Ссср на марсе. Марс (космическая программа)

», а вышедшая на околоземную орбиту М-71C получила открытое наименование «Космос-419 ».

АМС первого и второго поколения разработаны в ОКБ-1 . АМС третьего и четвёртого поколения разработаны в НПО им. Лавочкина .

Запуски АМС первого и второго поколения осуществлялись 4-ступенчатой ракетой-носителем среднего класса «Молния ». Запуски АМС третьего и четвёртого поколений осуществлялись ракетой-носителем тяжёлого класса «Протон-К » с дополнительной 4-й ступенью - разгонным блоком Д .

Специально к запускам КА к Марсу был построен радиотехнический комплекс дальней космической связи. За траекторией полёта станции следил также телескоп Крымской астрофизической обсерватории диаметром 2,6 м.

Энциклопедичный YouTube

    1 / 5

    ✪ Луна 2019. Китайская лунная программа. Истинный цвет Луны. Кратер Аристарх, кратер Хоука.

    ✪ Марс 2019, ноябрь. Новое селфи ровера Кьюриосити, обзор панорамы. Вода на древнем Марсе, симуляция.

    ✪ Марс: подполье (The Mars Underground 2014)

    ✪ Владимир Сурдин. Марс – великое противостояние. Проект ЭкзоМАРС

    ✪ Секретные материалы Агентств космических исследований

    Субтитры

Серии КА

Космические аппараты первого поколения:

  • М-60 («Марс 1960А », «Марс 1960Б ») - пролётные станции проекта 1М . Два запуска в 1960 году были неудачными из-за аварий ракет-носителей.

Космические аппараты второго поколения:

  • М-62 («Марс-1 », «Марс 1962А », «Марс 1962B » - станции проекта унифицированных марсианско-венерианских АМС 2МВ . Посадочная «Марс-62A» 2МВ-3 и первая пролётная «Марс-62B» 2МВ-4 не были выведены на межпланетные траектории из-за аварий ракет носителей. Вторая пролётная АМС 2МВ-4 «Марс-1» запущена к Марсу 1 ноября 1962 года, но в первые дни полёта космического аппарата по межпланетной траектории отказала система ориентации после утечки газа.
  • М-64 («Зонд-2 ») - пролётная станция проекта унифицированных марсианско-венерианских АМС 3МВ (усовершенствованное второе поколение). АMC запущена к Марсу 30 октября 1964 года. Однако по причине не полного открытия солнечных батарей был зафиксирован пониженный уровень электропитания, приблизительно вдвое меньше ожидаемого. Станция не могла выполнить исследования Марса и получила название «Зонд-2 ».

Космические аппараты третьего поколения:

  • М-69 («Марс 1969А », «Марс 1969В ») - Серия М-69 состояла из двух тяжёлых АМС. Станции предназначенны для исследования Марса с орбиты искусственного спутника (ИСМ). Первые в СССР и мире многотонные межпланетные станции. Обе АМС не были в 1969 году выведены на межпланетные траектории из-за аварий ракет-носителей Протон .

Космические аппараты четвёртого поколения:

  • М-71 - Серия М-71 состояла из трёх АМС, предназначенных для изучения Марса как с орбиты ИСМ, так непосредственно на поверхности планеты. Для этого АМС «Марс-2 », «Марс-3 » имели в своём составе как искусственный спутник - орбитальный аппарат (ОА), так и автоматическую марсианскую станцию мягкая посадка которой на поверхность планеты осуществлялась спускаемым апппаратом (СА). Автоматическая марсианская станция комплектовалась первым в мире марсоходом ПрОП-М . АМС М-71C не имела спускаемого аппарата, должна была стать искусственным спутником Марса. АМС М-71С не была выведена на межпланетную траекторию и была официально именуема как ИСЗ «Космос-419 ». «Марс-2», «Марс-3» запущены 19 и 28 мая 1971 года. Орбитальные аппараты «Марс-2» и «Марс-3» работали более восьми месяцев и успешно выполнили большую часть программы полёта искусственных спутников Марса (кроме фотосъёмки). Мягкая посадка спускаемого аппарата «Марс-2» закончилась неудачно, спускаемый аппарат «Марс-3» совершил мягкую посадку, но передача с автоматической марсианской станции прекратилась через 14,5 секунд.

Принципиально конструкция серии М-73 не отличалась от серии М-71. Проведена модернизация отдельных узлов и приборов.

  • М-73 - Серия М-73 состояла из четырёх АМС, предназначенных для изучения Марса как с орбиты ИСМ, так непосредственно с поверхности планеты. В 1973 увеличилась скорость необходимая для вывода АМС на межпланетную траекторию. Поэтому ракета-носитель «Протон» не могла вывести АМС состоящую из орбитальной станции - искусственного спутника Марса и спускаемого аппарата с автоматической марсианской станцией на траекторию необходимую чтобы приблизиться к Марсу, как было возможно в 1971. Космические аппараты «Марс-4 » и «Марс-5 » (модификация М-73С), должны были выйти на орбиту вокруг Марса и обеспечивать связь с автоматическими марсианскими станциями, которые несли АМС «Марс-6 » и «Марс-7 » (модификация М-73П). Запущены 21, 25 июля и 5,9 августа 1973 года. «Марс-4» - исследование Марса с пролётной траектории (неудача, планировалось запустить спутник Марса). «Марс-5» - искусственный спутник Марса (частичная удача, время работы спутника около двух недель). «Марс-6» - облёт Марса и мягкая посадка автоматической марсианской станции (неудача, в непосредственной близости от поверхности Марса потеряна связь), первые прямые измерения состава атмосферы, давления и температуры во время снижения спускаемого аппарата на парашюте. «Марс-7» - облёт Марса и мягкая посадка автоматической марсианской станции (неудача, спускаемый аппарат пролетел мимо Марса).

Технические задачи и научные результаты

«Марс-1»

Технические задачи

Так как для своего времени проект «Марс» являлся первым в истории проектом такого масштаба, как освоение межпланетных пространств в области Земля-Марс, то перед ним вставал ряд технических вопросов - какой мощности и типа понадобятся двигатели и ракеты-носители для выведения на орбиту Земли необходимого полезного груза, как поведёт себя радиосвязь на больших расстояниях, с какими проблемами столкнётся электроника в условиях космической радиации межпланетного пространства в области Земля-Марс и мн. другое.

Исходя из баллистических данных, можно полагать, что 19 июня 1963 года неуправляемый «Марс-1» осуществил первый пролёт на расстоянии примерно 200 тыс. км от Марса и продолжил свой полёт вокруг Солнца.

Научные результаты

Вследствие отказа системы ориентации «Марс-1» не смог осуществить научное исследование Марса и околомарсианского космического пространства с пролётной траектории.

Тем не менее, в задачи первых «Марсов» входил не только пролёт вблизи Марса и непосредственное изучение планеты, но и исследование свойств межпланетного пространства между Землёй и Марсом где физические условия ещё не были известны.

Программа полёта «Марс-1» была выполнена частично, 21 марта 1963 года радиоконтакт с АМС был потерян. В этот момент «Марс-1» преодолел половину пути и находился в более чем ста миллионах километров от Земли, но успел передать важную информацию о межпланетном пространстве на большом расстоянии от нашей планеты . С помощью «Марс-1» впервые были получены данные о физических свойствах космического пространства между орбитами Земли и Марса: об интенсивности космического излучения, напряжённости магнитных полей Земли и межпланетной среды, о потоках ионизованного газа, идущего от Солнца, и о распределении метеорного вещества (космический аппарат пересек 2 метеорных потока) .

«Марс-2», «Марс-3»

Космические аппараты четвёртого поколения (серия М-71 - «Марс-2 »/«Марс-3 »). АМС дублировали друг друга. Каждая АМС состояла из орбитального аппарата (ОА), спускаемого апппарата (СА) и марсоходов ПрОП-М .

