Чувствительность: общие понятия. Чувствительность и ее измерение Причины повышенной сенситивности

Различные органы чувств, дающие нам сведения о состоянии окружающего внешнего мира, могут быть более или менее чувствительны к отображаемым ими явлениям, т.е. могут отражать эти явления с большей или меньшей точностью. Чувствительность органов чувств определяется минимальным раздражителем, который в данных условиях оказывается способным вызвать ощущение.

Минимальная сила раздражителя, вызывающая едва заметное ощущение, называется нижним абсолютным порогом чувствительности. Раздражители меньшей силы, так называемые подпороговые, не вызывают ощущений. Нижний порог ощущений определяет уровень абсолютной чувствительности данного анализатора. Между абсолютной чувствительностью и величиной порога существует обратная зависимость: чем меньше величина порога, тем выше чувствительность данного анализатора. Это отношение можно выразить формулой Е- 1/Р, где ^-чувствительность, Р- пороговая величина.

Анализаторы обладают различной чувствительностью. У человека очень высокой чувствительностью обладают зрительный и слуховой анализаторы. Как показали опыты С. И. Вавилова (1891-1951), человеческий глаз способен видеть свет при попадании всего 2-8 квантов лучистой энергии. Это позволяет видеть темной ночью горящую свечу на расстоянии до 27 км от глаза.

Слуховые клетки внутреннего уха обнаруживают движения, амплитуда которых менее 1% диаметра молекулы водорода. Что позволяет нам слышать тиканье часов в полной тишине на расстоянии до 6 м. Порог одной обонятельной клетки человека для соответствующих пахучих веществ не превышает восьми молекул. Что позволяет ощущать наличие духов при лишь одной их капле в помещении, состоящем из шести комнат. Чтобы вызвать вкусовое ощущение, требуется по крайней мере в 25 тыс. раз больше молекул, чем для создания обонятельного ощущения.

Абсолютная чувствительность анализатора ограничивается не только нижним, но и верхним порогом чувствительности. Это максимальная сила раздражителя, при которой еще возникает адекватное действующему раздражителю ощущение. Дальнейшее увеличение силы раздражителей, действующих на рецепторы, вызываете них лишь болевые ощущения, например сверхгромкий звук или слепящая яркость.

Величина абсолютных порогов зависит от характера деятельности, возраста, функционального состояния организма, силы и длительности раздражения.

Кроме величины абсолютного порога ощущения характеризуются относительным, или дифференциальным, порогом. Минимальное различие между двумя раздражителями, вызывающее едва заметное различие ощущений, называется порогом различения, или разностным порогом. Немецкий физиолог Э. Вебер (1795-1878), проверяя способность человека определять более тяжелый из двух предметов в правой и левой руке, установил, что дифференциальная чувствительность относительна, а не абсолютна. Это значит, что отношение едва заметного различия к величине исходного стимула есть величина постоянная. Чем сильнее интенсивность исходного стимула, тем больше следует его увеличить, чтобы заметить разницу, т.е. тем больше величина едва заметного различия.

Дифференциальный порог ощущений для одного и того же органа представляет собой постоянную величину и выражается следующей формулой: dJ/J = С, где У - исходная величина раздражителя, adJ - его прирост, вызывающий едва заметное ощущение изменения величины раздражителя, С - константа. Величина дифференциального порога для разных модальностей разная: для зрения она примерно 1/100, для слуха - 1/10, для тактильных ощущений - 1/30. Этот закон называется законом Вебера-Бугера, и он справедлив только для средних диапазонов.

Основываясь на экспериментальных данных Вебера, немецкий физик Г. Фехнер (1801-1887) выразил зависимость интенсивности ощущений от силы раздражителя следующей формулой: E=klogJ+ С, где Е- величина ощущений, /-сила раздражителя, ки С - константы, определяемые данной сенсорной системой. Согласно закону Вебера-Фехнера величина ощущений прямо пропорциональна логарифму интенсивности раздражителя. Иначе говоря, ощущение изменяется гораздо медленнее, чем растет сила раздражения. Возрастанию силы раздражения в геометрической прогрессии соответствует рост ощущения в арифметической прогрессии.

Чувствительность анализаторов, определяемая величиной абсолютных порогов, непостоянна и изменяется под влиянием физиологических и психологических условий. Изменение чувствительности органов чувств под влиянием действия раздражителя называется сенсорной адаптацией. Выделяют три вида этого явления.

