Пуск первой атомной электростанции в ссср. Первые атомные электростанции и их роль в развитии ядерной энергетики

Атомная электростанция - комплекс необходимых систем, устройств, оборудования и сооружений, предназначенный для производства электрической энергии. В качестве топлива станция использует уран-235. Наличие ядерного реактора отличает АЭС от других электростанций.

На АЭС происходит три взаимных преобразования форм энергии

Ядерная энергия

переходит в тепловую

Тепловая энергия

переходит в механическую

Механическая энергия

преобразуется в электрическую

1. Ядерная энергия переходит в тепловую

Основой станции является реактор - конструктивно выделенный объем, куда загружается ядерное топливо и где протекает управляемая цепная реакция. Уран-235 делится медленными (тепловыми) нейтронами. В результате выделяется огромное количество тепла.

ПАРОГЕНЕРАТОР

2. Тепловая энергия переходит в механическую

Тепло отводится из активной зоны реактора теплоносителем - жидким или газообразным веществом, проходящим через ее объем. Эта тепловая энергия используется для получения водяного пара в парогенераторе.

ЭЛЕКТРОГЕНЕРАТОР

3. Механическая энергия преобразуется в электрическую

Механическая энергия пара направляется к турбогенератору, где она превращается в электрическую и дальше по проводам поступает к потребителям.


Из чего состоит АЭС?

Атомная станция представляет собой комплекс зданий, в которых размещено технологическое оборудование. Основным является главный корпус, где находится реакторный зал. В нём размещается сам реактор, бассейн выдержки ядерного топлива, перегрузочная машина (для осуществления перегрузок топлива), за всем этим наблюдают операторы с блочного щита управления (БЩУ).


Основным элементом реактора является активная зона(1) . Она размещена в бетонной шахте. Обязательными компонентами любого реактора являются система управления и защиты, позволяющая осуществлять выбранный режим протекания управляемой цепной реакции деления, а также система аварийной защиты – для быстрого прекращения реакции при возникновении аварийной ситуации. Все это смонтировано в главном корпусе.

Есть также второе здание, где размещается турбинный зал(2) : парогенераторы, сама турбина. Далее по технологической цепочке следуют конденсаторы и высоковольтные линии электропередач, уходящие за пределы площадки станции.

На территории находятся корпус для перегрузки и хранения в специальных бассейнах отработавшего ядерного топлива. Кроме того, станции комплектуются элементами оборотной системы охлаждения – градирнями(3) (бетонная башня, сужающаяся кверху), прудом-охладителем (естественный водоем, либо искусственно созданный) и брызгальными бассейнами.

Какие бывают АЭС?

В зависимости от типа реактора на АЭС могут быть 1, 2 или 3 контура работы теплоносителя. В России наибольшее распространение получили двухконтурные АЭС с реакторами типа ВВЭР (водо-водяной энергетический реактор).

АЭС С 1-КОНТУРНЫМИ РЕАКТОРАМИ

АЭС С 1-КОНТУРНЫМИ РЕАКТОРАМИ

Одноконтурная схема применяется на атомных станциях с реакторами типа РБМК-1000. Реактор работает в блоке с двумя конденсационными турбинами и двумя генераторами. При этом кипящий реактор сам является парогенератором, что и обеспечивает возможность применения одноконтурной схемы. Одноконтурная схема относительно проста, но радиоактивность в этом случае распространяется на все элементы блока, что усложняет биологическую защиту.

В настоящее время в России действует 4 АЭС с одноконтурными реакторами

АЭС С 2-КОНТУРНЫМИ РЕАКТОРАМИ

АЭС С 2-КОНТУРНЫМИ РЕАКТОРАМИ

Двухконтурную схему применяют на атомных станциях с в водо-водяными реакторами типа ВВЭР. В активную зону реактора подается под давлением вода, которая нагревается. Энергия теплоносителя используется в парогенераторе для образования насыщенного пара. Второй контур нерадиоактивен. Блок состоит из одной конденсационной турбины мощностью 1000 МВт или двух турбин мощностью по 500 МВт с соответствующими генераторами.

В настоящее время в России действует 5 АЭС с двухконтурными реакторами

АЭС С 3-КОНТУРНЫМИ РЕАКТОРАМИ

АЭС С 3-КОНТУРНЫМИ РЕАКТОРАМИ

Трехконтурную схему применяют на АЭС с реакторами на быстрых нейтронах с натриевым теплоносителем типа БН. Чтобы исключить контакт радиоактивного натрия с водой, сооружают второй контур с нерадиоактивным натрием. Таким образом схема получается трехконтурной.

В какой стране появилась первая в мире АЭС? Кто и как создавал первопроходца в области атомной энергетики? Сколько АЭС в мире? Какая ядерная станция считается самой большой и мощной? Хотите узнать? Мы обо всем расскажем!

Предпосылки к созданию первой в мире АЭС

Изучение реакции атомов велось с начала 20го века во всех развитых странах мира. О том, что людям удалось подчинить себе энергию атома, первыми заявили в США, когда 6 августа 1945 года провели испытания, сбросив атомную бомбу, на японские города Хиросима и Нагасаки. Параллельно велось изучение применения атома в мирных целях. Разработки такого рода были и в СССР.