Технические задачи

Главная техническая задача миссий «Марс-2 » и «Марс-3 » заключалась в доставке на орбиту и поверхность Марса автоматических марсианских станций и марсоходов, а также дальнейшее осуществление слаженной работы между ними .Помимо всего прочего, в задачи «Марс-2» входила доставка на поверхность Марса капсулы, содержащей вымпел с изображением Государственного герба СССР.

Спускаемые аппараты и марсоходы советских АМС программы «Марс» не справились с возложенными задачами, в то время как орбитальные аппараты выполнили все основные поставленные перед ними технические программы. Из за неудач спускаемых аппаратов, главная техническая задача всей программы «Марс» - создание на Марсе работающего научного автоматического комплекса - не была решена.

«Марс-2»

Орбитальный аппарат АМС «Марс-2». Успешно выполнил все основные этапы своей программы и свыше 8 месяцев проводил исследования Марса с орбиты, вплоть до исчерпания азота в системе ориентации и стабилизации (23 августа 1972 года) . При подлёте к Марсу от «Марс-2» была отделен спускаемый аппарат, доставивший на поверхность планеты вымпел с изображением Государственного герба СССР .

Спускаемый аппарат АМС «Марс-2». На поверхность планеты был отправлен в ноябре 1971 года. При посадке 27 ноября 1971 года аппарат разбился, став первым рукотворным объектом, доставленным на Марс.

Марсоход АМС «Марс-2» «ПрОП-М». Был утерян вследствие аварии при посадке спускаемого аппарата .

«Марс-3»

Орбитальный аппарат АМС «Марс-3». Успешно выполнил все основные этапы своей программы и свыше 8 месяцев проводил исследования Марса с орбиты, вплоть до исчерпания азота в системе ориентации и стабилизации (23 августа 1972 года) .

Спускаемый аппарат АМС «Марс-3». На поверхность планеты был отправлен в декабре 1971 года. 2 декабря 1971 года была произведена первая в истории успешная мягкая посадка на поверхность Марса. Вскоре после посадки станция начала передачу панорамы окружающей поверхности, но полученная часть панорамы представляла собой серый фон без единой детали. Через 14,5 секунд сигнал пропал. (По воспоминаниям академика М. Я. Марова сигнал пропал через 20 секунд ).

Марсоход АМС «Марс-3» «ПрОП-М». Был утерян вследствие потери связи со спускаемым аппаратом.

Научные результаты

Научная аппаратура

На борту орбитальных аппаратов «Марс-2» и «Марс-3» находилась научная аппаратура, предназначенная для измерений в межпланетном пространстве, а также для изучения окрестностей Марса и самой планеты с орбиты искусственного спутника:

Научные измерения, исследования и эксперименты

Орбитальные станции «Марс-2» и «Марс-3» свыше 8 мес осуществляли комплексную программу орбитальных исследований Марса. Были проведены и получены следующие измерения и результаты:

Фотографии

Разработчики фототелевизионной установки (ФТУ) использовали неправильную модель освещения Марса. Поэтому были выбраны некорректные выдержки. Снимки получались пересветленными, практически полностью непригодными. После нескольких серий снимков (в каждой по 12 кадров) фототелевизионная установка не использовалась.

«Марс-4», «Марс-5», «Марс-6», «Марс-7»

Изучение Марса в 1973-1974 гг, когда четыре советских КА «Марс-4 », «Марс-5 », «Марс-6 », «Марс-7 » практически одновременно достигли окрестностей планеты, приобрело новое качество. Цель полёта: определение физических характеристик грунта, свойств поверхностной породы, экспериментальная проверка возможности получения телевизионных изображений и др.

Научные исследования, проведённые КА «Марс-4», «Марс-5», «Марс-6», «Марс-7» разносторонни и обширны. КА «Марс-4» провёл фотографирование Марса с пролётной траектории. «Марс-5» - искусственный спутник Марса «Марс-5 передал новые сведения об этой планете и окружающем её пространстве, сделал качественные фотографии марсианской поверхности, в том числе цветные. Спускаемый аппарат «Марса-6» совершил посадку на планету, впервые передав данные о параметрах марсианской атмосферы, полученные во время снижения. КА «Марс-6» и «Марс-7» исследовали космическое пространство с гелиоцентрической орбиты. «Марс-7» в сентябре-ноябре 1973 года зафиксирована связь между возрастанием потока протонов и скорости солнечного ветра. На фотоснимках поверхности Марса, отличающихся весьма высоким качеством, можно различить детали размером до 100 м. Это ставит фотографирование в число основных средств изучения планеты. Поскольку фотографирование проводилось с использованием цветных светофильтров путём синтезирования получены цветные изображения ряда участков поверхности. Цветные снимки также отличаются высоким качеством и пригодны для ареолого-морфологических и фотометрических исследований.

С помощью двухканального ультрафиолетового фотометра с высоким пространственным разрешением получены фотометрические профили атмосферы у лимба планеты в недоступной для наземных наблюдений области спектра 2600-2800 A. Эти профили помогли впервые обнаружить следы озона в атмосфере Марса (данные американских аппаратов «Маринер-6», «Маринер-7», «Маринер-9» по озону относились к твёрдой поверхности полярной шапки), а также заметное аэрозольное поглощение даже в отсутствии пылевых бурь. С помощью этих данных можно вычислить характеристики аэрозольного слоя. Измерения содержания атмосферного озона позволяют оценить концентрацию атомарного кислорода в нижней атмосфере и скорость его вертикального переноса из верхней атмосферы, что важно для выбора модели, объясняющей стабильность существующей на Марсе атмосферы из углекислого газа. Результаты измерений на освещённом диске планеты могут быть использованы для изучения её рельефа. Исследования магнитного поля в околомарсианском пространстве, проведённые КА «Марс-5» подтвердили вывод, сделанный на основании аналогичных исследований КА «Марс-2», «Марс-3», о том, что вблизи планеты существует магнитное поле порядка 30 гамм (в 7-10 раз больше величины межпланетного невозмущённого поля, переносимого солнечным ветром). Предполагалось, что это магнитное поле принадлежит самой планете, и «Марс-5» помог получить дополнительные аргументы в пользу этой гипотезы. Предварительная обработка данных КА «Марс-7» об интенсивности излучения в резонансной линии атомарного водорода Лайман-альфа позволила оценить профиль этой линии в межпланетном пространстве и определить в ней две компоненты, каждая из которых вносит приблизительно равный вклад в суммарную интенсивность излучения. Полученная информация даст возможность вычислить скорость, температуру и плотность втекающего в солнечную систему межзвёздного водорода, а также выделить вклад галактического излучения в линии Лайман-альфа. Этот эксперимент выполнялся совместно с французскими учеными. По аналогичным измерениям с борта КА «Марс-5» впервые непосредственно измерена температура атомарного водорода в верхней атмосфере Марса. Предварительная обработка данных показала, что эта температура близка к 350°К.

Спускаемый аппарат «Марса-6» проводил измерения химического состава марсианской атмосферы при помощи масс-спектрометра радиочастотного типа. Вскоре после раскрытия основного парашюта сработал механизм вскрытия анализатора, и атмосфера Марса получила доступ в прибор. Сами масс-спектры должны были передаваться после посадки и на Земле получены не были, однако при анализе параметра ток магнитоионизационного насоса масс-спектрографа, переданного по телеметрическому каналу в ходе парашютного спуска, было предположено, что содержание аргона в атмосфере планеты может составлять от 25 % до 45 % . (По уточнённым данным доля аргона в атмосфере Марса - 1,6 %). Содержание аргона имеет принципиальное значение для понимания эволюции атмосферы Марса.

На спускаемом аппарате осуществлялись также измерения давления и окружающей температуры. Результаты этих измерений весьма важны как для расширения знаний о планете, так и для выявления условий, в которых должны работать будущие марсианские станции.

