Степень окисления технеция. Хлорид технеция (IV): состав и молярная масса

Задача 1. Напишите электронную формулу атома технеция. Сколько электронов находится на d-подуровне предпоследнего электронного слоя? К какому электронному семейству относится элемент?

Решение: Атом Tc в таблице Менделеева имеет порядковый номер 43. Следовательно, в его оболочке содержится 43 электрона. В электронной формуле распределяем их по подуровням согласно порядку заполнения (в соответствии с правилами Клечковского) и учитывая емкость подуровней: Tc 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 5 5s 2 . При этом порядок заполнения подуровней следующий: 1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d. Последний электрон располагается на 4d-подуровне, значит, технеций относится к семейству d-элементов. На d-подуровне предпоследнего (4-го) слоя находится 5 электронов.

Ответ: 5, d.

Задача 2. Атом какого элемента имеет электронную конфигурацию 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 1 ?

Решение:

Количество электронов в оболочке нейтрального атома составляет 49. Поэтому его заряд ядра и, следовательно, порядковый номер, также равны 49. В периодической системе Д.И.Менделеева находим, что этот элемент – индий.

Задача 3. У какого из перечисленных ниже соединений наименее выражены кислотные свойства? а) HNO 3 , б) H 3 PO 4 , в) H 3 AsO 4 , г) H 3 SbO 4 .

Решение:

Приведенные кислородсодержащие соединения являются гидроксидами элементов главной подгруппы V группы таблицы Менделеева. Известно, что кислотные свойства гидроксидов ослабевают сверху вниз в подгруппе. Поэтому в указанном ряду наименее выраженными кислотными свойствами обладает H 3 SbO 4 .

Ответ: H 3 SbO 4 .

Задача 4. Укажите тип гибридизации орбиталей бора в молекуле BBr 3 .

Решение:

В образовании трех ковалентных связей между бором и атомами брома участвуют одна s- и две p-орбитали атома бора, свойства которых различаются. Поскольку все химические связи в молекуле BBr 3 равноценны, атом бора подвергается гибридизации. В ней принимают участие указанные выше три орбитали внешнего электронного слоя. Следовательно, тип гибридизации – sp 2 .

Ответ: sp 2 .

Задача 5. По данным периодической системы составьте эмпирическую формулу высшего оксида свинца. Какова его молярная масса?

Решение:

Свинец находится в 4-й группе периодической системы, поэтому его высшая степень окисления равна +4. Атом кислорода в оксидах имеет степень окисления –2, следовательно в молекуле оксида на каждый атом свинца приходится два атома кислорода. Формула высшего оксида – PbO 2 . Вычислим его молярную массу: 207+2·16=239.

Ответ: 239 г/моль.

Задача 6. Какие виды химической связи имеются в молекуле NH 4 I ?

Решение:

Молекула NH 4 I состоит из ионов NH 4 + и I – , между которыми имеется ионная связь. В ионе NH 4 + четыре связи являются ковалентными полярными, причем одна из них образована по донорно-акцепторному типу (см. раздел 3.2.3).

Ответ: ионная, ковалентная полярная, донорно-акцепторная.

Задача 7. Расчет энергии связи .

Вычислите энергию связи H-S в молекуле H 2 S по следующим данным: 2H 2 (г) + S 2 (г) = 2 H 2 S (г) – 40,30 кДж; энергии связей D(H-H) и D(S-S) соответственно равны –435,9 кДж/моль и – 417,6 кДж/моль.

Решение: Образование двух молекул H 2 S можно представить как последовательный процесс разрыва связей H-H в молекуле H 2 и связей S-S в молекуле S 2 :

2 H-H 4 Н – 2D(H-H)

S-S 2 S – D(S-S)

4 Н + 2 S 2 H 2 S + 4D(S-H),

гдеD(H-H), D(S-S) и D(S-H) – энергии образования связей H-H, S-S и S-Н соответственно. Суммируя левые и правые части приведенных уравнений, приходим к термохимическому уравнению

2H 2 (г) + S 2 (г) = 2 H 2 S (г) –2D(H-H) – D(S-S) + 4D(S-H).

Тепловой эффект этой реакции равен

Q =–2D(H-H) – D(S-S) + 4D(S-H), откудаD(S-H)= .

Задача 8. Вычисление длины связи.