Именно в СССР появилась первая в мире АЭС. Ядерный потенциал был использован не в военных, а в мирных целях.

Еще в 40е Курчатов говорил о необходимости мирного изучения атома в целях извлечения его энергии на благо людей. Но попытки создания атомной энергетики прерывал Лаврентий Берия, в те годы именно он курировал проекты изучения атома. Берия считал, что атомная энергия может быть сильнейшим оружием в мире, способным сделать СССР непобедимой державой. Ну, собственно по поводу сильнейшего оружия он не ошибался…

После взрывов в Херосиме и Нагасаке в СССР началось усиленное изучение ядерной энергетики. Ядерное оружие в тот момент было гарантом безопасности страны. После испытаний советского ядерного оружия на Семипалатинском полигоне, в СССР началось активное развитие ядерной энергетики. Ядерное оружие уже было создано и испытано, можно было сосредоточиться на использовании атома в мирных целях.

Как создавалась первая в мире АЭС?

Для атомного проекта СССР в 1945 — 1946 годах были созданы 4 лаборатории ядерной энергетики. Первая и четвертая в Сухуми, вторая – в Снежинске и третья вблизи станции Обнинская в Калужской области, называлась она лаборатория В. Сегодня это физико-энергетический институт им. Лейпуцкого.

Первая в мире АЭС называлась Обнинской.

Она создавалась с участием немецких физиков, которых после окончания войны добровольно — принудительно выписывали из Германии для работы в атомных лабораториях Союза, точно так же с немецкими учеными поступали и в США. Одним из прибывших был физик-ядерщик Хайнс Позе, который какое-то время возглавлял Обнинскую лабораторию В. Так что своим открытием первая атомная станция обязана не только советским, но и немецким ученым.

Разрабатывалась первая в мире АЭС в Курчатовской лаборатории №2 и в «НИИхиммаше» под руководством Николая Доллежаля. Доллежаль был назначен главным конструктором ядерного реактора будущей АЭС. Создавали первую АЭС мира в Обнинской лаборатории В, все работы курировал сам Игорь Васильевич Курчатов, которого считали «отцом атомной бомбы», а теперь хотели сделать и отцом ядерной энергетики.

В начале 1951 года проект АЭС находился только на стадии разработки, но здание под атомную станцию уже начали строить. Тяжелые конструкции из железа и бетона, которые невозможно переделать или расширить, уже существовали, а ядерный реактор все еще не был до конца спроектирован. Позже у строителей появится еще одна головная боль – вставить ядерную установку в уже готовое здание.

Интересно то, что первая АЭС в мире проектировалась так, что в ТВЭЛы – тонкие трубки, которые помещаются в ядерную установку, помещались не урановые таблетки, как сегодня, а урановый порошок, из сплавов урана и молибдена. Первые 512 ТВЭЛов для запуска АЭС были сделаны на заводе в городе Электросталь, каждый из них проходил проверку на прочность, делали это вручную. В ТВЭЛ заливалась горячая вода нужной температуры, по покраснению трубки, ученые определяли, выдерживает ли металл высокую температуру. В первых партиях ТВЭЛов было очень много бракованных изделий.

Интересные факты о первой в мире АЭС

  1. Обнинская атомная станция, первая АЭС в СССР, была снабжена ядерным реактором, который назвали АМ. Сначала расшифровывали эти буквы как «атом морской», т.к. планировали использовать установку и на атомных подводных лодках, но позже выяснилось, что конструкция слишком большая и тяжелая для подводной лодки и АМ стали расшифровывать как «атом мирный».
  2. Первая в мире АЭС была построена в рекордно короткие сроки. С момента начала стройки до сдачи ее в эксплуатацию прошло всего 4 года.
  3. По проекту первая атомная станция стоила 130 миллионов рублей. В пересчете на наши деньги это около 4х миллиардов рублей. Именно такую сумму выделили на ее проектировку и строительство.

Запуск первой в мире АЭС

Пуск первой в мире атомной электростанции состоялся 9 мая 1954 года, работала АЭС в холостом режиме. 26 июня 1954 она дала первый электрический ток, был осуществлен энергетический пуск.
Какую мощность выдавала первая атомная станция в СССР? Всего 5 МВт – на такой небольшой мощности работала первая атомная электростанция.

Мировое сообщество восприняло новость о том, что первая в мире АЭС была запущена, с гордостью и ликованием. Впервые в мире человек использовал энергию атома в мирных целях, это открывало большие перспективы и возможности для дальнейшего развития энергетики. Физики-ядерщики мира называли запуск Обнинской станции началом новой эры.

За время работы, первая АЭС в мире множество раз выходила из строя, приборы внезапно ломались и давали сигнал для аварийной остановки ядерного реактора. Интересно, что по инструкции, для нового запуска реактора необходимо 2 часа, но работники станции научились заново запускать механизм за 15-20 минут.

Такая быстрая реакция была необходима. И не, потому что подачу электроэнергии не хотелось прекращать, а потому что первая АЭС в мире стала своего рода выставочным экспонатом и почти ежедневно туда приезжали зарубежные ученые, изучавшие работу станции. Показать, что механизм не работает – значит получить большие проблемы.

