделирования на ЭВМ сложных объектов и процессов, сделает усвоение учебного материала более доступным, расширит учебные возможности школьников, активизирует их познавательную деятельность.

В качестве конкретной цели была поставлена компьютерная грамотность учащихся. Понятие компьютерной грамотности достаточно быстро стало одним из новых понятий дидактики. Постепенно выделили следующие компоненты, определяющие содержание компьютерной грамотности школьников:

Понятие об алгоритме, его свойствах, средствах и методах описания, понятие о программе как форме представления алгоритма для ЭВМ;

Основы программирования на одном из языков;

Практические навыки обращения с ЭВМ;

Принцип действия и устройство ЭВМ;

Применение и роль компьютеров в производстве и других отраслях деятельности человека.

Как видно из содержания, компьютерная грамотность (КГ) является расширением понятия алгоритмической культуры учащихся (АК) путем добавления некоторых «машинных» компонентов. Эта естественная преемственность всегда подчеркивалась, и методистами даже ставилась задача «завершить формирование ведущих компонентов алгоритмической культуры школьников как основы формирования компьютерной грамотности», что можно представить схемой: АК → КГ

В компонентах компьютерной грамотности учащихся можно выделить следующее содержание:

1. Умение работать на компьютере. Это умение есть умение на пользовательском уровне, и включает в себя: умение включить и выключить компьютер, владение клавиатурой, умение вводить числовые и текстовые данные, корректировать их, запускать программы. Сюда относят также умения работать с прикладными программами: текстовым редактором, графическим редактором, электронной таблицей, игровыми и обучающими программами. По своему содержанию эти умения доступны младшим школьникам и даже дошкольникам.

2. Умение составлять программы для ЭВМ. Большинство методистов считает, что подготовка программистов не может быть целью общеобразовательной школы, однако, понимание принципов программирования должно входить в содержание образования по информатике. Этот процесс должен быть растянут во времени и начинаться с формирования умений составления простейших программ, включающих организацию ветвлений и циклов. Такие программы можно писать с использованием простых и наглядных «доязыковых» средств. В старших классах в условиях профильного обучения возможно изучение одного из языков программирования. При этом важно не столько изучение языка, сколько формирование прочных знаний о фундаментальных правилах составления алгоритмов и программ.

3. Представления об устройстве и принципах действия ЭВМ. В школьном курсе физики рассматриваются различные физические явления, лежащие в основе работы ЭВМ, а в курсе математики – наиболее общие положения, относящиеся к принципам организации вычислений на компьютере. В курсе информатики учащиеся должны освоить сведения, позволяющие им ориентироваться в возможностях отдельных компьютеров и их характеристиках. Этот компонент компьютерной грамотности имеет важное профориентационное и мировоззренческое значение.

4. Представление о применении и роли компьютеров на производстве и других отраслях деятельности человека, а также о социальных последствиях компьютеризации. Этот компонент должен формироваться не только на уроках информатики – необходимо, чтобы школьный компьютер использовался учениками при изучении всех учебных предметов. Выполнение школьниками проектов и решение задач на компьютере должно охватывать различные сферы применения вычислительной техники и информационных технологий.

Компоненты компьютерной грамотности можно представить четырьмя ключевыми словами: общение, программирование, устройство, применение. В обучении школьников недопустимо делать акцент на каком либо одном компоненте, ибо это приведет к существенному перекосу в достижении конечных целей преподавания информатики. Например, если доминирует компонент общение, то курс информатики становится преимущественно пользовательским и нацеленным на освоение компьютерных технологий. Если акцент делается на программировании, то цели курса сведутся к подготовке программистов.

Первая программа курса ОИВТ 1985 года достаточно быстро была дополнена второй версией, расширившей цели курса и в которой появилось новое понятие «информационная культура учащихся». Требования этой версии программы, взятые в минимальном объеме, ставили задачу достижения первого уровня компьютерной грамотности, а взятые в максимальном объеме – воспитание информационной культуры учащихся. Содержание информационной культуры (ИК) было образовано путем некоторого расширения прежних компонентов компьютерной грамотности и добавления новых. Эта эволюция целей образования школьников в области информатики представлена на схеме:

АК → КГ → ИК → ?