Совместно с французскими учеными выполнен также радиоастрономический эксперимент - измерения радиоизлучения Солнца в метровом диапазоне. Прием излучения одновременно на Земле и на борту космического аппарата, удалённого от нашей планеты на сотни миллионов километров, позволяет восстановить объемную картину процесса генерации радиоволн и получить данные о потоках заряженных частиц, ответственных за эти процессы. В этом эксперименте решалась и другая задача - поиск кратковременных всплесков радиоизлучения, которые могут, как предполагается, возникать в далеком космосе за счёт явлений взрывного типа в ядрах галактик, при вспышках сверхновых звёзд и других процессах.

  • В отличие от автоматических межпланетных станций серии «Маринер » корпус советских автоматических межпланетных станций Марс герметичный.
  • В отличие от советских автоматических межпланетных станций Марс в автоматических межпланетных станциях «Маринер-6» - «Маринер-10» использовано большое количество интегральных схем.

Советские и российские космические аппараты для исследования Марса

Нереализованные проекты

  • «Марс-4НМ» - нереализованный проект тяжёлого марсохода, который должен был запускаться сверхтяжёлой ракетой-носителем Н-1 , не введённой в эксплуатацию.
  • «Марс-5НМ» - нереализованный проект АМС для доставки грунта с Марса, которая должна была запускаться одним запуском РН Н-1. Проекты 4НМ и 5НМ были разработаны в 1970 г с целью осуществления около 1975 г.
  • «Марс-79 » («Марс-5М») - нереализованный проект АМС для доставки грунта с Марса, орбитальный и посадочный модули которой должны были запускаться раздельно на РН «Протон» и стыковаться у Земли для отлёта к Марсу. Проект был разработан в 1977 г с целью осуществления в 1979 г.

Частично удачные запуски

  • «Фобос » - две АМС для исследования Марса и Фобоса 1989 года нового унифицированного проекта, из которых ввиду отказов одна вышла из-под контроля на пути к планете, а вторая выполнила только часть марсианской программы и частично выполнила фобосную.
    • «Фобос-Грунт 2 » - повторная, несколько изменённая миссия АМС для доставки грунта с Фобоса, планируемая к запуску до 2021 г.
    • «Марс-нет»/MetNet - АМС с 4-мя новыми и 4-мя из проекта «Марс-96» малыми ПМ, планируемая к запуску в 2017 г.
    • «Марс-Астер» - АМС для изучения Марса и астероидов с 2018 г.
    • «Марс-Грунт» - АМС для доставки грунта с Марса около 2020-2033 гг.

6 августа 2012 года марсоход Curiosity после восьмимесячного перелета в районе кратера Гейла на Марсе, сообщает НАСА.

10 октября 1960 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Молния 8К78", которая должна была вывести на траекторию полета к Марсу советскую автоматическую межпланетную станцию (АМС) "Марс" (1960А). Это была первая в истории человечества попытка достичь поверхности Марса. Из‑за аварии ракеты‑носителя (РН) пуск закончился неудачей.

14 октября 1960 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Молния 8К78", которая должна была вывести на траекторию полета к Марсу советскую АМС "Марс" (1960В). Программа полета предусматривала достижение станцией поверхности Марса. Из‑за аварии РН пуск закончился неудачей .

24 октября 1962 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Молния 8К78", которая вывела на околоземную орбиту советскую АМС "Марс‑1С" ("Спутник‑22").

Старт станции в сторону Марса не состоялся из‑за взрыва последней ступени ракеты‑носителя.

1 ноября 1962 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Молния 8К78", которая вывела на траекторию полета к Марсу советскую АМС "Марс‑1". Первый успешный пуск в сторону Марса. Сближение АМС "Марс‑1" с Марсом наступило 19 июня 1963 года (от Марса около 197 тысяч километров, по баллистическим расчетам), после чего станция вышла на траекторию движения вокруг Солнца. Связь с АМС была потеряна.

4 ноября 1962 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Молния 8К78", которая вывела на околоземную орбиту советскую АМС "Марс‑2А" ("Спутник‑24"). Старт станции в сторону Марса не состоялся.

5 ноября 1962 года спутник "Марс‑2А" прекратил существование, войдя в плотные слои атмосферы.

5 ноября 1964 года в США с космодрома Cape Canaveral был осуществлен пуск ракеты‑носителя Atlas Agena‑D, которая вывела на траекторию полета к Марсу американскую АМС Mariner‑3. Станция была выведена на нерасчетную траекторию и в район Марса не попала . Mariner‑3 находится на солнечной орбите.

28 ноября 1964 года в США с космодрома Cape Canaveral был осуществлен пуск ракеты‑носителя Atlas Agena‑D, которая вывела на траекторию полета к Марсу американскую АМС Mariner‑4. Станция была предназначена для исследования Марса с пролетной траектории.

14 июля 1965 года станция Mariner‑4 совершила пролет около Марса, пройдя на расстоянии 9920 километров от его поверхности. Аппарат передал 22 крупных плана поверхности Марса, а так же подтвердил предположение о том, что тонкая атмосфера Марса состоит из углекислого газа, давлением 5‑10 миллибар. Было зафиксировано наличие у планеты слабого магнитного поля. Станция продолжала функционировать до конца 1967 года. Сейчас Mariner 4 находится на солнечной орбите.

30 ноября 1964 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Молния 8К78", которая вывела на траекторию полета к Марсу советскую АМС "Зонд‑2". Контакт со станцией был потерян 4‑5 мая 1965 года.

27 марта 1969 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя (РН) "Протон‑К / Д", которая должна была вывести на траекторию полета к Марсу АМС "Марс". Из‑за аварии РН пуск закончился неудачей.

24 февраля 1969 года в США с космодрома Cape Canaveral был осуществлен пуск ракеты‑носителя Atlas SLV‑3C Centaur‑D, которая вывела на траекторию полета к Марсу автоматическую межпланетную станцию Mariner‑6. 31 июля 1969 года станция Mariner‑6 пролетела на высоте 3437 километров над экваториальной областью Марса . Сейчас Mariner‑6 находится на солнечной орбите.

27 марта 1969 года в США с космодрома Cape Canaveral был осуществлен пуск ракеты‑носителя Atlas SLV‑3C Centaur‑D, которая вывела на траекторию полета к Марсу американскую АМС Mariner‑7. 5 августа 1969 года станция Mariner‑7 пролетела на высоте 3551 километров над южным полюсом Марса.

Mariner-6 и Mariner-7 произвели измерения температуры поверхности и атмосферы, анализ молекулярного состава поверхности и давления атмосферы. Кроме этого, было получено около 200 изображений. Была измерена температура южной полярной шапки, которая оказалась очень низкой ‑125° С. Сейчас Mariner‑7 находится на солнечной орбите.

27 марта 1969 года при запуске советской АМС "Марс 1969А" произошла авария на участке выведения на околоземную орбиту.

2 апреля 1969 года при запуске советской АМС "Марс 1969В" произошла авария на участке выведения на околоземную орбиту.

8 мая 1971 года в США с космодрома Cape Canaveral был осуществлен пуск ракеты‑носителя Atlas SLC‑3C Centaur‑D, которая должна была вывести на траекторию полета к Марсу американскую АМС Mariner‑ 8. Космический аппарат не смог покинуть земной орбиты. Из‑за сбоя в работе второй ступени ракетоносителя аппарат упал в Атлантический океан примерно в 900 милях от мыса Канаверал.

10 мая 1971 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Протон‑К" с разгонным блоком "Д", которая вывела на околоземную орбиту спутник "Космос‑419", однако на траекторию полета к Марсу космический аппарат не перешел. 12 мая 1971 года аппарат вошел в плотные слои земной атмосферы и сгорел.

19 мая 1971 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Протон‑К" с разгонным блоком "Д", которая вывела на траекторию полета к Марсу советскую АМС "Марс‑2". Однако, на заключительном этапе полета из‑за программной ошибки бортовая ЭВМ спускаемого аппарата дала сбой, в результате чего угол его входа в марсианскую атмосферу оказался больше расчетного, и 27 ноября 1971 года он разбился о поверхность Марса . На борту аппарата был закреплен вымпел СССР.