  • 1. Адаптация как полное исчезновение ощущения в процессе продолжительного действия раздражителя. Обычным фактом является отчетливое исчезновение обонятельных ощущений вскоре после того, как мы попадаем в помещение с неприятным запахом. Однако полной зрительной адаптации вплоть до исчезновения ощущений при действии постоянного и неподвижного раздражителя не происходит. Это объясняется компенсацией неподвижности раздражителя за счет движения самого глаза. Постоянные произвольные и непроизвольные движения рецепторного аппарата обеспечивают непрерывность и изменчивость ощущений. Эксперименты, в которых искусственно создавались условия стабилизации изображения относительно сетчатки глаза (изображение помещалось на специальную присоску и двигалось вместе с глазом), показали, что зрительное ощущение исчезало через 2-3 с.
  • 2. Притупление ощущений под влиянием действия сильного раздражителя называется негативной адаптацией. Например, попадая из полутемной комнаты в ярко освещенное пространство, мы сначала бываем ослеплены и неспособны различать вокруг себя какие-либо детали. Через некоторое время чувствительность зрительного анализатора резко снижается, и мы начинаем нормально видеть. Другой вариант негативной адаптации можно наблюдать при погружении руки в холодную воду: интенсивность ощущений, вызываемая Холодовым раздражителем, вскоре снижается.
  • 3. Повышение чувствительности под влиянием действия слабого раздражителя называется позитивной адаптацией. В зрительном анализаторе это темновая адаптация, когда чувствительность глаза увеличивается под влиянием пребывания в темноте. Аналогичной формой слуховой адаптации является адаптация к тишине.

Адаптация имеет огромное биологическое значение: она позволяет улавливать слабые раздражители и предохранять органы чувств от чрезмерного раздражения в случае сильных раздражителей.

Интенсивность ощущений зависит не только от силы раздражителя и уровня адаптации рецептора, но и от раздражений, воздействующих в данный момент на другие органы чувств. Изменение чувствительности анализатора под влиянием других органов чувств называется взаимодействием ощущений, при этом мы можем наблюдать как повышение, так и понижение чувствительности. Общая закономерность состоит в том, что слабые раздражители, воздействующие на один анализатор, повышают чувствительность другого, и наоборот - сильные раздражители понижают чувствительность других анализаторов при их взаимодействии. Например, сопровождая чтение книги тихой, спокойной музыкой, мы повышаем чувствительность и восприимчивость зрительного анализатора, однако при слишком громкой музыке реакция будет обратной.

Взаимодействие ощущений мы можем наблюдать в явлении, которое называется синестезия, при этом происходит слияние свойств различных сенсорных систем, что позволяет человеку слышать "цветовую музыку", видеть "теплые краски" и т.д.

Повышение чувствительности в результате взаимодействия анализаторов и упражнений называется сенсибилизацией. Возможности тренировки органов чувств и их совершенствования очень велики. Можно выделить две сферы, определяющие повышение чувствительности органов чувств:

сенсибилизация, к которой стихийно приводит необходимость компенсации сенсорных дефектов: слепота, глухота. Например, у некоторых людей, лишенных слуха, настолько сильно развивается вибрационная чувствительность, что они даже могут слушать музыку;

сенсибилизация, вызванная деятельностью, специфическими требованиями профессии. Например, высокой степени совершенства достигают обонятельные и вкусовые ощущения у дегустаторов чая, сыра, вина, табака и т.д.

Таким образом, ощущения развиваются под влиянием условий жизни и требований практической деятельности.

vivek_jonam

Почему чувствительность датчика называется «ISO»?

Мне было любопытно узнать, как термин «ISO» был придуман для обозначения чувствительности датчика изображения . Есть ли какая-либо причина или обстоятельство, которое способствовало названию "ISO"?

Кроме того, ISO имеет буквальное расширение?

Если это относится к организации ИСО, почему чувствительность называется просто «ИСО»? Есть ли другое официальное название для обозначения чувствительности датчика?

jrista ♦

Просто записка. Когда речь заходит о «чувствительности» цифровых датчиков, термин «чувствительность» в этом контексте на самом деле немного неправильный. Цифровой датчик представляет собой фиксированное линейное аналоговое устройство. У него всегда одна и та же реальная чувствительность. Когда вы устанавливаете настройку ISO на более высокий уровень, все, что действительно делает, это уменьшает максимальную точку насыщения. Датчик не обнаруживает больше света... он обнаруживает то же самое, поэтому он все еще так же "чувствителен". Это просто, что вместо чистого белого, встречающегося, скажем, с 40 000 электронов в пикселе (ISO 100), это происходит при 20000 электронов (ISO 200) или 10000 электронов (ISO 400) и т. Д.