Последствия запуска первой в мире АЭС

На Женевской конференции 1955 года советские ученые объявили, о том, что впервые в мире построили промышленную атомную станцию. После доклада зал аплодировал физикам стоя, даже несмотря на то, что аплодисменты были запрещены правилами собрания.

После того, как первая атомная электростанция была запущена, начались активные исследования в области применения ядерных реакций. Появились проекты атомных автомобилей и самолетов, энергию атомов даже собирались применять в борьбе с вредителями зерна и для стерилизации медицинских материалов.

Обнинская АЭС стала своеобразным толчком к открытию атомных станций по всему миру. Изучая ее модель, можно было проектировать новые станции и совершенствовать их работу. Кроме того, используя схемы работы АЭС был спроектирован атомный ледокол и усовершенствована атомная подводная лодка.

Первая атомная станция проработала 48 лет. В 2002 году ее ядерный реактор остановили. Сегодня на территории Обнинской АЭС существует своеобразный музей атомной энергетики, который с экскурсиями посещают как рядовые школьники, так и известные личности. К примеру, недавно на Обнинскую АЭС приезжал английский принц Майкл Кентский. В 2014 году первая атомная электростанция отпраздновала свое 60летие.

Открытие АЭС мира

Первая АЭС в СССР стала началом длинной цепи открытий новых АЭС мира. Новые атомные станции использовали все более усовершенствованные и мощные ядерные реакторы. Атомная электростанция мощностью 1000МВт стала привычным явлением в современном мире электроэнергетики.

Первая АЭС в мире работала с графито-водным ядерным реактором. После многие страны стали экспериментировать с устройством ядерных реакторов и изобрели новые их типы.

  1. В 1956 году открылась первая в мире АЭС с газоохлаждаемым реактором – АЭС Калдер-холл в США.
  2. В 1958 году в США открыли АЭС Шиппингпорт, но уже с водо-водяным реактором.
  3. Первая атомная электростанция с кипящим ядерным реактором – АЭС Дрезден, открытая в США В 1960.
  4. В 1962 году канадцы построили атомную станцию с тяжеловодным реактором.
  5. А в 1973 свет узрел Шевченковскую АЭС, построенную в СССР – это первая атомная электростанция с реактором-размножителем.

Атомная энергетика сегодня

Сколько атомных станций в мире? 192 атомных станции. Сегодня карта АЭС мира охватывает 31 страну. Во всех странах мира существуют 450 энергоблоков, еще 60 энергоблоков находятся на стадии строительства. Все атомные станции мира имеют общую мощность в 392 082 МВт.

Атомные электростанции в мире сосредоточены в основном в США, Америка является лидером по установленной мощности, однако в этой стране на долю атомной энергетики приходится лишь 20% всей энергосистемы. 62 АЭС США дают общую мощность в 100 400 МВт.

Второе место по установленной мощности занимает лидер АЭС в Европе – Франция. Ядерная энергетика в этой стране является национальным приоритетом и занимает 77% доли от всей добычи электроэнергии. Всего во Франции 19 атомных станций общей мощностью 63 130 МВт.

Во Франции также находится АЭС с самыми мощными в мире реакторами. На атомной станции Сиво работают два водо-водяных энергоблока. Мощность каждого из них – 1561 МВт. Настолько сильными реакторами не может похвастаться ни одна АЭС мира.
Третье место в рейтинге самых «продвинутых» стран в атомной энергетике занимает Япония. Именно в Японии находится самая мощная АЭС в мире по общему количеству вырабатываемой на АЭС энергии.

Первая АЭС в России

Вешать ярлык «первая АЭС в России» на Обнинскую АЭС было бы неправильно, т.к. над ее созданием трудились советские ученые, приехавшие со всего СССР и даже из-за его пределов. После распада Союза в 1991 году все атомные мощности стали принадлежать тем уже независимым странам, на территории коих они находились.

После распада СССР независимой России в наследство достались 28 ядерных ректоров общей мощностью 20 242 МВт. С момента обретения независимости россияне открыли еще 7 энергоблоков общей мощностью 6 964 МВт.

Сложно определить, где была открыта первая АЭС в России, т.к. в основном российские ядерщики открывают новые реакторы в уже имеющихся атомных станциях. Единственная станция, все энергоблоки которой были открыты в независимой России – Ростовская АЭС, она то и может носить название «первая АЭС в России».

Первая АЭС в России проектировалась и строилась еще во времена СССР, в 1977 были начаты строительные работы, в 1979 был окончательно утвержден ее проект. Да, мы ничего не перепутали, работы на Ростовской АЭС начинались раньше, чем ученые доделали итоговый проект. В 1990 году строительство было заморожено, и это при том, что 1й блок станции был готов на 95%.

Возобновили строительство Ростовской АЭС только в 2000 году. В марте 2001 первая АЭС в России официально начала работать, правда, пока с одним ядерным реактором вместо планирующихся четырех. В 2009 начал работать второй энергоблок станции, в 2014 – третий. В 2015 году первая атомная станция независимой России обзавелась 4м энергоблоком, который, к слову, еще не достроен и не введен в эксплуатацию.

Первая АЭС в России находится в Ростовской области недалеко от города Волгодонска.