28 мая 1971 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Протон‑К" с разгонным блоком "Д", которая вывела на траекторию полета к Марсу советскую АМС "Марс‑3". 2 декабря 1971 года спускаемый аппарат АМС "Марс‑ 3" совершил мягкую посадку на поверхность Марса. После посадки станция была приведена в рабочее состояние и начала передавать на Землю видеосигнал. Передача продолжалась 20 секунд и резко прекратилась. Орбитальный космический аппарат передавал данные на Землю до августа 1972 года.

30 мая 1971 года в США с космодрома Cape Canaveral был осуществлен пуск ракеты‑носителя Atlas SLV‑3C Centaur‑D, которая вывела на траекторию полета к Марсу американскую АМС Mariner‑9. Космический аппарат (КА) прибыл к Марсу 3 ноября 1971 года и вышел на орбиту 24 ноября 1971 года. КА были сделаны первые снимки спутников Марса Фобоса и Деймоса в высоком разрешении. На поверхности планеты были обнаружены рельефные образования, напоминающие реки и каналы. Mariner‑9 все еще находится на орбите Марса. с 13 ноября 1971 года по 27 октября 1972 года передал 7329 снимков.

21 июля 1973 года в СССР с космодрома Байконур, был осуществлен пуск ракеты‑носителя "Протон‑К" с разгонным блоком "Д", которая вывела на траекторию полета к Марсу советскую АМС "Марс‑4" . 10 февраля 1974 года станция подошла к Марсу, однако корректирующая двигательная установка не включилась. Поэтому аппарат пролетел на высоте 1844 километров над средним радиусом Марса (5238 километров от центра). Единственное, что он успел сделать, это по команде с Земли включить свою фототелевизионную установку с короткофокусным объективом "Вега‑3МСА". Был проведен один 12‑кадровый цикл съемки Марса на дальностях 1900‑2100 километров. Однострочные оптико‑механические сканеры передали также две панорамы планеты (в оранжевом и красно‑инфракрасном диапазонах). Станция, пройдя мимо планеты, вышла на гелиоцентрическую орбиту.

25 июля 1973 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Протон‑К" с разгонным блоком "Д", которая вывела на траекторию полета к Марсу советскую АМС "Марс‑5". 12 февраля 1974 года АМС "Марс‑5" была выведена на орбиту вокруг Марса. Со станции были переданы фототелевизионные изображения Марса с разрешением до 100 метров, проведены серии исследований поверхности и атмосферы планеты. Всего со станции "Марс‑5" было получено 15 нормальных снимков с помощью фототелевизионного устройства (ФТУ) с короткофокусным объективом "Вега‑3МСА" и 28 снимков с помощью ФТУ с длиннофокусным объективом "Зуфар‑2СА". Удалось получить 5 телепанорам. Последний сеанс связи с АМС, в котором была передана телепанорама Марса, состоялся 28 февраля 1974 года.

5 августа 1973 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Протон‑К" с разгонным блоком "Д", которая вывела на траекторию полета к Марсу АМС "Марс‑6" . |

12 марта 1974 года станция "Марс‑6" совершила пролет мимо планеты Марс, пройдя на расстоянии 1600 километров от поверхности планеты. Непосредственно перед пролетом от станции был отделен спускаемый аппарат, который вошел в атмосферу планеты и на высоте порядка 20 километров в действие была введена парашютная система. В непосредственной близости от поверхности планеты Марс радиосвязь со спускаемым аппаратом прекратилась. Спускаемый аппарат достиг поверхности планеты в точке с координатами 24 градусов южной широты и 25 градусов западной долготы.

Информация со спускаемого аппарата во время его снижения принималась космическим аппаратом "Марс‑6", продолжавшим движение по гелиоцентрической орбите с минимальным расстоянием от поверхности Марса ‑ 1600 километров, и ретранслировалась на Землю.

9 августа 1973 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Протон‑К" с разгонным блоком "Д", которая вывела на траекторию полета к Марсу советскую АМС "Марс‑7".

9 марта 1974 года (раньше, чем "Марс‑6") станция "Марс‑7" совершила пролет мимо планеты Марс, пройдя на расстоянии 1300 километров от его поверхности. При приближении к планете от станции отделился спускаемый аппарат. Программа полета предусматривала совершение посадки на поверхность Марса. Из‑за нарушения в работе одной из бортовых систем, спускаемый аппарат прошел мимо планеты и вышел на гелиоцентрическую орбиту. Целевая задача станцией не была выполнена.

Проект Национального управления по воздухоплаванию и исследованию космического пространства (НACA, США) 1975 года - "Викинг‑1" (Viking‑1) и " Викинг‑2" (Viking‑2) ‑ включал в себя запуск с разницей в несколько недель двух летательных аппаратов, состоящих из орбитального и посадочного модулей. Впервые в истории американской космонавтики они, достигнув Марса, совершили посадку на его поверхность.

20 августа 1975 года с космодрома Cape Canaveral был осуществлен пуск ракеты‑носителя "Titan‑3E", которая вывела на орбиту американский КА Viking‑1. Космический аппарат вышел на орбиту Марса 19 июня 1976 года . Спускаемый аппарат осуществил посадку на Марс 20 июля 1976 года . Был отключен 25 июля 1978 года, когда иссякло топливо для коррекции высоты полета орбитального модуля.

9 сентября 1975 года с космодрома Cape Canaveral был осуществлен пуск ракеты‑носителя "Титан‑3E‑Центавр", которая вывела на орбиту американский КА Viking‑2. Космический аппарат вышел на орбиту Марса 24 июля 1976 года. Спускаемый аппарат осуществил посадку 7 августа 1976 года на Равнине Утопия.

7 июля 1988 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Протон 8К82К" с разгонным блоком "Д2", которая вывела на траекторию полета к Марсу советскую АМС "Фобос‑1" для исследования спутника Марса Фобоса. 2 сентября 1988 года "Фобос‑1" был утерян на пути к Марсу в результате ошибочной команды.

12 июля 1988 года в СССР с космодрома Байконур был осуществлен пуск ракеты‑носителя "Протон 8К82К" с разгонным блоком "Д2", которая вывела на траекторию полета к Марсу советскую АМС "Фобос‑2". Основная задача ‑ доставка на поверхность Фобоса спускаемых аппаратов (СКА) для изучения спутника Марса.

"Фобос‑2" вышел на орбиту Марса 30 января 1989 года. Было получено 38 изображений Фобоса с разрешением до 40 метров, измерена температура поверхности Фобоса. Связь с аппаратом была потеряна 27 марта 1989 года. СКА доставить не удалось.

25 сентября 1992 года в США с космодрома Cape Canaveral был осуществлен пуск ракеты‑носителя Titan‑3, которая вывела на траекторию полета к Марсу американскую АМС Mars Observer с модулем USS Thomas O.Paine, предназначенную для проведения научных наблюдений в течение четырехлетнего нахождения на орбите Марса. Контакт с Mars Observer был потерян 21 августа 1993 года, когда ему оставалось всего три дня до выхода на орбиту. Точная причина не известна, предположительно КА взорвался во время повышения давления в топливных баках при подготовке к выходу на орбиту.

7 ноября 1996 года в США с космодрома Cape Canaveral был осуществлен пуск ракеты‑носителя Delta‑2‑7925A / Star‑48B, которая вывела на околомарсианскую орбиту американскую исследовательскую станцию Mars Global Surveyor. КА был предназначен для сбора информации о характере поверхности Марса, ее геометрии, составе, гравитации, динамики атмосферы и магнитном поле.

4 декабря 1996 года в США по программе НАСА по изучению Марса с помощью ракеты‑носителя "Дельта‑2" был запущен аппарат Mars Pathfinder. Помимо научного оборудования и систем связи на борту спускаемого модуля находился небольшой марсоход Sojourner.