RBerteig

Три официальных языка ISO - английский, французский и русский. Логотипы организации на двух ее официальных языках, английском и французском, включают слово ISO, и на него обычно ссылается это сокращенное название. Организация заявляет, что ISO не является аббревиатурой или инициализмом полного названия организации на каком-либо официальном языке. [Источник цитирования] Признавая, что его инициалы будут разными на разных языках, организация приняла ISO на основе греческого слова isos (ἴσος, означает равный), как универсальная сокращенная форма его имени. Однако один из делегатов-основателей, Вилли Куэрт, вспомнил первоначальный вопрос об именах с комментарием: «Я недавно прочитал, что название ISO было выбрано, потому что« iso »- это греческий термин, означающий« равный ». Лондон! "

ISO написал много технических стандартов, технических отчетов, технических спецификаций и т. Д. Каждому из них присваивается номер ISO. Тремя стандартами, которые применяются к чувствительности фотопленки, являются ISO 6, ISO 2240 и ISO 5800. Со временем скорость пленки упоминалась как «ISO», потому что число, используемое для описания скорости пленки, соответствовало этим ISO стандарты.

В цифровых камерах «ISO» продолжал использоваться как способ выражения чувствительности цифровой камеры к свету при различных уровнях усиления аналоговых электрических сигналов, поступающих из точек пикселей на датчике камеры. Международная организация по стандартизации выпустила новые стандарты светочувствительности цифровых датчиков. Теоретически, настройка ISO на вашей цифровой камере 400 должна привести к экспозиции, эквивалентной таковой на пленке ISO 400. Чувствительность пленки немного варьировалась от одного производителя пленки к другому. Фильм, который имеет фактическую стоимость, например, 388, основанную на стандартах ISO, будет продаваться как «400 скорость». Аналогично, большинство цифровых камер незначительно отличаются при разных настройках ISO от точного стандарта. По крайней мере, одна компания, DxO , публикует результаты испытаний для многих камер. Если вы перейдете по ссылке и выберете вкладку «Измерения», то увидите, что фактический ISO может варьироваться на 1/2 ступени для трех выбранных мной корпусов камер начального уровня.

Главное, что нужно знать о ISO при фотографировании, это то, что чем выше выбранное вами число ISO, тем «шумнее» будет ваше изображение. Шум - это электрический сигнал от пикселя, который был вызван ничем, кроме падающего на него света. Когда сигнал от датчика усиливается для увеличения ISO, этот шум также усиливается. Поскольку ваша камера (или программное обеспечение для обработки на вашем компьютере) обрабатывает сигналы от вашего датчика, применяются определенные меры для сглаживания шума. Большинство камер имеют настройки, которые позволяют вам выбрать, какое снижение шума вы хотите применить к снимкам, которые вы снимаете. Недостатком интенсивного использования шумоподавления является то, что он также снижает резкость изображения на уровне пикселов. В связи с этим рекомендуется снимать с наименьшим числом ISO, которое позволяет выбирать желаемые комбинации диафрагмы и выдержки. С другой стороны, размытое изображение из-за слишком низкой скорости затвора не может быть исправлено при обработке. С шумным изображением, которое остановило движение вашего объекта, можно справиться в определенной степени.

vivek_jonam

1 за «Со временем скорость фильма стала называться« ISO »»

проклятые истины

Майкл Кларк

Официальное название на английском языке - «Международная организация по стандартам». По-французски это «Международная организация по нормализации». Ни одна из версий не упорядочивает эквивалентные английские слова так же, как "ISO". Ходили слухи, что «ISO» - это сокращение от греческого слова «isos», что означает «равный».

Чувствительность является мерой способности радиоприемного устройства обеспечивать прием слабых радиосигналов. Количественно оценивается минимальным значением ЭДС сигнала на входе радиоприемного устройства, при котором имеет место требуемое отношение сигнал-шум на выходе при отсутствии внешних помех.