Рассчитайте длину связи в молекуле HBr, если межъядерное расстояние в молекулах Н 2 и Br 2 ,равны 0,74 10 -10 и 2,28 10 -10 м соответственно.

Решение: Длина ковалентной связи между двумя разноименными атомами равна сумме их ковалентных радиусов

l(H-Br) = r(H) + r(Br).

В свою очередь, ковалентный радиус атома определяется как половина межъядерного расстояния в молекулах Н 2 и Br 2 :

Таким образом,

Ответ: 1,51·10 -10 м.

Задача 9. Определение вида гибридизации орбиталей и пространственной структуры молекулы.

Какой вид гибридизации электронных облаков имеет место в атоме кремния при образования молекулы SiF 4 ? Какова пространственная структура этой молекулы?

Решение: В возбужденном состоянии структура внешнего энергетического уровня атома кремния следующая:

3s 3p
3s 3p x 3p y 3p z

В образовании химических связей в атоме кремния участвуют электроны третьего энергетического уровня: один электрон в s-состоянии и три электрона в р-состоянии. При образовании молекулы SiF 4 возникают четыре гибридных электронных облака (sp 3 -гибридизациия). Молекула SiF 4 имеет пространственную тетраэдрическую конфигурацию.

Задача 10. Определение валентностей элементов в химических соединениях на основе анализа графических электронных формул основного и возбужденных состояний атомов этих элементов .

Какую валентность, обусловленную неспаренными электронами,может проявлять сера в основном и в возбужденном состоянии?

Решение: Распределение электронов внешнего энергетического уровня серы …3s 2 3p 4 с учетом правила Гунда имеет вид:

s p d
16 S

Из анализа основного и двух возбужденных состояний следует, что валентность (спинвалентность) серы в нормальном состоянии равна двум, в первом возбужденном состоянии – четырем, во втором – шести.

Варианты контрольных заданий

Вариант 1

1. Какие сведения об элементе можно узнать на основании его положения в ПСЭ?

2. Напишите электронные формулы атомов элементов с порядковыми номерами 9 и 28. Покажите распределение электронов этих атомов по квантовым ячейкам. К какому электронному семейству относится каждый из этих элементов?

Вариант 2

1. Дайте определения: энергии ионизации, сродства к электрону и электроотрицательности атома? Как они изменяются в периоде и группе?

2. Напишите электронные формулы атомов элементов с порядковыми номерами 16 и 26. Распределите электроны этих атомов по квантовым ячейкам. К какому электронному семейству относится каждый из этих элементов?

Вариант 3

1. Какая ковалентная связь называется полярной и какая неполярной? Что служит количественной мерой полярности ковалентной связи?

2. Какое максимальное число электронов могут занимать s -, p -, d - и f -орбитали данного энергетического уровня? Почему? Напишите электронную формулу атома элемента с порядковым номером 31.

Вариант 4

1. Как метод валентных связей (ВС) объясняет линейное строение молекулы ВеСI 2 ?

4s или 3d ; 5s или 4p ? Почему? Напишите электронную формулу атома элемента с порядковым номером 21.

Вариант 5

1. Какая связь называется σ- связью и какая π-связью?

2. Какие орбитали атома заполняются электронами раньше: 4d или 5s ; 6s или 5p ? Почему? Напишите электронную формулу атома элемента с порядковым номером 43.

Вариант 6

1. Что называется дипольным моментом?

2. Напишите электронные формулы атомов элементов с порядковыми номерами 14 и 40. Сколько свободных 3d -орбиталей у атомов последнего элемента?

Вариант 7

1. Какая химическая связь называется ионной? Каков механизм его образования?

2. Напишите электронные формулы атомов элементов с порядковыми номерами 21 и 23. Сколько свободных 3d -орбиталей в атомах этих элементов?

Вариант 8

1. Какой вариант периодической системы наиболее широко применяется и почему?

2. Сколько свободных d- орбиталей содержится в атомах Sc, Ti, V? Напишите электронные формулы атомов этих элементов.

Вариант 9

1. Какие свойства ионной связи отличают её от ковалентной?

2. Пользуясь правилом Гунда, распределите электроны по квантовым ячейкам, отвечающим низшему энергетическому состоянию атомов: хрома, фосфора, серы, германия, никеля.

2. Для атома бора возможны два различных электронных состояния и . Как называют эти состояния? Как перейти от первого состояния ко второму?