8 ноября 2011 года с помощью ракеты‑носителя "Зенит‑2 SБ" стартовала российская АМС "Фобос‑Грунт", предназначенная для доставки образцов грунта с естественного спутника Марса, Фобоса, на Землю. В результате нештатной ситуации не смогла покинуть окрестности Земли, оставшись на низкой околоземной орбите. 15 января 2012 года сгорела в плотных слоях земной атмосферы.

26 ноября 2011 года с помощью ракеты‑носителя Atlas V стартовал исследовательский марсоход Curiosity (США) - ключевое звено "Марсианской научной лаборатории" (Mars Science Laboratory). Аппарат должен будет за несколько месяцев пройти от 5 до 20 километров и провести полноценный анализ марсианских почв и компонентов атмосферы.

Планируется, что марсоход Curiosity проживет на поверхности планеты один марсианский год ‑ 687 земных дней или 669 марсианских.

Материал подготовлен на основе информации РИА Новости и открытых источников

«На пыльных тропинках далёких планет останутся наши следы», пелось в советской песне. Так и получилось. Возьмём, к примеру, Марс: тропинки на нём действитльно пыльные: атмосфера там, конечно, менее плотная, чем на Земле, зато и сила тяжести вчетверо меньше, и движение разреженных газов легко поднимает над поверхностью Марса пылевые столбы, а иногда поднимаются глобальные (то есть на всю планету) пыльные бури. Самая продолжительная за всю историю наблюдений длилась с сентября 1971 года по январь 1972, то есть почти половину земного года. Вот как выглядят «пыльные дьяволы» — смерчи, сняты марсоходом Curiosity.

Тропинки пыльные, и следы человека — в широком смысле — на Марсе есть. Сейчас там находится около двух десятков рукотворных устройств: три советских аппарата, девять американских, один британский и «Скиапарелли», построенный специалистами Европейского космического агентства при участии российских учёных, и сошедшие с орбиты орбитальные станции: не обо всех известно, где они сейчас находятся, поэтому точное число искусственных аппаратов, которые сейчас заметает марсианский песок, назвать нельзя.

Марс-1 и Марс-2: первые, но неудачные

Первыми были Советы. В 1971 году поверхности Красной планеты достигли две автоматические межпланетные станции (АМС) Марс-2 и Марс-3. Каждая несла маленький марсоход ПрОП-М — коробочку на полозьях, привязанную к стационарному модулю 15-метровым кабелем: ПрОПы должны были дать первые снимки поверхности далёкой планеты, сделанные на месте.

Обоим не повезло: садились они в разгар той самой страшной, глобальной пылевой бури, в ноябре и декабре 1971 года. АМС Марс-2 разбилась при посадке, Марс-3 села без повреждений, и это была победа: первая успешная мягкая посадка на поверхность Марса в истории. Станция даже начала передавать на Землю телесигнал, но через 14,5 секунд прекратила и больше не выходила на связь. Что случилось, до сих пор непонятно. Однако миссия не была провалена полностью: во‑первых, тогда учёные получили первое изображение марсианской поверхности — вот такое:

А во-вторых, кроме посадочного модуля была орбитальная станция, и она честно проработала с декабря по август, передавая на Землю результаты измерений магнитного поля, состава атмосферы, фото- и ИК-радиометрию.

Советским марсоходам не удалось оставить след на Марсе. Выглядел бы он необычно: если бы ПрОПы поехали, они бы оставили за собой не колею, а лыжню. В начале семидесятых о том, как выглядит поверхность Марса, совсем ничего не знали, и советские инженеры предложили вариант с «лыжами» — на случай, если Марс — это снежные поля или бесконечные пески.

Первые успехи, миссия Viking

Первой полностью успешной миссией на Марс стали пары орбитальная станция-посадочный модуль американской миссии Viking. Первый Viking успешно опустился на поверхность и проработал больше шести лет. Викинг работал бы и дальше, если бы не ошибка оператора при обновлении программы: аппарат навсегда замолчал в 1982-м. Второй «Викинг» продержался четыре года, пока работали аккумуляторы. «Викинги» сделали и прислали на Землю первые фотографии Марса, в том числе панорманые и цветные.


Черно-белая панорама Марса, снятая станцией Viking II

Sojourner: первый ездок

С тех пор Марс не навещали, пока в 1996 году не поднялась ракета-носитель Delta II c аппаратами миссии Mars Pathfinder — посадочный модуль, впоследствии названный в честь Карла Сагана, и марсоход Sojourner.

Sojourner отлично поработал: расчитан он был на 7 солов (марсианских суток), а проработал больше 80, проехал 100 метров по поверхности, отправил на Землю множество фотографий поверхности Марса и результаты спектрометрии.

Первые неудачи NASA: Mars Surveyor 98

На эту программу возлагали большие надежды: две АМС — Mars Climate Orbiter для изучения Марса с орбиты и посадочный аппарат Mars Polar Lander. После решили, что в аварии обоих аппаратов виноваты были не атмосферные возмущения и не ошибки операторов, а недостаток денег и спешка. На спускаемом модуле к Марсу летели зонды-пенетраторы Deep Space 2, которые должны были, набрав скорость, войти в поверхность планеты и передать на Землю данные о составе грунта.

Неудача «Бигля»

В 2003 году аппарат на Марс отправили британцы: посадочный модуль Beagle 2, названный в память о корабле Чарльза Дарвина, должен был искать на Марсе следы жизни. миссия закончилась неудачей, связь с аппаратом была потеряна во время посадки. Только в 2015 году «Бигля» нашли на фотографиях и поняли причину аварии: у аппарата не развернулись солнечные батареи.

История успеха: Spirit, Opportunity, Curiosity

С 2004 года начинается история марсианского триумфа NASA. Один за другим на Марс садятся четыра аппарата, три марсохода — Spirit, Opportunity, Curiosity, и автоматическая станция Phoenix — первая и пока единственная в марсианском приполярье. Opportunity и Curiosity на ходу до сих пор. Марсианский ветер, сгубивший первые советские зонды, превратился в услужливого помощника: он сдувает пыль и песок с солнечных батарей Opportunity.


Три успешных ровера NASA (модели): Sojourner, Opportunity, Curiosity

Opportunity доказал, что на Марсе когда-то была вода, причём пресная, а список заслуг Curiosity слишком обширен, чтобы приводить его здесь. Самый большой и тяжёлый из аппаратов, когда-либо опускавшихся на поверхность Красной планеты, Curiosity огромен по сравнению с первыми советскими марсоходами — те были не больше микроволновки. На Curiosity возлагают большие надежды: за оставшееся ему время аппарат должен сообщить учёным всё, что нужно знать для того, чтобы отправить на Марс людей. Марсоход определяет состав почв, измеряет радиационный фон; он — и геолог, и климатолог, и немного биолог — по крайней мере он ищет в грунте и атмосфере свидетельства того, что на Марсе могут или могли протекать процессы, свойственные жизни как мы знаем её на Земле.

Последние гости на Марсе и в окрестностях — аппараты российско-европейской миссии ExoMars. Первая часть миссии, реализованная в прошлом году, состояла из орбитального и спускаемого блоков. Орбитальный успешно занял своё место на орбите, а спускаемый аппарат Schiaparelli разбился, успев, однако, отправить последнее сообщение — результаты измерений и параметры своих систем. В 2020 году к Марсу направится вторая часть миссии — спускаемый аппарат и марсоход. В их конструкции учтут педостатки, приведшие к аварии Schiaparelli, поэтому шансов долететь у них, кажется, больше.

После запуска первого спутника СССР, не теряя времени, взялся за изучение космоса. Планы были грандиозны – уже в 1960 году к Марсу должны были отправиться беспилотные космические зонды серии «1М», получившие названия Марс-60A и 60B. За границей эти аппараты известны под названием «Marsnik» («Mars» + «sputnik»), так как планировался выход объектов на орбиту красной планеты, более того, предусматривался поиск следов существования жизни на Марсе . В планах экспедиции было изучение ионосферы и магнитосферы Марса, фотографирование его поверхности и исследование пространства, разделяющего Землю и Марс. К сожалению, из-за аварий при запуске эти планы не были реализованы.