Чувствительность радиоприёмника, способность радиоприёмника принимать слабые по интенсивности радиосигналы и количественный критерий этой способности. Последний во многих случаях определяется как минимальный уровень радиосигнала в приёмной антенне (эдс, наводимая сигналом в антенне и выражаемая обычно в мв или мкв , либо напряжённость поля вблизи антенны, выражаемая в мв/м ), при котором содержащаяся в радиосигнале полезная информация ещё может быть воспроизведена с требуемым качеством (с достаточными громкостью звучания, контрастностью изображения и т.п.). В простейших радиоприёмниках чувствительность зависит главным образом от степени усиления сигналов в них: с увеличением коэффициента усиления нормальное воспроизведение информации достигается при более слабом радиосигнале ( считается при этом более высокой). Однако в сложных радиоприёмных устройствах (например, связных) такой путь повышения Чувствительность радиоприёмника теряет смысл, поскольку в них интенсивность полезных радиосигналов может оказаться сравнимой с интенсивностью действующих на антенну одновременно с этими сигналами внешних помех радиоприёму , искажающих принимаемую информацию. Предельная Чувствительность радиоприёмника в этом случае называется чувствительностью, ограниченной помехами; она является параметром не только приёмника, но зависит и от внешних факторов. При наиболее благоприятных условиях (главным образом при приёме в диапазоне метровых и более коротких волн и особенно при космической радиосвязи) внешние помехи слабы и основным фактором, ограничивающим Чувствительность радиоприёмника , становятся внутренние флуктуационные шумы радиоприёмника (см. Флуктуации электрические ). Последние в нормальных условиях работы радиоприёмника имеют постоянный уровень, поэтому Чувствительность радиоприёмника , ограниченная внутренними шумами, - вполне определённый параметр; за меру Чувствительность радиоприёмника в этом случае часто принимают непосредственно уровень внутренних шумов, характеризуемый коэффициентом шума или шумовой температурой (см. также Пороговый сигнал ).Чувствительность приемника - одна из главных его характеристик, которая определяет возможность дальнего приема передач. Чем меньше чувствительность, тем "дальнобойнее" приемник. Поэтому применительно к чувствительности обычно пользуются выражениями лучше-хуже вместо больше-меньше, понимая под лучшей чувствительностью такую, которая выражается ее меньшим значением. Существует несколько определений чувствительности, и во избежание путаницы всегда необходимо знать, о какой чувствительности идет речь. Приняты следующие определения: чувствительность, ограниченная усилением; чувствительность, ограниченная синхронизацией; чувствительность, ограниченная шумами.

Чувствительность радиоприемника является параметром, который позволяет оценить возможность приемника принимать слабые сигналы радиостанций. Различают максимальную и реальную чувствительность приемника.

Реальная чувствительность определяет минимальный уровень входного сигнала, при котором обеспечивается стандартная (испытательная) выходная мощность при заданном соотношении напряжения входного сигнала к напряжению шумов. Для отечественных приемников испытательная выходная мощность принята равной 50 или 5 мВт, в зависимости от класса приемника. Заданное соотношение сигнал-шум при измерении реальной чувствительности приемника в диапазонах ДВ, СВ, KB - не менее 20 дБ, на УКВ - не менее 26 дБ.

Чувствительность приемника по напряжению (для наружных антенн) измеряется в микровольтах. Чувствительность приемника тем выше, чем меньше это напряжение. При работе с внутренней (встроенной) антенной чувствительность выражается минимальной напряженностью электрического поля и измеряется в микровольтах или милливольтах на метр (мкВ/м или мВ/м).

Максимальная чувствительность - это чувствительность, ограниченная усилением. Она определяет такой минимальный уровень сигнала, при котором обеспечивается стандартная (испытательная) выходная мощность при установке всех органов управления приемника в положения, соответствующие максимальному усилению. Чувствительность радиоприемника зависит от многих факторов: усилительных свойств всех каскадов тракта приемника, уровня собственных шумов, ширины полосы пропускания и др.

Современные приемники обладают очень высокой чувствительностью. Например, приемники высшего класса в УКВ диапазоне имеют чувствительность 1... 2 мкВ, а в диапазоне KB - 5... 10 мкВ.

Чувствительность радиоприемника обычно выражается в мил­ливольтах на метр (мВ/м) или в микровольтах (мкВ). Наибольшей чувствительностью обла­дают супергетеродинные радиопри­ёмники (супергетеродины), в которых с помощью специальных устройств- гетеродина и смесителя-перед детек­тированием производится преобразование (понижение) частоты радиосигнала, не изме­няющее закона модуляции. Полученный в результате преобразования сигнал т. н. про­межуточной частоты дополнительно усилива­ется по ней, после чего детектируется и снова усиливается (по звуковой частоте).