Вариант 11

1. Какие из 4-х разнообразных типов атомных орбиталей имеют наиболее сложную формулу?

2. Атому какого из элементов отвечает каждая из приведенных электронных формул:

а) ;б) ;

Вариант 12

2. Пользуясь правилом Гунда, распределите электроны по квантовым ячейкам, отвечающим высшему энергетическому состоянию атомов: марганца, азота, кислорода, кремния, кобальта.

Вариант 13

1. Если в р-орбиталях какого–либо слоя находятся 4 электрона, сколько из них имеют неспаренные спины и чему равно их суммарное спиновое число 7

2. Атомам каких элементов и каким состояниям этих элементов отвечают следующие электронные формулы и ; и ?

Вариант 14

1. Какие характеристики атома можно назвать, зная: а) порядковый номер элемента в периодической системе; б) номер периода; в) номер и вид группы, в которой расположен элемент?

2. Напишите электронную конфигурацию атомов, пользуясь электронными формулами для элементов с порядковыми номерами 12, 25, 31, 34, 45.

Вариант 15

1. Как определить исходя из положения атома в периодической системе число элементарных частиц в егосоставе? Определите число элементарных частиц в составе атомов серы и цинка.

2. Пользуясь правилом Гунда, распределите электроны по энергетическим ячейкам, соответствующим низшему энергетическому состоянию, для атомов элементов с порядковыми номерами 26, 39, 49, 74, 52.

Вариант 16

1. Что такое квантовые числа? Какие свойства орбиталей и электронов они отражают? Какие значения принимают? Определите максимально возможное число электронов на каждом энергетическом уровне атомов алюминия и меди.

2. Какие из электронных формул, отражающих строение невозбужденного атома некоторого элемента, неверны: а) 1s 2 2s 2 2p 5 3s 1 ; б) 1s 2 2s 2 2p 6 ; в) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 4 ; г) 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 ; д) 1s 2 2s 2 2p 6 3s 2 3d 2 ? Почему? Атомам каких элементов отвечают правильно составленные электронные формулы?

Вариант 17

1. Какие принципы положены в основу всех современных теорий химической связи? Что такое ионная связь? Какими свойствами она обладает? Приведите примеры соединений с ионной связью.

2. Напишите электронные формулы атомов элементов с порядковыми номерами 24 и 33, учитывая, что у первого происходит «провал» одного 4s -электрона на 3d-подуровень. Чему равен максимальный спин d -электронов у атомов первого и p -электронов у атомов второго элемента?

Вариант 18

1. Что такое электроотрицательность? Как изменяется электроотрицательность р -элементов в периоде, в группе периодической системы с увеличением порядкового номера? Почему?

2. Составьте электронные формулы атомов элементов с порядковыми номерами 32 и 42, учитывая, что у последнего происходит «провал» одного 5s -электрона на 4d -подуровень. К какому электронному семейству относится каждый из этих элементов?

Вариант 19

1. Какие значения могут принимать квантовые числа n, l, m l и m S , характеризующие состояние электронов в атоме? Какие значения они принимают для внешних электронов атома магния?

2. Сколько свободных f -орбиталей содержится в атомах элементов с порядковыми номерами 61, 62, 91, 92? Пользуясь правилом Гунда, распределите электроны по энергетическим ячейкам для атомов этих элементов.

Вариант 20

1. Что такое энергия ионизации? В каких единицах она выражается? Как изменяется восстановительная активность s - и p -элементов в группах периодической системы с увеличением порядкового номера? Почему?

2. В чем заключается принцип Паули? Может ли быть на каком-нибудь подуровне атома р 7 - или d 12 - электронов? Почему? Составьте электронную формулу атома элемента с порядковым номером 22 и укажите его валентные электроны..

Вариант 21

1. Перечислите правила, в соответствии с которыми происходит заполнение электронами орбиталей. Что такое электронная формула атома? Напишите электронные формулы кремния и железа, подчеркнув валентные электроны.

2. Квантовые числа для электронов внешнего энергетического уровня атомов некоторых элементов имеют следующие значения: n = 4; l = 0; m l = 0; m S = . Напишите электронные формулы атомов этих элементов и определите сколько свободных 3d -орбиталей содержит каждый их них.