Серия 2МВ

Продолжением советского исследования Марса космическими аппаратами стала серия «2МВ» («Марс-1», «62A», «62B»). Предусматривалась посадка на поверхность Марса аппарата «Марс-62A 2МВ-3», аппарат «Марс-62B 2МВ-4» должен был совершить облет вокруг красной планеты. Но они не были выведены на околоземную орбиту из-за крушений ракет-носителей.

Другая судьба ждала АМС «Марс-1 2МВ-4». Старт с земли прошел успешно, но из-за проблем с системой стабилизации аппарат потерял управление. Последний сеанс связи со станцией произошел 21 марта 1963 года на расстоянии примерно 106 миллионов километров от Земли, что для того времени было рекордом дальности космической связи.

  • |Космический аппарат Mars-1 во время тестирования на Земле
  • Самый мощный радиотехнический комплекс дальней космической связи до 1964 года

АMС «М-64» относилась к усовершенствованному второму поколению проекта. Старт состоялся 30 октября 1964 года. Из-за отказа в системе электропитания официально он был причислен к космическим аппаратам серии «Зонд»,которые были предназначены для освоения техники дальних полётов в космосе и исследования космического пространства.

Серия М-69

Третьим поколением марсианских исследователей стали аппараты серии («Марс-69A» и «69B»). Станции должны были исследовать четвертую планету Солнечной системы , находясь на марсианской орбите. Оба аппарата были утрачены при старте из-за аварий ракет-носителей «Протон».

Серия М-71

К аппаратам четвёртого поколения относилась серия «М-71». Она состояла из трех АМС, которые должны были обследовать Марс как с орбиты, так и с поверхности планеты. АМС «Марс-2» и «Марс-3» состояли из орбитального спутника и наземной станции, которая должна была осуществить мягкую посадку с помощью спускаемого аппарата.

  • Автоматическая межпланетная станция «Марс 2»
  • Фотография Марса, полученная с орбитального модуля АМС "Марс-3" 28 февраля 1972 года

Марсианская станция была укомплектована первым в истории марсоходом «ПрОП-М». От других планетоходов их отличала, прежде всего, система передвижения. Перемещение аппаратов по поверхности происходило при помощи двух «лыж», расположенных по бокам и немного приподнимающих аппарат. Такой способ передвижения был выбран из-за отсутствия сведений о марсианской поверхности. Команды от АМС марсоход должен был получать по кабелю, связывавшему его со станцией.

  • Марсоход ПрОП-М (Прибор оценки проходимости)

Запуск аппаратов «Марс-2» и «Марс-3» был произведен 19 и 28 мая 1971 года с космодрома Байконур, орбитальные аппараты функционировали более восьми месяцев и успешно реализовали большую часть предусмотренных исследований. Посадка аппарата «Марс-2» окончилась неудачей, а «Марс-3» осуществил мягкую посадку и вышел на связь, но передача радиосигнала длилась всего 14,5 секунд.

АМС «М-71C» не была оборудована спускаемым аппаратом и должна была стать искусственным спутником Марса. Старт ракеты-носителя «Протон-К» состоялся 10 мая 1971 г, АМС была выведена на орбиту искусственного спутника Земли. Но на полетную траекторию аппарат не перешел, что было вызвано ошибкой в программировании бортового компьютера. В результате, через два дня после старта, 12 мая 1971 года, связка АМС/разгонный блок вошла в плотные слои атмосферы и сгорела. В сообщении ТАСС проект фигурировал как спутник «Космос 419».

Серия М-73

Продолжили исследования аппараты серии «М-73», а именно четыре АМС, которые должны были изучить Марс как с орбиты, так и находясь на поверхности планеты.

Космические аппараты «Марс-4» и «Марс-5» должны были стать искусственными спутниками Марса и обеспечивать связь с наземными модулями, которые несли аппараты «Марс-6» и «Марс-7» .

Из-за неисправности в работе одной из бортовых систем «Марс-4» пролетел мимо Марса и продолжил движение по гелиоцентрической орбите.

АМС «Марс-5», в отличие от своего близнеца «Марс-4», успешно вышла на марсианскую орбиту, но из-за разгерметизации приборного отсека станция работала лишь около двух недель.

АМС «Марс-6» достигла Марса, но выполнила программу исследований лишь частично, спускаемый аппарат разбился при посадке в районе Эритрейского моря в южном полушарии Марса, успев передать во время снижения некоторые данные о составе атмосферы Марса , ее температуре и давлении.

АМС «Марс-7» также достигла Марса, но из-за неверной работы одной из бортовых систем спускаемый аппарат промахнулся и пролетел мимо Марса на расстоянии примерно 1400 км. В результате программа полета станции «Марс-7» не была реализована.

  • Автоматическая межпланетная станция «Марс-4»М-73С № 52
  • Автоматическая межпланетная станция М-73П №50

«Марс-6» (М-73П № 50) - советская автоматическая межпланетная станция серии М-73 по программе «Марс» запущенная 5 августа 1973 года в 17:45:48 UTC. Спускаемый аппарат АМС «Марс-6», в отличие от спускаемого аппарата идентичной по конструкции АМС «Марс-7», совершил посадку на планету.
Космический аппарат «Марс-6» («М-73П» №50) предназначен для доставки исследовательского зонда (АМС) на марсианскую поверхность. Общая масса КА «Марс-6» составила 3880 кг, из них масса научной аппаратуры орбитального отсека – 114 кг, спускаемого аппарата – 1000 кг. Корректирующая двигательная установка заправлена 598,5 кг топлива: 210,4 кг горючего и 388,1 кг окислителя. Масса спускаемого аппарата при входе в атмосферу – 844 кг. Масса автоматической марсианской станции после посадки – 355 кг, из них масса научной аппаратуры – 19,1 кг.
В полете КА М-73П («Марс-6 и 7»), предназначенных для доставки спускаемого аппарата, полностью повторяется схема отделения и десантирования спускаемого аппарата на марсианскую поверхность, которая была разработана для предшествующей экспедиции М-71. Важнейший этап экспедиции - посадка на марсианскую поверхность - осуществляется следующим образом. Вход спускаемого аппарата в атмосферу происходит в заданном диапазоне углов входа, со скоростью около 6 км/с. На участке пассивного аэродинамического торможения устойчивость спускаемого аппарата обеспечивается его внешней формой и центровкой.

Орбитальный (пролетный) аппарат после отделения СА и при последующем сближении с Марсом (в этом заключается отличие от схемы полета М-71) с помощью гироплатформы разворачивается таким образом, что антенны метрового диапазона повернуты для приема сигнала со спускаемого аппарата, а остронаправленная антенна - для передачи информации на Землю. После завершения работы с автоматической марсианской станцией аппарат продолжает полет по гелиоцентрической орбите.
КА «Марс-6» (М-73П №50) запущен с левой пусковой установки площадки №81 космодрома Байконур 5 августа 1973 года в 20 часов 45 минут 48 секунд ракетой-носителем «Протон-К». С помощью трех ступеней ракеты-носителя «Протон-К» и первого включения ДУ разгонного блока КА выведен на промежуточную ОИСЗ (Орбиту Искусственного Спутника Земли) высотой 174,9 км. Вторым включением двигательной установки разгонного блока через ~ 1 час 20 минут пассивного полета осуществлен переход КА на траекторию полёта к Марсу. В 22 часа 04 минуты 09,6 секунды КА отделился от разгонного блока.
13 августа 1973 года выполнена первая коррекция траектории движения. При закладке уставок снялась готовность первого канала БЦВМ САУ, однако при проведении сеанса коррекции она восстановилась. Импульс коррекции составил 5,17 м/с, время работы двигателя на малой тяге – 3,4 секунды, расход топлива – 11,2 кг.
Почти сразу же отказал первый комплект бортового магнитофона ЭА-035. Ситуацию исправили переключением на второй комплект. Однако всего лишь через месяц после старта, 3 сентября 1973 года, на аппарате отказала телеметрия, в результате чего стало невозможно получать информацию в режиме непосредственной передачи по дециметровому каналу, а по сантиметровому можно было передавать информацию только в режиме воспроизведения, причем только информацию с ФТУ и видеомагнитофона. Пришлось изменить технологию управления, и в течение всего перелета выдавать все команды по два-три раза «вслепую», контролируя их прохождение только по косвенным признакам.