АЭС США

Если первая атомная станция в СССР появилась в 1954 году, то ядерными станциями Америки карта АЭС пополнилась только в 1958. Учитывая непрекращающееся соревнование Советского Союза и США в области энергетики, (да и не только энергетики) 4 года являлись серьезным отставанием.

Первая АЭС США — АЭС Шиппингпорт в Пенсильвании. Первая АЭС в СССР имела мощность всего в 5МВт, американцы пошли дальше, и Шиппингпорт имела уже 60МВт мощности.
Активное строительство АЭС США продолжалось до 1979 года, тогда случилась авария на станции Три-Майл-Айленд, из-за ошибок работников станции расплавилось ядерное топливо. Устраняли аварию на этой АЭС США целых 14 лет, на это ушло более миллиарда долларов. Авария на Три-Майл-Айленд на время приостановила разработку ядерной энергетики в Америке. Однако сегодня в США находится наибольшее количество АЭС в мире.

По состоянию на июнь 2016 карта атомных станций США включает в себя 100 ядерных реакторов, общей мощностью 100,4 ГВт. На стадии строительства находятся еще 4 реактора общей мощностью 5ГВт. Атомные станции США вырабатывают 20% всей электроэнергии в этой стране.

Самая мощная АЭС США на сегодня – АЭС Пало Верде, она может обеспечить электроэнергией 4 миллиона человек и дать мощность в 4 174МВт. Кстати, АЭС США Пало Верде входит и в топ «Крупнейшие атомные электростанции мира». Там эта ядерная станция на 9м месте.

Крупнейшие АЭС мира

Атомная электростанция мощностью 1000Вт когда-то казалась недосягаемой вершиной ядерной науки. Сегодня карта АЭС мира включает в себя огромных гигантов атомной энергетики мощностями под 6, 7, 8 тысяч мегаватт. Какие они, самые крупные атомные электростанции в мире?

К самым большим и мощным АЭС в мире сегодня относят:

  1. АЭС Палюэль во Франции. Эта атомная станция работает на 4х энергоблоках, общая мощность которых составляет 5 528МВт.
  2. Французская АЭС Гравлин. Эта АЭС на севере Франции считается самой большой и мощной в своей стране. На этой АЭС работают 6 реакторов общей мощностью в 5 460МВт.
  3. АЭС Ханбит (другое название Йонгван) находится на юго-западе Южной Кореи на побережье Желтого моря. 6 ее ядерных реакторов дают мощность в 5 875 МВт. Интересно, что переименовали АЭС Йонгван в Ханбит по просьбе рыбаков местечка Йонгван, где находится станция. Продавцы рыбы не хотели, чтобы их продукция ассоциировалась во всем мире с атомной энергетикой и радиацией. Это снижало им прибыль.
    4. АЭС Ханул (ранее – АЭС Хульчин) тоже южнокорейская атомная электростанция. Примечательно, что АЭС Ханбит, она превосходит всего в 6МВт. Таким образом, мощность станции Ханул составляет 5 881 МВт.
    5. Запорожская АЭС — самая мощная АЭС в Европе, Украине и на всем постсоветском пространстве. Находится эта станция в городе Энергодар. 6 ядерных реакторов дают мощность в 6000 МВт. Строить Запорожскую АЭС начали еще в 1981 году, в 1984 году ее ввели в эксплуатацию. Сегодня эта станция генерирует пятую часть всей электроэнергии Украины и половину всей атомной энергии страны.

Самая мощная АЭС в мире

АЭС Касивадзаки-Карива – такое замысловатое название носит самая мощная АЭС. Она эксплуатирует 5 кипящих ядерных реакторов и два улучшенных кипящих ядерных реактора. Их суммарная мощность составляет 8 212 МВт (для сравнения, мы знаем, что первая АЭС в мире была мощностью всего в 5МВТ). Строилась самая мощная АЭС мира с 1980 по 1993 год. Вот несколько интересных фактов об этой атомной станции.

  1. В результате мощного землетрясения в 2007 году Касивадзаки-Карива получила множество различных повреждений, опрокинулись несколько ёмкостей с отходами низкой радиоактивности, произошла утечка радиоактивной воды в море. Из-за землетрясения повредились фильтры АЭС и радиоактивная пыль вышла за пределы станции.
  2. Общий ущерб от землетрясения в Японии 2007 года оценивается в 12 с половиной миллиардов долларов. Из них 5,8 миллиардов убытков «забрала» на ремонт самая мощная АЭС мира Касивадзаки-Карива.
  3. Интересно, что до 2011 года самой мощной АЭС можно было назвать другую японскую атомную станцию. Фукусима 1 и Фукусима 2 по сути являлись одной атомной мощностью и вместе вырабатывали 8 814МВт.
  4. Большая общая мощность АЭС совсем не значит, что в ней используются сильнейшие ядерные реакторы. Максимальная мощность одного из реакторов на Касивадзаки-Карива – 1315 МВт. Большой итоговой мощности станция добивается за счет того, что работают в ней 7 ядерных реакторов.

С того момента, как открылась первая АЭС в мире прошло больше 60ти лет. За это время атомная энергетика шагнула далеко вперед, разработав новые типы ядерных реакторов и в тысячи раз увеличив мощность атомных станций. Сегодня атомные станции мира – это огромная энергетическая империя, все более развивающаяся с каждым днем. Мы уверены, что состояние АЭС мира сегодня – это далеко не предел. За ядерной энергетикой большое и светлое будущее.