Свойство радиоприемного устройства, позволяющее отличать полезный радиосигнал от радиопомехи по определенным признакам, свойственным радиосигналу, называется избирательностью . Иначе, это способность радиоприемного устройства выделять нужный радиосигнал из спектра электромагнитных колебаний в месте приема, снижая мешающие радиосигналы.

Различают пространственную и частотную избирательности. Пространственная избирательность достигается за счет использования антенны, обеспечивающей прием нужных радиосигналов с одного направления и ослабление радиосигналов с других направлений от посторонних источников. Частотная избирательность количественно характеризует способность радиоприемного устройства выделять из всех радиочастотных сигналов и радиопомех, действующих на его входе, сигнал, соответствующий частоте настройки радиоприемника.

Избирательность - параметр, характеризующий способность радиоприемника принимать и усиливать сигнал рабочей частоты на фоне "мешающих" сигналов других передатчиков, работающих на соседних каналах (частотах). Этот параметр часто путают или смешивают с понятием "помехозащищенность". Помехозащищенность - более широкое, нежели избирательность, понятие. Ведь помехой можно считать как сигнал другого передатчика, который излучает постоянно на соседней частоте, так и кратковременный разряд молнии, при котором излучается очень широкий спектр частот. Но если относительно узкополосный сигнал соседнего передатчика удается нейтрализовать схемотехническими решениями (частотной селекцией или фильтрацией), то широкополосный кратковременный сигнал помехи отфильтровать практически невозможно, и с помехой приходится бороться другими способами, в частности, применяя специальные способы кодирования и последующей обработки информационной составляющей сигнала. Именно на этом принципе построены РСМ-устройства.

Термин "избирательность" в характеристике радиоприемного устройства обычно дополняют словами "по соседнему каналу" и характеризуют его при помощи конкретных физических понятий и величин. Обычно это звучит примерно так: "избирательность приемника по соседнему каналу составляет - 20 dB при расстройке +/- 10 кГц". Физический смысл этой неуклюжей фразы таков: если частота "мешающего" сигнала отличается от "рабочей" частоты на 10 кГц (выше или ниже), то при равных уровнях "полезного" и "мешающего" сигналов на входе приемника, уровень "мешающего" сигнала на выходе приемника будет на 20 dB (в 10 раз) меньше уровня "полезного" сигнала. А если этот параметр будет равен -40 dB, то "мешающий" сигнал ослабнет в 100 раз и т.д. Иногда этот многоэтажный параметр заменяют одной из составляющих - шириной полосы пропускания. Ширина пропускания в выше приведенном примере равна 20 кГц, или +/- 10 кГц относительно центральной частоты (которая у нас определяется номером канала). Дальше мы поясним это при помощи спектральной диаграммы. А вот "помехозащищенность" РРМ приемника, к сожалению, однозначно охарактеризовать не удается.

В УКВ диапазоне избирательность по соседнему каналу измеряется при двух значениях расстройки мешающего сигнала - 120 и 180 кГц. Это объясняется тем, что для системы радиовещания в диапазоне УКВ, ближайший соседний канал (мешающий) отстоит от частоты полезного сигнала на 120 кГц, когда оба сигнала имеют одну и ту же синфазную модуляцию, а ближайший соседний канал, имеющий другую модуляцию, отстоит от частоты полезного сигнала на 180 кГц.

Избирательность по соседнему каналу определяется в основном трактом промежуточной частоты и в пределах диапазона изменяется незначительно.

Избирательность по зеркальному каналу определяет ослабление радиоприемником мешающего сигнала, отстоящего от принимаемого на удвоенное значение промежуточной частоты. Селективные (избирательные) свойства радиоприемника по зеркальному каналу определяются резонансными свойствами избирательных цепей до преобразователя частоты (входных цепей, УВЧ).

Избирательность по промежуточной частоте определяет ослабление приемником мешающего сигнала, частота которого равна промежуточной частоте приемника. Работа радиостанций на этих частотах запрещена. Однако в ряде случаев гармоники радиостанций могут совпадать с промежуточной частотой приемника. При этом они могут быть сильными помехами при приеме других радиостанций.