Как видно из схемы, в конце цепочки целей поставлен знак вопроса, что объясняется динамизмом целей образования, необходимостью соответствовать современному уровню развития науки и практики. Например, сейчас возникла потребность включения в содержание понятия ИК представлений об ИКТ, владение которыми становится обязательным элементом общей культуры современного человека. Некоторые методисты предлагают формировать информационно‐технологическую культуру школьников. В информационную культуру школьника входят следующие компоненты :

1. Навыки грамотной постановки задач для решения с помощью ЭВМ.

2. Навыки формализованного описания поставленных задач, элементарные знания о методах математического моделирования и умения строить простые математические модели поставленных задач.

3. Знание основных алгоритмических структур и умение применять эти знания для построения алгоритмов решения задач по их математическим моделям.

4. Понимание устройства и функционирования ЭВМ, элементарные навыки составления программ для ЭВМ

по построенному алгоритму на одном из языков программирования высокого уровня.

5. Навыки квалифицированного использования основных типов современных информационно‐коммуникационных систем для решения с их помощью практических задач, понимание основных принципов, лежащих в основе функционирования этих систем.

6. Умение грамотно интерпретировать результаты решения практических задач с помощью ЭВМ и применять эти результаты в практической деятельности.

В то же время, в реальных условиях школы формирование информационной культуры во всех её аспектах представляется проблематичным. Дело здесь не только в том, что не все школы в достаточной степени обеспечены современной компьютерной техникой и подготовленными учителями. Использование многовариантных программ, в частности авторских, привело к тому, что не только содержание, но и цели образования школьников в области информатики в 1990 годы стали трактоваться по‐разному. Их стали формулировать крайне нечётко, размыто и даже неопределённо, поэтому в 22.02.1995 г. было предложено использовать 3‐х этапную структуру курса информатики средней школы с распределёнными целевыми установками:

Первый этап (1‐6 кл.) – пропедевтический. На этом этапе происходит первоначальное знакомство с компьютером, формируются первые элементы информационной культуры в процессе использования учебных игровых программ, простейших компьютерных тренажеров на уроках математики, русского языка и других предметов.

Второй этап (7‐9 кл.) – базовый курс, обеспечивающий обязательный общеобразовательный минимум подготовки по информатике. Он направлен на овладение методами и средствами информационных технологий решения задач, формирование навыков сознательного и рационального использования компьютеров в своей учебной, а затем профессиональной деятельности.

Третий этап (10‐11 кл.) – продолжение образования в области информатики как профильного обучения, дифференцированного по объёму и содержанию в зависимости от интересов и направленности допрофессиональной подготовки школьников.

Предложение трехэтапной структуры курса было определенным шагом вперед, способствовало преодолению разброда и шатаний в определении целей, позволило сделать изучение информатики в школе непрерывным. Новый базисный учебный план 2004 года и образовательный стандарт по информатике закрепили такую структуру курса. Более раннее изучение информатики делает реальным систематическое использование учащимися ИКТ при изучении всех школьных предметов.

Дальнейшее развитие курса информатики должно быть связано с усилением его общеобразовательной функции, с возможностями решения общих задач обучения, развития и воспитания школьников. Большинство отечественных методистов склоняются к тому, что будущее школьного предмета информатики состоит в развитии фундаментальной компоненты, а не в «погружении» в область информационных технологий. Информатика предлагает новый способ мышления и деятельности человека, позволяет формировать целостное мировоззрение и научную картину мира, и это следует использовать в обучении школьников.

В развитых странах Запада цели изучения информатики в школе носят, в основном, прикладной характер и состоят в подготовке школьников к разнообразным видам деятельности, связанным с обработкой информации, освоением средств информатизации и информационных технологий, что считается залогом успешного экономического развития общества.

Вопросы и задания

1. Приведите структуру школьной информатики.

2. Приведите дату введения в средних школах предмета ОИВТ.

3. Опишите этапы истории обучения информатике в отече‐ственной школе.

4. Когда появились факультативы по информатике и как они назывались?

5. Перечислите основные компоненты алгоритмической культуры учащихся.

6. С какого года в школы стали поступать отечественные компьютерные классы?

7. Приведите компоненты содержания компьютерной грамотности школьников.

Лекция 3.