Вариант 22

1. Что такое изотопы? Чем можно объяснить, что у большинства элементов периодической системы атомные массы выражаются дробным числом? Могут ли атомы разных элементов иметь одинаковую массу? Как называются подобные атомы?

2. Исходя из положения металла в периодической системе, дайте мотивированный ответ на вопрос: какой из двух гидроксидов более сильное основание: Ba(OH) 2 или Mg(OH) 2 ; Ca(OH) 2 или Fe(OH) 2 ; Cd(OH) 2 или Sr(OH) 2 ?

Вариант 23

1. Что такое сродство к электрону? В каких единицах оно выражается? Как изменяется окислительная активность неметаллов в периоде и в группе периодической системы с увеличением порядкового номера? Ответ мотивируйте строением атома соответствующего элемента.

2. Марганец образует соединения, в которых он проявляет степень окисления +2, +3, +4, +6, +7. Составьте формулы его оксидов и гидроксидов, отвечающих этим степеням окисления. Напишите уравнения реакций, доказывающих амфотерность гидроксида марганца (IV).

Вариант 24

1. Как изменяются кислотно-основные и окислительно-восстановительные свойства высших оксидов и гидроксидов элементов с ростом заряда их ядер: а) в пределах периода; б) в пределах подгруппы.

2. Сколько и какие значения может принимать магнитное квантовое число m l при орбитальном числе l = 0, 1, 2 и 3? Какие элементы в периодической системе называют s-, p-, d- и f -элементами? Приведите примеры.

Вариант 25

1. Теория гибридизации. Механизм образования донорно-акцепторной связи. Примеры соединений

2. У какого из р -элементов пятой группы периодической системы – фосфора или сурьмы – сильнее выражены неметаллические свойства? Какое из водородных соединений данных элементов более сильный восстановитель? Ответ мотивируйте строением атома этих элементов.

Вариант 26

1. Какую низшую степень окисления проявляют хлор, сера, азот и углерод? Почему? Составьте формулы соединений алюминия с данными элементами в этой степени окисления. Как называются соответствующие соединения?

2. Энергетическое состояние внешнего электрона атома описывается следующими значениями квантовых чисел: n =4, l =0, m l =0. Атомы каких элементов имеют такой электрон? Составьте электронные формулы атомов этих элементов. Напишите все квантовые числа эля электронов атомов: а) лития, бериллия, углерода; б) азота, кислорода, фтора.

Вариант 27

1. Металлическая связь. Механизм образования и свойства. Примеры соединений и их свойства.

2. Исходя из положения германия и технеция в периодической системе, составьте формулы мета- и ортогерманиевой кислот, и оксида технеция, отвечающие их высшей степени окисления. Изобразите формулы этих соединений графически.

Вариант 28

1. У какого элемента четвертого периода – хрома или селена – сильнее выражены металлические свойства? Какой их этих элементов образует газообразное соединение с водородом? Ответ мотивируйте строением атомов хрома и селена.

2. Изотоп никеля-57 образуется при бомбардировке α-частицами ядер атомов железа-54. Составьте уравнение этой ядерной реакции и напишите его в сокращенной форме

Вариант 29

Напишите электронные формулы атомов элементов и назовите их, если значения квантовых чисел (n, l, m l , m S ) электронов наружного (последнего) и предпоследнего электронных слоев следующие:

а) 6, 0, 0, + ; 6, 0, 0, - ; 6, 1, -1, + ;

б) 3, 2, -2, + ; 3, 2, -1, + ; 4, 0, 0, + ; 4, 0, 0, - .

Вариант 30

1.Современные методы, описывающие образование ковалентной связи, их основные постулаты. Свойства ковалентной связи. Приведите примеры соединений с ковалентной связью и их свойства.

2. Составьте сравнительную характеристику элементов с порядковыми номерами 17 и 25 на основании их положения в ПСЭ. Объясните причины сходства и различия в свойствах этих элементов.


Похожая информация.