Обнинская АЭС

Люди, которым интересен Чернобыль и Припять, в итоге задаются вопросом “А когда была создана первая атомная электростанция в мире и где?”.

Первая в мире АЭС была построена в Обнинске (Калужская область).

Предыстория

28 сентября 1942 года Госкомитет обороны СССР утвердил создание специальной ядерной лаборатории в Академии наук, а также принял решение разрешить производство урана. С 2005 года эта дата отмечается как День ядерной науки.

Российская атомная промышленность относится к 1940-м годам, когда она имела стратегическое значение – главным образом потому, что ее соперники пытались создать ядерное оружие.

После окончания ВОВ государство активизировало исследования и финансировало инициативу по созданию подобного оружия в СССР.

20 августа 1945 года специальный комитет начал исследования, посвященные урановому проекту. Главой Комитета стал Лаврентий Берия.

Это событие стало поворотным моментом. На следующий год развернули обширную программу.

Проект контролировал Игорь Курчатов, также известный как отец атомной бомбы и пионер ядерной энергии для гражданского использования.

Новая программа позволила использовать ядерную энергию в различных секторах экономики, таких как транспорт и энергетика.

Это был рассвет новой российской ядерной эры. В последующие десятилетия у нее были максимумы и минимумы, среди которых .

Российские ученые-ядерщики работали над крупномасштабными проектами, производя технологические достижения и превращая ядерный сектор в одну из самых успешных частей экономики.

Ввод в эксплуатацию

Обнинская атомная электростанция была введена в эксплуатацию Советским Союзом 27 июня 1954 года и успешно эксплуатировалась почти пять десятилетий, пока она не была закрыта 29 апреля 2002 года.

Расположенный чуть более чем в ста километрах к юго-западу от Москвы, Обнинск был домом Института физики и энергетики, поэтому, неудивительно, что в СССР выбрали это место для строительства первой .

Однако то, что Обнинск стал первой в мире атомной электростанцией, на деле она предназначалась как полигон для тренировок экипажей будущих атомных подлодок.

Тем не менее, хотя Обнинская АЭС производила электроэнергию, также она содействовала исследованиям и испытаниям.

Мощность первой АЭС

Первая в мире атомная электростанция была всего с одним реактором АМ-1 мощностью в 5 мВт.

Хотя первая АЭС и была построена как эксперимент для использования электричества в коммерческих целях, но может ли атомный реактор использоваться для снабжения коммерческой сетки энергией? Обнинск доказал, что это возможно.

Реактор первой АЭС в СССР был урано-графитовой конструкции канального типа, советской модели, который позже стал “отцом” мощных реакторов РБМК.

Успех Обнинска проложил путь для строительства многих других атомных станций, таких как в России и Селлафилда в Англии.

Прогресс

Первая в СССР работала без “сучка-задоринки” в течение 48 лет – невероятный успех, если рассмотреть частоту инцидентов на многих современных АЭС по всему миру.

Несомненно, относительно небольшая величина реактора способствовала этой безопасности.

Однако важно также отметить образ мышления, в котором был построен АЭС в Обнинске. С момента своей концепции Обнинск упоминался Советами как Мирный Атом.

Вывод

Основанная более шести десятилетий назад первая в мире атомная электростанция была невероятным прорывом, который показал, что в мире существует место для мирной ядерной энергетики в будущем.

С момента своего создания первая атомная станция в мире должна была перенести ранее ужасный и травматический характер ядерной энергии в позитивный ресурс для роста и процветания человечества.

Мало того что этот “квест” был успешным, и АЭС в Обнинске пробыла в эксплуатации с 1954 по 2002 гг. без единой аварии или разлива, она стала моделью стабильности, которой многие сегодняшние атомщики могли бы подражать.

Когда-то была первой в мире, а сейчас она работает как музейный комплекс.

Побывал на первой в мире атомной электростанции. Еще раз восхитился гениями советских ученых и инженеров, сумевших в тяжелые послевоенные годы создать и ввести в эксплуатацию невиданные ранее энергетические установки.

Строили атомную электростанцию в обстановке строжайшей секретности. Расположена он на территории бывшей секретной лаборатории «В», сейчас это Физико-энергетический институт.

Физико-энергетический институт — не просто режимный объект, а особо режимный. Охрана строже чем в аэропорту. Всю аппаратуру и мобильные телефоны пришлось оставить в автобусе. Внутри люди в военной форме. Поэтому фотографий будет не очень много, только те, что предоставлены штатным фотографом. Ну, и парочка моих, снятых перед проходной.

Немного истории.
В 1945 году США впервые в мире применили атомное оружие, сбросив бомбы на японские города Хиросиму и Нагасаки. На какое-то время весь мир оказался беззащитным перед ядерной угрозой.
В кратчайшие сроки Советский Союз сумел создать и испытать 29 августа 1949 года оружие сдерживание — собственную атомную бомбу. В мире наступило пусть и шаткое, но равновесие.

Но помимо разработки оружия советские ученые показали, что атомная энергия может использоваться и в мирных целях. Для этого была постоена первая в мире атомная электростанция в Обнинске.
Место было выбрано не случайно: ученые-атомщики не должны были летать на самолетах, в то же время Обнинск находится сравнительно недалеко от Москвы. Теплоэлектростанция была построена ранее для обслуживания энергией института.