Тема : Структура и содержание обучения основам информатики

План:

Формирование концепции и содержания непрерывного курса информатики для средней школы. Структура обучения основам информатики в средней общеобразовательной школе (Пропедевтика обучения информатике в начальной школе. Базовый курс информатики. Профильное изучение информатики в старших классах).

Стандартизация школьного образования в области информатики. Назначение и функции стандарта в школе. Государственный общеобязательный стандарт по информатике среднего общего образования РК.

Говоря о содержании курса информатики в школе, следует иметь в виду требования к содержанию образования, которые изложены в Законе Об образовании». В содержании образования всегда выделяют три компоненты: воспитание, обучение и развитие. Обучение занимает центральное положение. Содержание общего образования включает в себя информатику двояким образом – как отдельный учебный предмет и через информатизацию всего школьного образования. На отбор содержания курса информатики влияют две группы основных факторов, которые находятся между собой в диалектическом противоречии:

1. Научность и практичность. Это означает, что содержание курса должно идти от науки информатики и соответствовать современному уровню её развития. Изучение информатики должно давать такой уровень фундаментальных познаний, который действительно может обеспечить подготовку учащихся к будущей профессиональной деятельности в различных сферах.

2. Доступность и общеобразовательность. Включаемый материал должен быть посилен основной массе учащихся, отвечать уровню их умственного развития и имеющемуся запасу знаний, умений и навыков. Курс также должен содержать все наиболее значимые, общекультурные, общеобразовательные сведения из соответствующих разделов науки информатики.

Школьный курс информатики, с одной стороны, должен быть современным, а с другой – быть элементарным и доступным для изучения. Совмещение этих двух во многом противоречивых требований является сложной задачей.

Содержание курса информатики складывается сложно и противоречиво. Оно должно соответствовать социальному заказу общества в каждый данный момент его развития. Современное информационное общество выдвигает перед школой задачу формирования у подрастающего поколения информатической компетентности. Понятие информатической компетентности достаточно широко и включает в себя несколько составляющих: мотивационную, социальную когнитивную, технологическую и др. Когнитивная составляющая курса информатики направлена на развитие у детей внимания, воображения, памяти, речи, мышления, познавательных способностей. Поэтому при определении содержания курса следует исходить из того, что информатика обладает большой способностью формирования этих сфер личности и, в особенности, мышления школьников. Общество нуждается в том, чтобы вступающие в жизнь молодые люди обладали навыками использования современных информационных технологий. Все это требует дальнейших исследований и обобщения передового педагогического опыта.

Машинный и безмашинный варианты курса информатики . Первая программа курса ОИВТ 1985 года содержала три базовых понятия: информация, алгоритм, ЭВМ. Эти понятия определяли обязательный для усвоения объём теоретической подготовки. Содержание обучения складывалось на основе компонентов алгоритмической культуры и, затем, компьютерной грамотности учащихся. Курс ОИВТ предназначался для изучения в двух старших классах – в девятом и десятом. В 9 классе отводилось 34 часа (1 час в неделю), а в 10 классе содержание курса дифференцировалось на два варианта – полный и краткий. Полный курс в 68 часов был рассчитан для школ, располагающих вычислительными машинами или имеющими возможность проводить занятия со школьниками на вычислительном центре. Краткий курс объёмом 34 часа предназначался для школ, не имеющих возможности проводить занятия с применением ЭВМ. Таким образом, сразу были предусмотрено 2 варианта – машинный и безмашинный. Но в безмашинном варианте планировались экскурсии объёмом 4 часа на вычислительный центр или предприятия, использующие ЭВМ.

Однако реальное состояние оснащения ЭВМ школ и готовности учительских кадров привели к тому, что курс был изначально ориентирован на безмашинный вариант обучения. Большая часть учебного времени отводилась на алгоритмизацию и программирование.

Первый собственно машинный вариант курса ОИВТ был разработан в 1986 году в объёме 102 часа для двух старших классов. В нем на знакомство с ЭВМ и решение задач на ЭВМ отводилось 48 часов. В то же время существенного отличия от безмашинного варианта не было. Но, тем не менее, курс был ориентирован на обучение информатике в условиях активной работы учащихся с ЭВМ в школьном кабинете вычислительной техники (в это время начались первые поставки в школы персональных компьютеров). Курс был достаточно быстро сопровожден соответствующим программным обеспечением: операционной системой, файловой системой, текстовым редактором. Были разработаны прикладные программы учебного назначения, которые быстро стали неотъемлемым компонентом методической системы преподавателя информатики. Предполагалась постоянная работа школьников с ЭВМ на каждом уроке в кабинете информатики. Было предложено три вида организационного использования кабинета вычислительной техники – проведение демонстраций на компьютере, выполнение фронтальных лабораторных работ и практикума.