Впервые получен Сегрэ в 1937 г. бомбардировкой молибденовой мишени дейтронами. Как первый из искусственно полученных, был назван технецием (Technetium, от tecnh - искусство). В соответствии с правилом об устойчивости ядер он оказался нестабильным. Позднее было получено еще несколько искусственных изотопов технеция. Все они также неустойчивы. Наиболее долгоживущий изотоп технеция, найденный в 1947 г. среди продуктов распада урана (99 Тс), имеет период полураспада ~2 . 10 5 лет. Возраст Земли примерно в 10 000 раз больше. Из этого следует, что даже если первоначально технеций и содержался в земной коре, то за это время он должен был бы исчезнуть. Однако Паркеру и Курода (Parker, Kuroda, 1956) удалось доказать, что в природном уране в крайне незначительных количествах присутствует радиоактивный изотоп молибдена 99 Мо, который имеет период полураспада 67 час и в результате b -распада превращается в 99 Тс. Это указывало на то, что 99 Tc непрерывно образуется при спонтанном ядерном распаде 238 U. Следовательно, технеций, очевидно, имеется в природе, несмотря на то, что до сих пор он непосредственно еще не обнаружен.

Получение:

В заметных количествах получают изотоп 99 Тс, так как он является одним из продуктов распада урана в атомных реакторах, а также вследствие его слабой радиоактивности. В виде Тс 2 S 7 его осаждают сероводородом из водного раствора, подкисленного соляной кислотой. Черный осадок сульфида растворяют в аммиачном растворе перекиси водорода и полученное соединение, пертехнетат аммония NH 4 TcО 4 , прокаливают в токе водорода при температуре 600°.
Металлический технеций можно легко выделить из кислого раствора электролитически.

Физические свойства:

Технеций - металл серебристо-серого цвета. Кристаллизуется, по данным Муна (Моопеу, 1947), в решетке с гексагональной плотнейшей упаковкой (а = 2,735, с = 4,388 А°).

Химические свойства:

По химическим свойствам технеций очень сходен с рением, а также подобен соседнему по периодической системе молибдену. Это обстоятельство используют при работе с ничтожно малыми количествами технеция. Он нерастворим ни в соляной кислоте, ни в щелочном растворе перекиси водорода, но легко растворяется в азотной кислоте и в царской водке. При нагревании в токе кислорода сгорает с образованием светло-желтой летучей семиокиси Tс 2 О 7 .

Важнейшие соединения:

Tс 2 О 7 при растворении в воде образует технециевую ("пертехнециевую") кислоту НТсО 4 , которую при упаривании раствора можно выделить в виде темно-красных, продолговатых кристаллов. НТсО 4 - сильная одноосновная кислота. Ее темно-красные концентрированные водные растворы при разбавлении быстро обесцвечиваются. Пертехнетат аммония NH 4 TcО 4 бесцветен и в чистом состоянии негигроскопичен.
Черный осадок сульфида Тс 2 S 7 осаждают сероводородом из подкисленного водного раствора. Сульфиды технеция нерастворимы в разбавленной соляной кислоте.

Применение:

Ввиду того что из отходов атомных реакторов можно наладить непрерывное производство наиболее долгоживущего изотопа 99 Тc, не исключена возможность его технического применения в будущем. Технеций относится к числу наиболее эффективных поглотителей медленных нейтронов. В связи с этим следует, очевидно, принимать в расчет его использование для экранирования ядерных реакторов.
Изотоп Tc применяют как g излучатель в медицинской диагностике.
Количества технеция, получаемого в настоящее время, исчисляются несколькими граммами.

См. также:
С.И. Венецкий О редких и рассеянных. Рассказы о металлах.

В предыдущем подпункте мы выяснили, о чём вообще нужно говорить, характеризуя строение атома химического элемента. Теперь разберёмся, непосредственно, в атоме технеция:

1) Число электронов - з, порядковый номер элемента технеция в таблице Менделеева - 43 .

Отсюда заряд ядра +43 , а вокруг ядра атома технеция размещаются 43 электрона с общим отрицательным зарядом - 43.

2) Найдём число нейтронов: N= A - Z. Массовое число атома - 98, число протонов, p - 43 .

N= 98 - 43=55.

Число нейтронов - n - 55.

Количество энергетических уровней. Электронная конфигурация атома технеция

Элемент технеций , Te, находится в 5-м периоде таблицы Менделлеева, о чём мы раньше говорили. Следовательно, количество энергетических уровней - 5 . Теперь следует сказать о следующем:

  • 1) Нами не была упомянута важная вещь - а именно то, что на первом энергетическом уровне может находиться 2 электрона; на втором -8; на третьем - 18 и т. д…
  • 2) На каждом энергетическом уровне (кроме первого) имеется несколько орбиталей, отличающихся по форме и энергии. Число орбиталей каждого вида различно: s-орбиталь - одна, p-орбиталей - три, d-орбиталей - пять, f-орбиталей - семь.
  • 3) На каждой орбитали может находиться не более двух электронов.