Оцените сроки, с которыми происходило создание и запуск АЭС.
9 мая 1954 года была осуществлена загрузка активной зоны и запущена самоподдерживающаяся реакция деления ядер урана.
26 июня 1954 года — подача пар на турбогенератор. Курчатов сказал по этому поводу: «С легким паром!» АЭС была включена в сеть Мосэнерго.
25 октября 1954 года — выход атомной электростанции на проектную мощность.

Мощность АЭС была небольшой, всего 5 Мегаватт, но это было колоссальное технологическое достижение.

Все создавалось впервые. Крышка реактора находится на уровне земли, а сам реактор уходит вниз. Всего под зданием 17 метров бетона и различных конструкций.

Все управлялось автоматикой, насколько это было возможно на то время. Из каждого помещения на пульт подавались пробы воздуха, таким образом осуществлялся мониторинг радиационной обстановки.

Первые дни работы были очень тяжелыми. В реакторе происходили течи, требовавшие его аварийных остановок. По ходу работы совершенствовали конструкции и меняли узлы на более надежные.
У сотрудников были переносные дозиметры размером с авторучку.

Но самое главное, что за все время эксплуатации Первой АЭС не было аварий с выбросом радиоактивных веществ или других проблем, связанных с облучением и радиацией.

Сердце АЭС — ее реактор. Загрузка и выгрузка тепловыделяющих элементов происходила при помощи крана. Специалист наблюдал за происходящим в реакторном зале через полуметровое стекло.
Атомная станция в Обнинске проработала 48 лет. В 2002 году ее вывели из эксплуатации, позже ее переоборудовали мемориальный комплекс. Сейчас на крышке реактора можно сфотографироваться, но попасть туда очень сложно.

На Первой АЭС бережно хранят память и каждую страницу истории атомной энергетики. Это не только сама электростанция, но и изотопная медицина, энергетические установки для транспорта, подводных лодок и космических кораблей. Все эти технологии разрабатывались и оттачивались в Обнинске.

Вот так выглядели ядерные энергетические установки «Бук» и «Топаз», которые обеспечивают электричеством те самые космические корабли, которые бороздят просторы вселенной.

После Первой АЭС были другие. Более мощные, с другими техническими решениями, но впереди их была атомная электростанция в Обнинске. Многие решения были использованы в других областях атомной энергетики.

В настоящее время Россия по-прежнему лидирует в атомной энергетике. Основы этого были заложены первопроходцами, строившими когда-то Обнинскую АЭС.

Индивидуальные туры на АЭС не проводятся, а на организованные очередь стоит на месяцы вперед. Мы приехали вместе с ЦППК по новому, недавно разработанному маршруту. Очень надеюсь, что скоро можно будет приобрести билеты в комплексный тур в Обнинск и окрестности. Планы такие есть и они реализуются.

Атомная электростанция (АЭС)

электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор (см. Ядерный реактор). Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (См. Тепловая электростанция) (ТЭС), преобразуется в электроэнергию. В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем (См. Ядерное горючее) (в основном 233 U, 235 U. 239 Pu). При делении 1 г изотопов урана или плутония высвобождается 22 500 квт ч, что эквивалентно энергии, содержащейся в 2800 кг условного топлива. Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Кроме того, необходимо учитывать всё увеличивающийся объём потребления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепловых электростанций. Несмотря на открытие новых месторождений органического топлива и совершенствование способов его добычи, в мире наблюдается тенденция к относит увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, которая уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.

Первая в мире АЭС опытно-промышленного назначения (рис. 1 ) мощностью 5 Мвт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась преимущественно в военных целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии (август 1955, Женева).

В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 Мвт (полная проектная мощность 600 Мвт ). В том же году развернулось строительство Белоярской промышленной АЭС, а 26 апреля 1964 генератор 1-й очереди (блок мощностью 100 Мвт ) выдал ток в Свердловскую энергосистему, 2-й блок мощностью 200 Мвт сдан в эксплуатацию в октябре 1967. Отличительная особенность Белоярской АЭС - перегрев пара (до получения нужных параметров) непосредственно в ядерном реакторе, что позволило применить на ней обычные современные турбины почти без всяких переделок.

В сентябре 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 Мвт. Себестоимость 1 квт-ч электроэнергии (важнейший экономический показатель работы всякой электростанции) на этой АЭС систематически снижалась: она составляла 1,24 коп. в 1965, 1,22 коп. в 1966, 1,18 коп. в 1967, 0,94 коп. в 1968. Первый блок Нововоронежской АЭС был построен не только для промышленного пользования, но и как демонстрационный объект для показа возможностей и преимуществ атомной энергетики, надёжности и безопасности работы АЭС. В ноябре 1965 в г. Мелекессе Ульяновской области вступила в строй АЭС с водо-водяным реактором (См. Водо-водяной реактор) «кипящего» типа мощностью 50 Мвт, реактор собран по одноконтурной схеме, облегчающей компоновку станции. В декабре 1969 был пущен второй блок Нововоронежской АЭС (350 Мвт ).