Безмашинный вариант сопровождался несколькими учебными пособиями, например, учебники А.Г. Кушниренко с соавторами в то время получили широкое распространение. Тем не менее, и машинный вариант во многом продолжал линию на алгоритмизацию и программирование, и меньше содержал фундаментальные основы информатики.

В 1990 годы с поступлением компьютеров в большинстве школ курс информатики начал преподаваться в машинном варианте, а основное внимание учителя стали уделять освоению приемов работы на компьютере и информационных технологий. Однако следует отметить, что реалии третьего десятилетия преподавания информатики показывают наличие в настоящее время безмашинного варианта или большо его доли в значительном числе школ, не только сельских, но и городских. Преподавание в начальной школе также ориентировано, в основном, на безмашинное изучение информатики, чему есть некоторое объяснение – время работы на компьютере для учащихся начальной школы не должно превышать 15 минут. Поэтому учебники информатики для них содержат лишь небольшую долю собственно компьютерного компонента.

Стандарт образования по информатике. Введение образовательного стандарта стало шагом вперед, а само его понятие прочно вошло в арсенал основных понятий дидактики.

Государственный стандарт содержит нормы и требования, определяющие:

Обязательный минимум содержания основных образовательных программ;

Максимальный объём учебной нагрузки учащихся;

Уровень подготовки выпускников образовательных учреждений;

Основные требования к обеспечению образовательного процесса.

Назначение образовательного стандарта состоит в том, что он призван:

Обеспечить равные возможности для всех граждан в получении качественного образования;

Установить преемственность образовательных программ на разных ступенях образования;

Предоставить право гражданам на получение полной и достоверной информации о государственных нормах и требованиях к содержанию образования и уровню подготовки выпускников образовательных учреждений.

Образовательный стандарт по информатике и ИКТ является нормативным документом, определяющим требования:

К месту курса информатики в учебном плане школы;

К уровню подготовки учащихся в виде набора требований к ЗУНам и научным представлениям;

К технологии и средствам проверки и оценки достижения школьниками требований образовательного стандарта.

В стандарте можно выделить два основных аспекта: Первый аспект – это теоретическая информатика и сфера пересечения информатики и кибернетики: системно‐информационная картина мира, общие закономерности строения и функционирования самоуправляемых систем.

Второй аспект – это информационные технологии. Этот аспект связан с подготовкой учащихся к практической деятельности и продолжению образования.

Модульное построение курса информатики. Накопленный опыт преподавания, анализ требований стандарта и рекомендаций ЮНЕСКО показывают, что в курсе информатики можно выделить две основные составляющие – теоретическая информатика и информационные технологии. Причем информационные технологии постепенно выходят на первый план. Поэтому ещё в базисном учебном плане 1998 года рекомендовалось теоретическую информатику включать в образовательную область «математика и информатика», а информационные технологии – в образовательную область «Технология». Сейчас в основной и старшей школе от такого деления отказались.

Выход из этого противоречия можно найти в модульном построении курса, что позволяет учесть быстро меняющееся содержание, дифференциацию учебных заведений по их профилю, оснащенности компьютерами и программным обеспечением, наличию квалифицированных кадров.

Образовательные модули можно классифицировать на базовые, дополнительные и углубленные, что обеспечивает соответствие содержания курса информатики и ИКТ базисному учебному плану.

Базовый модуль – он является обязательным для изучения, обеспечивающий минимальное содержание образования в соответствии с образовательным стандартом. Базовый модуль часто еще называют базовым курсом информатики и ИКТ, который изучается в 7–9 классах. В тоже время в старшей школе обучение информатике может быть на базовом уровне или на профильном уровне, содержание которого также определяется стандартом.

Дополнительный модуль – призван обеспечить изучение информационных технологий и аппаратных средств.

Углубленный модуль – призван обеспечить получение углубленных знаний, в том числе необходимых для поступления в вуз.