М-73П (Спускаемый аппарат)

АМС "Марс-6" достиг окресности планеты Марс 12 марта 1974 г. При подлете к планете станции "Марс-6" была проведена автономно с помощью бортовой системы астронавигации заключительная коррекция траектории ее движения и от станции отделился спускаемый аппарат (на расстоянии 48 000 км от планеты). В расчетное время включилась двигательная установка, обеспечившая перевод СА на траекторию встречи с Марсом. При этом сама станция продолжала полет по гелиоцентрической орбите с минимальным удалением от поверхности планеты около 1600 км. Через 15 минут после отделения сработал тормозной двигатель спускаемого аппарата, а спустя 3,5 часа спускаемый аппарат вошел в атмосферу Марса со скоростью 5600 м/с. Угол входа составил – 11,7 гр.. Сначала торможение шло за счет аэродинамического экрана, а через 2,5 минуты при достижении скорости 600 м/с была введена в действие парашютная система.
На этапе парашютного спуска на высотах от 20 км до поверхности и ниже проводились измерения температуры и давления, а также определялся химический состав атмосферы. В течение 150 секунд результаты передавались на пролетный аппарат, но полезная информация выделена только из сигнала от радиокомплекса спускаемого аппарата.
Весь участок спуска - от входа в атмосферу и аэродинамического торможения до снижения на парашюте включительно - продолжался 5,2 минуты. Во время спуска не было цифровой информации с прибора МХ 6408М, зато была получена информация о перегрузках, изменении температуры и давления.
Спускаемый аппарат Марса-6 проводил измерения химического состава марсианской атмосферы при помощи масс-спектрометра радиочастотного типа. Вскоре после раскрытия основного парашюта сработал механизм вскрытия анализатора, и атмосфера Марса получила доступ в прибор. Сами масс-спектры должны были передаваться после посадки и на Земле получены не были, однако при анализе параметра ток магнитоионизационного насоса масс-спектрографа, переданного по телеметрическому каналу в ходе парашютного спуска, было предположено, что содержание аргона в атмосфере планеты может составлять от 25% до 45%.
Непосредственно перед посадкой связь с спускаемым аппаратом потеряна. Последняя полученная с него телеметрия подтвердила выдачу команды на включение двигателя мягкой посадки.
Новое появление сигнала ожидалось через 143 секунды после пропадания, однако этого не произошло.
Спускаемый аппарат произвел посадку в точке с координатами 23.9° ю.ш. и 19.5° з.д. (на границе Жемчужной Земли и Земли Ноя).
Однозначно причину неудачного завершения работы спускаемого аппарата определить не удалось. К наиболее вероятным версиям относятся:

Аппарат разбился, в том числе, по причине отказа радиокомплекса, хотя скорость спуска и работа двигателя мягкой посадки соответствовали расчетным (аппарат был рассчитан на ударное ускорение при посадке 180 g, а в периферийных местах до 240 g);
- к аварийной ситуации привело превышение амплитуды колебаний аппарата под действием марсианской бури в момент включения двигателей мягкой посадки.

На борту станций "Марс-6" и "Марс-7", кроме советской научной аппаратуры, были установлены приборы, изготовленные специалистами Франции.
Совместно с французскими учеными выполнен также радиоастрономический эксперимент - измерения радиоизлучения Солнца в метровом диапазоне. Прием излучения одновременно на Земле и на борту космического аппарата, удаленного от нашей планеты на сотни миллионов километров, позволяет восстановить объемную картину процесса генерации радиоволн и получить данные о потоках заряженных частиц, ответственных за эти процессы. В этом эксперименте решалась и другая задача - поиск кратковременных всплесков радиоизлучения, которые могут, как предполагается, возникать в далеком космосе за счет явлений взрывного типа в ядрах галактик, при вспышках сверхновых звезд и других процессах.
Программа полета КА «Марс-6» выполнена частично. Программа спускаемого аппарата закончилась провалом.

«Марс-7» (М-73П, СССР)

Космический аппарат «Марс-7» («М-73П» №51) предназначен для доставки исследовательского зонда (АМС) на марсианскую поверхность.
Запуск двух одинаковых аппаратов «Марс-6» и «Марс-7» планировался не только для повышения общей надежности выполнения целевой задачи, но и для исследования поверхности Марса в двух различных районах планеты.
Общая масса КА «Марс-7» составила 3880 кг, из них масса научной аппаратуры орбитального отсека – 114 кг, спускаемого аппарата – 1000 кг. Корректирующая двигательная установка заправлена 598,5 кг топлива: 210,4 кг горючего и 388,1 кг окислителя. Масса спускаемого аппарата при входе в атмосферу – 844 кг. Масса автоматической марсианской станции после посадки – 355 кг, из них масса научной аппаратуры – 19,1 кг.
КА «Марс-7» («М-73П» №51) запущен с правой пусковой установки площадки №81 космодрома Байконур 9 августа 1973 года в 20 часов 0 минут 17,5 секунды ракетой-носителем «Протон-К». Старт к Марсу осуществлен вторым включением двигательной установки разгонного блока Д через ~ 1 час 20 минут пассивного полета по промежуточной околоземной орбите высотой 189?162 км. В 21 час 20 минут 35,3 секунды произошло отделение КА от разгонного блока.
КА «Марс-7» подлетел к Марсу 9 марта 1974 года – раньше, чем «Марс-6», – спустя 212 суток после старта. Уже при закладке уставок на вторую коррекцию не сформировалась готовность первого и третьего каналов БЦВМ С530. Причина та же, что и на остальных аппаратах серии М-73 - отказ ПЗУ команд в БЦВМ из-за транзистора 2Т312.
Решающее негативное влияние на исход экспедиции оказали неправильно рассчитанные уставки на разворот КА перед отделением спускаемого аппарата. По этой причине СА по пролетной траектории прошел в 1400 км от поверхности Марса и ушел в просторы космоса. Целевая задача КА «Марс-7» не была выполнена, хотя, совершая автономный полет, СА еще какое-то время сохранял работоспособность и передавал информацию на пролетный аппарат по радиолиниям КД-1 и РТ-1.
С пролетным аппаратом «Марса-7» связь поддерживалась до 25 марта 1974 года.
Программа полета станции «Марс-7» не выполнена.

НАУЧНЫЕ РЕЗУЛЬТАТЫ

Изучение Марса в 1973-1974 гг, когда четыре советских КА «Марс-4», «Марс-5», «Марс-6» и «Марс-7» практически одновременно достигли окрестностей планеты, приобрело новое качество.
Научные исследования, проведенные КА «Марс-4, 5, 6, 7», разносторонни и обширны. КА «Марс-4» провел фотографирование Марса с пролетной траектории. Искусственный спутник Марса КА «Марс-5» передал на Землю новые сведения об этой планете и окружающем ее пространстве; с орбиты спутника получены качественные фотографии марсианской поверхности, в том числе цветные. Спускаемый аппарат «Марса-6» совершил посадку на планету, впервые передав на Землю данные о параметрах марсианской атмосферы, полученные во время снижения. КА «Марс-6» и «Марс-7» исследовали космическое пространство с гелиоцентрической орбиты. КА «Марс-7» в сентябре-ноябре 1973 года зафиксирована связь между возрастанием потока протонов и скорости солнечного ветра.
Большая серия экспериментов была посвящена исследованиям поверхности Марса. Проводилось фотографирование планеты с помощью фототелевизионных устройств различного типа. Имеется около 60 фотографий, полученных на АМС "Марс-4", "Марс-5", многие из них очень высокого качества. Они охватывают район, который фотографировал американский космический аппарат "Маринер-9" в период пылевой бури и не смог обеспечить высокое качество съемки. Использовались две камеры: короткофокусная с разрешением около 1 км вблизи перицентра и длиннофокусная с разрешением около 100 м. Кроме того, были получены изображения с помощью сканирующих фотоэлектрических фотометров. Полученные фотографии изучались геологами, а также производился их фотограмметрический анализ. На некоторых фотографиях имеются следы водной эрозии, возраст которых осторожно оценивается величиной меньше одного миллиарда лет. Это является независимым подкреплением гипотезы о колебаниях плотности атмосферы.