За рубежом первая АЭС промышленного назначения мощностью 46 Мвт была введена в эксплуатацию в 1956 в Колдер-Холле (Англия).Через год вступила в строй АЭС мощностью 60 Мвт в Шиппингпорте (США).

Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 2 . Тепло, выделяющееся в активной зоне (См. Активная зона) реактора 1, отбирается водой (теплоносителем (См. Теплоноситель)) 1-го контура, которая прокачивается через реактор циркуляционным насосом 2. Нагретая вода из реактора поступает в теплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе, воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образующийся пар поступает в турбину 4.

Наиболее часто на АЭС применяются 4 типа реакторов на тепловых нейтронах: 1) водо-водяные с обычной водой в качестве замедлителя и теплоносителя; 2) графито-водные с водяным теплоносителем и графитовым замедлителем; 3) тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя; 4) графито-газовые с газовым теплоносителем и графитовым замедлителем.

Выбор преимущественно применяемого типа реактора определяется главным образом накопленным опытом в реакторостроении, а также наличием необходимого промышленного оборудования, сырьевых запасов и т. д. В СССР строят главным образом графито-водные и водо-водяные реакторы. На АЭС США наибольшее распространение получили водо-водяные реакторы. Графито-газовые реакторы применяются в Англии. В атомной энергетике Канады преобладают АЭС с тяжеловодными реакторами.

В зависимости от вида и агрегатного состояния теплоносителя создаётся тот или иной термодинамический цикл АЭС. Выбор верхней температурной границы термодинамического цикла определяется максимально допустимой температурой оболочек тепловыделяющих элементов (См. Тепловыделяющий элемент) (ТВЭЛ), содержащих ядерное горючее, допустимой температурой собственно ядерного горючего, а также свойствами тенлоносителя, принятого для данного типа реактора. На АЭС, тепловой реактор которой охлаждается водой, обычно пользуются низкотемпературными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными давлением и температурой. Тепловая схема АЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур - пароводяной. При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одноконтурная тепловая АЭС. В кипящих реакторах вода кипит в активной зоне, полученная пароводяная смесь сепарируется, и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева (рис. 3 ). В высокотемпературных графито-газовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае выполняет роль камеры сгорания.

При работе реактора концентрация делящихся изотопов в ядерном топливе постепенно уменьшается, т. е. ТВЭЛы выгорают. Поэтому со временем их заменяют свежими. Ядерное горючее перезагружают с помощью механизмов и приспособлений с дистанционным управлением. Отработавшие ТВЭЛы переносят в бассейн выдержки, а затем направляют на переработку.

К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой (См. Биологическая защита), Теплообменник и, Насос ы или газодувные установки, осуществляющие циркуляцию теплоносителя; трубопроводы и арматура циркуляционного контура; устройства для перезагрузки ядерного горючего; системы спец. вентиляции, аварийного расхолаживания и др.

В зависимости от конструктивного исполнения реакторы имеют отличительные особенности: в корпусных реакторах (См. Корпусной реактор) ТВЭЛы и замедлитель расположены внутри корпуса, несущего полное давление теплоносителя; в канальных реакторах (См. Канальный реактор) ТВЭЛы, охлаждаемые теплоносителем, устанавливаются в специальных трубах-каналах, пронизывающих замедлитель, заключённый в тонкостенный кожух. Такие реакторы применяются в СССР (Сибирская, Белоярская АЭС и др.).

Для предохранения персонала АЭС от радиационного облучения реактор окружают биологической защитой, основным материалом для которой служат бетон, вода, серпентиновый песок. Оборудование реакторного контура должно быть полностью герметичным. Предусматривается система контроля мест возможной утечки теплоносителя, принимают меры, чтобы появление неплотностей и разрывов контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружающей местности. Оборудование реакторного контура обычно устанавливают в герметичных боксах, которые отделены от остальных помещений АЭС биологической защитой и при работе реактора не обслуживаются. Радиоактивный воздух и небольшое количество паров теплоносителя, обусловленное наличием протечек из контура, удаляют из необслуживаемых помещений АЭС специальной системой вентиляции, в которой для исключения возможности загрязнения атмосферы предусмотрены очистные фильтры и газгольдеры выдержки. За выполнением правил радиационной безопасности персоналом АЭС следит служба дозиметрического контроля.

При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек ТВЭЛов предусматривают быстрое (в течение несколько секунд) глушение ядерной реакции; аварийная система расхолаживания имеет автономные источники питания.

Наличие биологические защиты, систем специальной вентиляции и аварийного расхолаживания и службы дозиметрического контроля позволяет полностью обезопасить обслуживающий персонал АЭС от вредных воздействий радиоактивного облучения.

Оборудование машинного зала АЭС аналогично оборудованию машинного зала ТЭС. Отличительная особенность большинства АЭС - использование пара сравнительно низких параметров, насыщенного или слабоперегретого.

При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару, в турбине устанавливают сепарирующие устройства. Иногда необходимо применение выносных сепараторов и промежуточных перегревателей пара. В связи с тем что теплоноситель и содержащиеся в нём примеси при прохождении через активную зону реактора активируются, конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины одноконтурных АЭС должно полностью исключать возможность утечки теплоносителя. На двухконтурных АЭС с высокими параметрами пара подобные требования к оборудованию машинного зала не предъявляются.