Приведём строение первых трёх энергетических уровней, указав максимально возможное число электронов на орбиталях:

  • 1-й уровень: s-орбиталь; 2з.
  • 2-й уровень: 1 s-орбиталь + 3 p-орбитали; 2з + 6з = 8з;
  • 3-й уровень: 1 s-орбиталь + 3 p-орбитали + 5 d-орбитали; 2з + 6з + 10з = 18з;

Представим электронную формулу или электронную конфигурацию атома технеция, показывающую распределение электронов по подуровням:

1s22s22p63s23p63d104s24p64d55s2.

Как видим, в данном случае количество электронов на уровнях - на первых трёх 2, 8, 18 соответственно, а на четвёртом и пятом - 13 и 2.

Итак, как обычно, полагается подвести итоги:

  • 1) Число электронов в атоме технеция - 43. Число протонов равно числу электронов - 43, а также заряду ядра - + 43. Число нейтронов - 55.
  • 2) Количество энергетических уровней равно номеру периода - 5.

ОПРЕДЕЛЕНИЕ

Технеций расположен в пятом периоде VII группе побочной (В) подгруппе Периодической таблицы.

Относится к элементам d -семейства. Металл. Обозначение - Tc. Порядковый номер - 43. Относительная атомная масса - 99 а.е.м.

Электронное строение атома технеция

Атом технеция состоит из положительно заряженного ядра (+43), внутри которого есть 43 протона и 56 нейтронов, а вокруг, по пяти орбитам движутся 43 электрона.

Рис.1. Схематическое строение атома технеция.

Распределение электронов по орбиталям выглядит следующим образом:

43Tc) 2) 8) 18) 13) 2 ;

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 5 5s 2 .

Внешний энергетический уровень атома технеция содержит 7 электронов, которые являются валентными. Энергетическая диаграмма основного состояния принимает следующий вид:

Валентные электроны атома технеция можно охарактеризовать набором из четырех квантовых чисел: n (главное квантовое), l (орбитальное), m l (магнитное) и s (спиновое):

Подуровень

Примеры решения задач

ПРИМЕР 1

Задание У какого элемента четвертого периода - хрома или селена - сильнее выражены металлические свойства? Запишите их электронные формулы.
Ответ Запишем электронные конфигурации основного состояния хрома и селена:

24 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3 d 5 4 s 1 ;

34 Se 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4 s 2 4 p 4 .

Металлические свойства сильнее выражены у селена, чем у хрома. Правдивость данного утверждения можно доказать с помощью Периодического закона, согласно которому при переходе в группе сверху вниз металлические свойства элемента возрастают, а неметаллические убывают, что связано с тем, что при продвижении вниз по группе в атоме возрастает число электронных слоев, вследствие чего валентные электроны слабее удерживаются ядром.

Технеций (лат. Technetium), Тс, радиоактивный химический элемент VII группы периодической системы Менделеева, атомный номер 43, атомная масса 98, 9062; металл, ковкий и пластичный.

Технеций стабильных изотопов не имеет. Из радиоактивных изотопов (около 20) практическое значение имеют два: 99 Тс и 99m Tc с периодами полураспада соответственно Т 1/2 = 2,12 ×10 5 лет и T 1/2 = 6,04 ч. В природе элемент находится в незначительных количествах - 10 -10 г в 1 т урановой смолки.

Физические и химические свойства.

Металлический Технеций в виде порошка имеет серый цвет (напоминает Re, Mo, Pt); компактный металл (слитки плавленого металла, фольга, проволока) серебристо-серого цвета. Технеций в кристаллическом состоянии имеет гексагональную решётку плотной упаковки (а = 2,735

, с = 4,391 ); в тонких слоях (менее 150 ) - кубическую гранецентрированную решётку (а = 3,68 ? 0,0005 ); плотность Т. (с гексагональной решёткой) 11,487 г/см 3 , t пл 2200 ? 50 ?С; t kип 4700 ?С; удельное электросопротивление 69 * 10 -6 ом×см (100 ?С); температура перехода в состояние сверхпроводимости Тс 8,24 К. Технеций парамагнитен; его магнитная восприимчивость при 25 0 С - 2,7 * 10 -4 . Конфигурация внешней электронной оболочки атома Тс 4d 5 5s 2 ; атомный радиус 1,358 ; ионный радиус Тс 7+ 0,56 .