Помимо такого деления на модули, среди методистов и учителей в ходу выделение в содержании курса таких модулей, которые соответствуют делению на основные темы. Таким образом, названные выше модули в свою очередь делят для удобства на более мелкие модули.

Вопросы и задания

1. Какие главные факторы влияют на отбор содержания курса информатики?

2. Опишите машинный и безмашинный варианты курса ОИВТ 1985 и 1986 гг.

3. Каково назначение стандарта?

4. Проанализируйте содержание стандарта по информатике и ИКТ для основной школы и вы‐пишите требования к умениям школьников.

5. Проанализируйте содержание образовательного стандарта по информатике и ИКТ для старшей школы на базовом уровне и выпишите требования к умениям учащихся.

6. Почему принято модульное построение современного курса информатики?

7. Что обеспечивает изучение базового модуля курса информатики?

8. Что обеспечивает изучение дополнительного модуля курса информатики?

9. Что обеспечивает изучение углубленного модуля (школьного компонента) курса информатики?

10. Проанализируйте базисный учебный план школы и выпишите число недельных часов на изучение информатики в каждом классе.

Лекция 4.

Тема: Пропедевтика основ информатики в начальной школе

План:

Задачи пропедевтики обучения информатике в начальной школе. Возможное построение обучения основам информатики в младших классах: отдельный курс, практикум по информатике, включение элементов информатики в содержание обучения математике, языку и природоведению. Анализ содержания существующих курсов информатики для начальной школы.

Игра, как ведущая форма организации занятий по информатике в начальной школе. Методика применения ППС с целью обучения и развития учащихся.

Методика преподавания информатики в начальной школе является относительно новым направлением для отечественной дидактики. Хотя отдельные попытки обучения младших школьников и даже дошкольников имели место на раннем этапе проникновения информатики в школу, систематическое преподавание ведётся с начала 1990 годов. Ещё в 1980 году С. Пейперт разработал язык программирования ЛОГО, который был первым языком программирования, специально созданным для обучения детей младшего возраста. Работая на компьютере с этим программным средством, дети рисовали на экране различные рисунки с помощью исполнителя Черепашка. Через рисование они познавали основы алгоритмизации, а хорошая наглядность Черепашка позволяла обучать даже дошкольников. Эти эксперименты показали принципиальную возможность успешного обучения детей младшего возраста работе на компьютере, что в то время было достаточно революционным.

Активную работу по обучению программированию младших школьников вел академик А.П. Ершов. Ещё в 1979 году он писал, что изучать информатику дети должны со 2 класса: «…формирование этих навыков должно начинаться одновременно с выработкой основных математических понятий и представлений, т.е. в младших классах общеобразовательной школы. Только при этом условии программистский стиль мышления сможет органично войти в систему научных знаний, навыков и умений, формируемых школой. В более позднем возрасте формирование такого стиля может оказаться связанным с ломкой случайно сложившихся привычек и представлений, что существенно осложнит и замедлит этот процесс» (см.: Ершов А.П., Звенигородский Г.А., Первин Ю.А. Школьная информатика (кон‐цепции, состояния, перспективы) // ИНФО, 1995, № 1, С. 3).

В настоящее время группа ученых и методистов под руководством Ю.А. Первина, ученика и соратника академика А.П. Ершова, активно разрабатывает вопросы преподавания информатики младшим школьникам. Они считают, что информатизация современного общества выдвигает в качестве социального заказа школе формирование у подрастающего поколения операционного стиля мышления. Наряду с формированием мышления, большое значение придается мировоззренческому и технологическому аспектам школьного курса информатики. Поэтому в начальных классах следует начинать формировать фундаментальные представления и знания, необходимые для операционного стиля мышления, а также развивать навыки использования информационных технологий в различных отраслях человеческой деятельности.

Введение информатики в начальных классах имеет цель сделать её изучение непрерывным во всей средней школе, и направлено на обеспечение всеобщей компьютерной грамотности молодежи. Психологи считают, что развитие логических структур мышления эффективно идёт до 11 летнего возраста, и если запоздать с их формированием, то мышление ребёнка останется незавершенным, а его дальнейшая учеба будет протекать с затруднениями. Изучение информатики на раннем этапе обучения, наряду с математикой и русским языком, эффективно способствует развитию мышления ребенка. Информатика обладает большой формирующей способностью для мышления, и это необходимо всегда помнить учителю при планировании и проведении занятий. Поэтому основное внимание при изучении информатики следует уделять развитию мышления, а также освоению работы на компьютере.