НАУЧНЫЕ РЕЗУЛЬТАТЫ

Инфракрасный (ИК) радиометр на АМС "Марс-5" измерял температуру поверхности. Максимальные зарегистрированные температуры составляют 272 °К и относятся к 13 h 10 m местного времени (район Thaumasia). В зоне терминатора температура падает до 230 °К, а в конце трассы при 21 h 00 m местного времени до 200 °К. Измерения с ИК-радиометром показывают, что тепловая инерция грунта находится в диапазоне 0,004-0,008 кал-град-1 см-2 сек-1/2. Отсюда можно оценить характерную величину размеров зерен грунта - от 0,1 до 0,5 мм. С другой стороны, фотометрические и поляриметрические измерения показывают, что эти зерна имеют микроструктуру более мелкого масштаба (порядка микрона).
Состав грунта и его структура определяют отражательную способность планеты в диапазоне от 0,3 до 4 мкм. Длинноволновый участок этого интервала исследовался с помощью инфракрасного спектрометра. Получено несколько сотен спектров в интервале от 2 до 5 мкм. Наиболее характерной их деталью является присутствие полосы кристаллизованной воды около 3,2 мкм. Совокупность спектроскопических, фотометрических и поляризационных свойств марсианского грунта согласуется с предположением о силикатном составе (окисленный базальт) с небольшой примесью гетита.
Гамма-спектрометр на "Марсе-5" позволил получить спектры гамма-излучения марсианских пород, которые дают представление об их характерном составе.
C помощью АМС "Марс-5" были продолжены исследования магнитного поля на вечерней и ночной стороне планеты. Эти исследования позволили установить, что в окрестности планеты Марс образуется ударный фронт. За ударным фронтом наблюдается характерная переходная область, где наблюдается усиленное флуктуирующее поле со стороны планеты. Переходная область ограничена более регулярным и возрастающим при приближении к перицентру магнитным полем. Это поле на высоте 1100 км составляет около 30 гамм. При удалении станции от перицентра наблюдалось последовательное пересечение характерных областей в обратном порядке. Совокупность данных о величине и топологии магнитного поля, положении ударного фронта и интенсивности солнечного ветра может быть объяснена наиболее естественным образом при допущении, что планета Марс обладает собственным магнитным полем с моментом М = 2,47·1022 гаусс*см-3 и напряженностью поля на экваторе Н = 64 гамм. На высотах полета спутника поле деформировано действием солнечного ветра. Северный полюс марсианского диполя находится в северном полушарии, а ось диполя наклонена к оси вращения Марса на угол 15-20°.
Анализ ионных и электронных энергетических спектров, полученных с помощью приборов АМС "Марс-5", показал, что вблизи планеты существуют три пересекаемых спутником зоны с существенно различными свойствами плазмы. В первой зоне регистрируются спектры, соответствующие невозмущенному солнечному ветру, а во второй зоне - переходной области за фронтом ударной волны. Третья плазменная область лежит внутри шлейфа магнитосферы Марса и в некоторых отношениях сходна с так называемым плазменным слоем в шлейфе земной магнитосферы.
С помощью двухканального ультрафиолетового фотометра с высоким пространственным разрешением получены фотометрические профили атмосферы у лимба планеты в недоступной для наземных наблюдений области спектра 2600-2800 A. Эти профили помогли впервые обнаружить следы озона в атмосфере Марса (данные американских аппаратов «Маринер-6, 7, 9» по озону относились к твердой поверхности полярной шапки), а также заметное аэрозольное поглощение даже в отсутствии пылевых бурь. С помощью этих данных можно вычислить характеристики аэрозольного слоя. Измерения содержания атмосферного озона позволяют оценить концентрацию атомарного кислорода в нижней атмосфере и скорость его вертикального переноса из верхней атмосферы, что важно для выбора модели, объясняющей стабильность существующей на Марсе атмосферы из углекислого газа. Результаты измерений на освещенном диске планеты могут быть использованы для изучения ее рельефа.
Два эксперимента на АМС "Марс-5" были посвящены исследованию химического состава атмосферы Марса - измерение содержания водяного пара и озона. Данные по измерению содержания Н2O свидетельствуют: содержание Н2O в некоторых областях Марса достигает 80 мкм осажденной воды, т. е. значительно больше, чем наблюдалось в 1971-72 гг. (данные "Марс-3", "Маринер-9": 10 - 20 мкм); имеются значительные пространственные вариации - в областях, расположенных на расстоянии несколько сот км, содержание Н2О в атмосфере может различаться в два - три раза. Наиболее высокая влажность атмосферы наблюдалась западнее пересеченной местности в области Araxes. Второй эксперимент уверенно обнаружил небольшие количества озона в атмосфере - около 10-5% по объему. Высота озонного слоя около 30 км. Этот результат имеет важное значение для понимания фотохимических процессов в атмосфере планеты.
Исследования магнитного поля в околомарсианском пространстве, проведенные КА «Марс-5», подтвердили вывод, сделанный на основании аналогичных исследований КА «Марс-2,-3», о том, что вблизи планеты существует магнитное поле порядка 30 гамм (в 7-10 раз больше величины межпланетного невозмущенного поля, переносимого солнечным ветром). Предполагалось, что это магнитное поле принадлежит самой планете, и «Марс-5» помог получить дополнительные аргументы в пользу этой гипотезы.
Предварительная обработка данных КА «Марс-7» об интенсивности излучения в резонансной линии атомарного водорода Лайман-альфа позволила оценить профиль этой линии в межпланетном пространстве и определить в ней две компоненты, каждая из которых вносит приблизительно равный вклад в суммарную интенсивность излучения. Полученная информация даст возможность вычислить скорость, температуру и плотность втекающего в солнечную систему межзвездного водорода, а также выделить вклад галактического излучения в линии Лайман-альфа. Этот эксперимент выполнялся совместно с французскими учеными.
По аналогичным измерениям с борта КА «Марс-5» впервые непосредственно измерена температура атомарного водорода в верхней атмосфере Марса. Предварительная обработка данных показала, что эта температура близка к 350°К.
Спускаемый аппарат «Марса-6» проводил измерения химического состава марсианской атмосферы при помощи масс-спектрометра радиочастотного типа. Вскоре после раскрытия основного парашюта сработал механизм вскрытия анализатора, и атмосфера Марса получила доступ в прибор. Предварительный анализ позволяет сделать вывод, что содержание аргона в атмосфере планеты может составлять около одной трети. Этот результат имеет принципиальное значение для понимания эволюции атмосферы Марса.
На спускаемом аппарате осуществлялись также измерения давления и окружающей температуры; результаты этих измерений весьма важны как для расширения знаний о планете, так и для выявления условий, в которых должны работать будущие марсианские станции.
Совместно с французскими учеными выполнен также радиоастрономический эксперимент – измерения радиоизлучения Солнца в метровом диапазоне. Прием излучения одновременно на Земле и на борту космического аппарата, удаленного от нашей планеты на сотни миллионов километров, позволяет восстановить объемную картину процесса генерации радиоволн и получить данные о потоках заряженных частиц, ответственных за эти процессы. В этом эксперименте решалась и другая задача – поиск кратковременных всплесков радиоизлучения, которые могут, как предполагается, возникать в далеком космосе за счет явлений взрывного типа в ядрах галактик, при вспышках сверхновых звезд и других процессах.