По химическим свойствам Tc близок к Mn и особенно к Re, в соединениях проявляет степени окисления от -1 до +7. Наиболее устойчивы и хорошо изучены соединения Tc в степени окисления +7. При взаимодействии Технеция или его соединений с кислородом образуются окислы Tc 2 O 7 и TcO 2 , с хлором и фтором - галогениды ТсХ 6 , ТсХ 5 , ТсХ 4 , возможно образование оксигалогенидов, например ТсО 3 Х (где Х - галоген), с серой - сульфиды Tc 2 S 7 и TcS 2 . Технеций образует также технециевую кислоту HTcO 4 и её соли пертехнаты MеTcO 4 (где Ме - металл), карбонильные, комплексные и металлорганические соединения. В ряду напряжений Технеций стоит правее водорода; он не реагирует с соляной кислотой любых концентраций, но легко растворяется в азотной и серной кислотах, царской водке, перекиси водорода, бромной воде.

Получение.

Основным источником Технеция служат отходы атомной промышленности. Выход 99 Tc при делении 235 U составляет около 6%. Из смеси продуктов деления Технеций в виде пертехнатов, окислов, сульфидов извлекают экстракцией органическими растворителями, методами ионного обмена, осаждением малорастворимых производных. Металл получают восстановлением водородом NH 4 TcO 4 , TcO 2 , Tc 2 S 7 при 600-1000 0 С или электролизом.

Применение.

Технеций - перспективный металл в технике; он может найти применение как катализатор, высокотемпературный и сверхпроводящий материал. Соединения Технеция. - эффективные ингибиторы коррозии. 99m Tc используется в медицине как источник g-излучения. Технеций радиационноопасен, работа с ним требует специальной герметизированной аппаратуры.

История открытия.

Еще в 1846 году работавший в России химик и минералог Р. Герман нашел в Ильменских горах на Урале неизвестный ранее минерал, названный им иттроильменитом. Ученый не успокоился на достигнутом и попытался выделить из него новый химический элемент, который, как он считал, содержится в минерале. Но не успел он открыть свой ильмений, как известный немецкий химик Г. Розе, «закрыл» его, доказав ошибочность работ Германа.

Спустя четверть века ильмений снова появился на авансцене химии - о нем вспомнили как о претенденте на роль «эка - марганца», который должен был занять пустовавшее в периодической системе место под номером 43. Но репутация ильмения была сильно «подмочена» работами Г. Розе, и, несмотря на то, что многие его свойства, в том числе и атомный вес, вполне подходили для элемента № 43, Д. И. Менделеев не стал оформлять ему прописку в своей таблице. Дальнейшие исследования окончательно убедили научный мирв том, что ильмений может войти в историю химии лишь с печальной славой одного из многочисленных лжеэлементов.

Поскольку свято место пусто не бывает, претензии на право занять его появлялись одна за другой. Дэвий, люций, ниппоний - все они лопались, словно мыльные пузыри, едва успев появиться на свет.

Но вот в 1925 году немецкие ученые супруги Ида и Вальтер Ноддак опубликовали сообщение о том, что ими обнаружены два новых элемента - мазурий (№ 43) и рений (№ 75). К рению судьба оказалась благосклонной: он тут же был узаконен в правах и незамедлительно занял приготовленную для него резиденцию. А вот к мазурию фортуна повернулась спиной: ни его первооткрыватели, ни другие ученые не могли научно подтвердить открытие этого элемента. Правда, Ида Ноддак заявила, что «в скором времени мазурий, подобно рению, можно будет покупать в магазинах», но химики, как известно, словам не верят, а других, более убедительных доказательств супруги Ноддак представить не могли, - список «лжесороктретьих» пополнился еще одним неудачником.

В этот период некоторые ученые начали склоняться к мысли, что далеко не все элементы, предсказанные Менделеевым, в частности элемент № 43, существуют в природе. Может быть, их просто нет и незачем понапрасну терять время и ломать копья? К такому выводу пришел даже крупный немецкий химик Вильгельм Прандтль, наложивший «вето» на открытие мазурия.