Что касается содержания обучения, то оно находится в стадии интенсивных поисков, экспериментов и становления. Тем не менее, просматривается определённая линия на выдерживание принципа концентрического построение курса информатики и ИКТ. Это концентрическое построение можно проследить как от класса к классу, когда, переходя в следующий класс, ученики повторяют ранее изученный материал на новом уровне, так и при переходе от пропедевтического курса информатики в начальной школе к базовому курсу в основной школе. Построение многих профильных курсов для старшей школы по отношению к базовому курсу, в своей значительной части, также носит концентрический характер.

От внимания методистов и учителей часто ускользает такой важный момент, как развитие тонкой моторики рук младших школьников. На этот аспект обычно обращают внимание учителя труда, где это есть одна из задач обучения. На уроках информатики при работе на компьютере ученикам приходится на первых порах осваивать работу на клавиатуре и приёмы рабы с мышью. Это достаточно сложный процесс в условиях, когда ученику приходится следить за результатом тонких движений руки и пальцев не непосредственно, а на экране компьютера. Осложняющим обстоятельством является то, что в отечественных школах в кабинетах стоят компьютеры, сделанные для взрослых пользователей. Их клавиатура и мышь сконструированы под руки взрослого человека и вовсе не подходят для ребёнка. Всё это задерживает процесс освоения детьми приемов работы с клавиатурой и мышью, сказывается на развитии тонкой моторики пальцев и рук, а ведь через их тонкие движения стимулируется развитие мозга ребёнка. В связи с этим интерес представляет использование для обучения ноутбуков, у которых клавиатура существенно меньшего размера и более удобна для детских рук. Они занимают мало места на столе и могут использоваться в обычных классных комнатах.

Вопросы и задания

1. Кто был инициатором обучения информатике младших школьников в нашей стране?

2. Почему информатику следует изучать с первых классов школы?

3. Почему приоритетным при изучении информатики следует считать развитие мышления школьников?

4. Каковы цели обучения информатике в начальной школе?

5. Приведите перечень общеучебных навыков, которые следует формировать при изучении информатики в начальной школе.

6. Составьте перечень основных умений работы на компьютере, которыми должны овладеть младшие школьники.

7. Почему учителю информатики следует обращать внимание на необходимость развития тонкой моторики пальцев и рук? Как это делать?

Лекция 5.

Тема: Базовый курс школьной информатики

План:

Базовый курс информатики в среднем звене школы (7-9 кл.). Задачи базового курса информатики, обеспечивающего обязательный минимум общеобразовательной подготовки учащихся в области информатики и информационных технологий. Курс информатики в зарубежной школе (страны СНГ и Западной Европы, США). Основные компоненты содержания базового курса информатики, определяемые требованиями стандарта по этому предмету. Анализ основных существующих программ базового курса:

Обзор учебников по информатике: сравнительный анализ. Анализ методических пособий по курсу информатики. Методика и критерий оценки качества школьных учебников по информатике.

Как уже отмечалось выше, в школьном обучении реализуется концепция непрерывного курса информатики и ИКТ. Курс включает в себя три этапа: пропедевтический, базовый и профильный. Базовый курс информатики составляет ядро всего курса, поскольку обеспечивает реализацию обязательного минимума содержания образования по информатике так, как это отражено в образовательном стандарте.

В настоящее время, базовый курс информатики преподается в основной школе с 7 по 9 класс по 1 часу в неделю, т.е. по 34 часов в год.

Как видно, в обоих вариантах объём всего базового курса составляет 102 часов, как и предусмотрено в базисном учебном плане основной школы.

Примерная программа курса включает в себя следующие разделы:

1. Информация и информационные процессы.

2. Компьютер как универсальное устройство обработки информации.

3. Обработка текстовой информации.

4. Обработка графической информации.

5. Мультимедийные технологии.

6. Обработка числовой информации.

7. Представление информации.

8. Алгоритмы и исполнители.

9. Формализация и моделирование.

10. Хранение информации.

11. Коммуникационные технологии.

12. Информационные технологии в обществе.


Похожая информация.