В число специфичных требований к компоновке оборудования АЭС входят: минимально возможная протяжённость коммуникаций, связанных с радиоактивными средами, повышенная жёсткость фундаментов и несущих конструкций реактора, надёжная организация вентиляции помещений. На рис. показан разрез главного корпуса Белоярской АЭС с канальным графито-водным реактором. В реакторном зале размещены: реактор с биологической защитой, запасные ТВЭЛы и аппаратура контроля. АЭС скомпонована по блочному принципу реактор - турбина. В машинном зале расположены турбогецераторы и обслуживающие их системы. Между машинным и реакторным залами размещены вспомогательное оборудование и системы управления станцией.

Экономичность АЭС определяется её основными техническими показателями: единичная мощность реактора, кпд, энергонапряжённость активной зоны, глубина выгорания ядерного горючего, коэффициент использования установленной мощности АЭС за год. С ростом мощности АЭС удельные капиталовложения в неё (стоимость установленного квт ) снижаются более резко, чем это имеет место для ТЭС. В этом главная причина стремления к сооружению крупных АЭС с большой единичной мощностью блоков. Для экономики АЭС характерно, что доля топливной составляющей в себестоимости вырабатываемой электроэнергии 30-40% (на ТЭС 60-70%). Поэтому крупные АЭС наиболее распространены в промышленно развитых районах с ограниченными запасами обычного топлива, а АЭС небольшой мощности - в труднодоступных или отдалённых районах, например АЭС в пос. Билибино (Якутская АССР) с электрической мощностью типового блока 12 Мвт. Часть тепловой мощности реактора этой АЭС (29 Мвт ) расходуется на теплоснабжение. Наряду с выработкой электроэнергии АЭС используются также для опреснения морской воды. Так, Шевченковская АЭС (Казахская ССР) электрической мощностью 150 Мвт рассчитана на опреснение (методом дистилляции) за сутки до 150 000 т воды из Каспийского моря.

В большинстве промышленно развитых стран (СССР, США, Англия, Франция, Канада, ФРГ, Япония, ГДР и др.) по прогнозам мощность действующих и строящихся АЭС к 1980 будет доведена до десятков Гвт. По данным Международного атомного агентства ООН, опубликованным в 1967, установленная мощность всех АЭС в мире к 1980 достигнет 300 Гвт.

В Советском Союзе осуществляется широкая программа ввода в строй крупных энергетических блоков (до 1000 Мвт ) с реакторами на тепловых нейтронах. В 1948-49 были начаты работы по реакторам на быстрых нейтронах для промышленных АЭС. Физические особенности таких реакторов позволяют осуществить расширенное воспроизводство ядерного горючего (коэффициент воспроизводства от 1,3 до 1,7), что даёт возможность использовать не только 235 U, но и сырьевые материалы 238 U и 232 Th. Кроме того, реакторы на быстрых нейтронах не содержат замедлителя, имеют сравнительно малые размеры и большую загрузку. Этим и объясняется стремление к интенсивному развитию быстрых реакторов в СССР. Для исследований по быстрым реакторам были последовательно сооружены экспериментальные и опытные реакторы БР-1, БР-2, БР-З, БР-5, БФС. Полученный опыт обусловил переход от исследований модельных установок к проектированию и сооружению промышленных АЭС на быстрых нейтронах (БН-350) в г. Шевченко и (БН-600) на Белоярской АЭС. Ведутся исследования реакторов для мощных АЭС, например в г. Мелекессе построен опытный реактор БОР-60.

Крупные АЭС сооружаются и в ряде развивающихся стран (Индия, Пакистан и др.).

На 3-й Международной научно-технической конференции по мирному использованию атомной энергии (1964, Женева) было отмечено, что широкое освоение ядерной энергии стало ключевой проблемой для большинства стран. Состоявшаяся в Москве в августе 1968 7-я Мировая энергетическая конференция (МИРЭК-VII) подтвердила актуальность проблем выбора направления развития ядерной энергетики на следующем этапе (условно 1980-2000), когда АЭС станет одним из основных производителей электроэнергии.

Лит.: Некоторые вопросы ядерной энергетики. Сб. ст., под ред. М. А. Стыриковича, М., 1959; Канаев А. А., Атомные энергетические установки, Л., 1961; Калафати Д. Д., Термодинамические циклы атомных электростанций, М.-Л., 1963; 10 лет Первой в мире атомной электростанции СССР. [Сб. ст.], М., 1964; Советская атомная наука и техника. [Сборник], М., 1967; Петросьянц А. М., Атомная энергетика наших дней, М., 1968.

С. П. Кузнецов.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Атомная электростанция" в других словарях:

    Электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую энергию. Генератором энергии на АЭС является атомный реактор. Синонимы: АЭС См. также: Атомные электростанции Электростанции Ядерные реакторы Финансовый словарь… … Финансовый словарь

    - (АЭС) электростанция, на которой ядерная (атомная) энергия преобразуется в электрическую. На АЭС тепло, выделяющееся в ядерном реакторе, используется для получения водного пара, вращающего турбогенератор. 1 я в мире АЭС мощнностью 5 МВт была… … Большой Энциклопедический словарь