Внести ясность в этот вопрос позволила младшая сестра химии - ядерная физика, успевшая уже к тому времени завоевать прочный авторитет. Одна из закономерностей этой науки (замеченная в 20-х годах советским химиком С. А. Щукаревым и окончательно сформулированная в 1934 году немецким физиком Г. Маттаухом) называется правилом Маттауха - Щукарева, или правилом запрета.

Смысл его заключается в том, что в природе не могут существовать два стабильных изобара, ядерные заряды которых отличаются на единицу. Другими словами, если у какого - либо химического элемента есть устойчивый изотоп, то его ближайшим соседям по таблице «категорически запрещается» иметь устойчивый изотоп с тем же массовым числом. В этом смысле элементу № 43 явно не повезло: его соседи слева и справа - молибден и рутений - позаботились о том, чтобы все стабильные вакансии близлежащих «территорий» принадлежали их изотопам. А это означало, что элементу № 43 выпала тяжкая доля: сколько бы изотопов он не имел, все они обречены на неустойчивость, и, таким образом, им приходилось непрерывно - днем и ночью - распадаться, хотели они того или нет.

Резонно предположить, что когда - то элемент № 43 существовал на Земле в заметных количествах, но постепенно исчез, как утренний туман. Так почему же в таком случае до наших дней сохранились уран и торий? Ведь они тоже радиоактивны и, следовательно, с первых же дней своей жизни распадаются, как говорится, медленно, но верно? Но именно в этом и кроется ответ на наш вопрос: уран и торий только потому и сохранились, что распадаются медленно, значительно медленнее, чем другие элементы с естественной радиоактивностью (и все же за время существования Земли запасы урана в ее природных кладовых уменьшились примерно в сто раз). Расчеты американских радиохимиков показали, что неустойчивый изотоп того или иного элемента имеет шансы, дожить в земной коре с момента «сотворения мира» до наших дней только в том случае, если его период полураспада превышает 150 миллионов лет. Забегая вперед, скажем, что когда были получены различные изотопы элемента № 43, выяснилось, что период полураспада самого долгоживущего из них лишь немногим больше двух с половиной миллионов лет, и, значит, последние его атомы перестали существовать, видимо, даже задолго до появления на Земле первого динозавра: ведь наша планета «функционирует» во Вселенной уже примерно 4,5 миллиарда лет.

Стало быть, если ученые хотели «пощупать» своими руками элемент № 43, его нужно было этими же руками и создавать, поскольку природа давно внесла его в списки пропавших. Но по плечу ли науке такая задача?

Да, по плечу. Это впервые экспериментально доказал еще в 1919 году английский физик Эрнест Резерфорд. Он подверг ядро атомов азота ожесточенной бомбардировке, в которой орудиями служили все время распадавшиеся атомы радия, а снарядами - образующиеся при этом альфа - частицы. В результате длительного обстрела ядра атомов азота пополнились протонами и он превратился в кислород.

Опыты Резерфорда вооружили ученых необыкновенной артиллерией: с ее помощью можно было не разрушать, а создавать - превращать одни вещества в другие, получать новые элементы.

Так почему бы не попытаться добыть таким путем элемент № 43? За решение этой проблемы взялся молодой итальянский физик Эмилио Сегре. В начале 30 - х годов он работал в Римском университете под руководством уже тогда знаменитого Энрико Ферми. Вместе с другими «мальчуганами» (так Ферми шутливо называл своих талантливых учеников) Сегре принимал участие в опытах по нейтронному облучению урана, решал многие другие проблемы ядерной физики. Но вот молодой ученый получил заманчивое предложение - возглавить кафедру физики в Палермском университете. Когда он приехал в древнюю столицу Сицилии, его ждало разочарование: лаборатория, которой ему предстояло руководить, была более чем скромной и вид ее отнюдь не располагал к научным подвигам.

Но велико было желание Сегре глубже проникнуть в тайны атома. Летом 1936 года он пересекает океан, чтобы побывать в американском городе Беркли. Здесь, в радиационной лаборатории Калифорнийского университета уже несколько лет действовал изобретенный Эрнестом Лоуренсом циклотрон - ускоритель атомных частиц. Сегодня это небольшое устройство показалось бы физикам чем - то вроде детской игрушки, но в то время первый в мире циклотрон вызывал восхищение и зависть ученых из других лабораторий (в 1939 году за его создание Э. Лоуренс был удостоен Нобелевской премии).