Ослабление помехи с частотой, равной промежуточной, осуществляется резонансными контурами входных цепей и усилителя высокой частоты. Для большего ослабления этой помехи на входе приемника включают специальный фильтр, который настраивают на промежуточную частоту и тем самым ослабляют проникновение помехи во входные контуры приемника.

Из всех характеристик динамиков и акустических систем понятие «чувствительность», пожалуй, самое интересное и привлекательное (в этом оно соперничает с характеристикой мощности). Так и хочется, чтобы это понятие имело прямую зависимость к качеству динамика, т.е. чем больше этот параметр, тем лучше звучит динамик. Ведь, акустическая система — это устройство для воспроизведения музыки, а ее качество, зачастую определяется только субъективным образом, и чувствительность — от слова чувствовать, хорошо чувствующий, подсознательно, сливается со словом качество. Однако, мы знаем, что это так и не так. Прежде всего, это понятие — чисто техническое, отражающее КПД динамика. Согласно ГОСТ 16122-78 характеристическая чувствительность АС — отношение среднего звукового давления, развиваемого АС в заданном диапазоне частот (обычно 100… 8000 Гц) на рабочей оси, приведенное к расстоянию 1 м и подводимой электрической мощности 1 Вт. Конечно, если мы имеем динамик с более высокой чувствительностью, то подводя 1 Вт мы получим большее звуковое давление, чем от динамика с низкой чувствительностью, меньше нелинейных искажений и, наверно, более высокое качество звучания. Однако, стоит задуматься как получена эта чувствительность?

Мы имеем несколько способов легального (реального) и нелегального (маркетингового) способов повышения чувствительности.

Реальные способы борьбы за чувствительность

Акустические системы с большим количеством динамиков

При подключении нескольких динамиков (акустических систем) параллельно (последовательно) возрастает уровень громкости (растет и мощность). Применяется, для систем озвучивания и в связи с неодинаковостью характеристик широкополосных динамиков качество звучания остается низким. Часто способ используется в акустических системах, где применяется 2 или более низкочастотных динамиков на один высокочастотный. В этом случае основная проблема — особенности характеристики направленности такой системы.

Повышение чувствительности систем с одним динамиком

Динамик, акустическая система является электро-механо-акустическим преобразователем и, как следствие, есть возможность повышать КПД системы на каждом из этапов этого преобразования.

Коэффициент электро-механической связи (BL) динамика

Первый этап — электро-механическое преобразование. Для этого введен коэффициент «BL». Он зависит от «B»- индукции в зазоре и «L» — длинны проводников в этом зазоре (или то количество проводников, на которых действует магнитное поле). «B» можно увеличивать повышая объем и силу магнитов, уменьшая магнитный зазор как по высоте, так и по ширине. «L» — увеличивая диаметр катушки и кол-во витков по высоте в зазоре. Если увеличивать значение «BL», без изменения прочих характеристик динамика то будет расти чувствительность в области выше основного резонанса динамика, а низкочастотные возможности останутся без изменений.

Масса подвижной системы

При уменьшении массы подвижной системы мы можем создавать давление больше, чем с большей массой. Это улучшает в импульсные и переходных характеристики, но понижает прочность (мощность), жесткость (могут повышаться нелинейные искажения) и потребует применения новых материалов и технологий. Получение низких частот, особенно глубоких требует больших усилий.

Площадь излучения

Увеличение площади диффузора ведет к возрастанию уровня чувствительности, но возникают проблемы с воспроизведением высоких частот и прочностью конструкции.

Акустическая трансформация - рупор

Этот способ позволяет получить низкие частоты от небольшого и легкого динамика за счет согласования его с окружающей средой. Требует очень больших усилий в плане строительства корпусов. Самый грамотный, но и самый дорогостоящий способ.

Качественно спроектированные акустические системы с реально высокой чувствительностью используют четыре последние способа, а иногда и первый. Как показано, это требуют траты больших средств, повышения себестоимости системы и увеличения ее габаритов, однако, можно поступить проще.

Нелегальный способ

Напомним, что чувствительность измеряют на оси, на расстоянии 1 метр при подведении 1 Вт мощности. Как получить этот 1 Вт? Для этого надо определиться с номинальным сопротивлением. Оно выбирается из ряда 2, 4, (6), 8, 16, 25 и 50 Ом. Так как динамик представляет собой комплексное сопротивление со сложной зависимостью модуля полного электрического сопротивления от частоты, определение этого сопротивления подчиняется закону. Например, это записано в ГОСТ 9010-84 «Измеренное минимальное значение модуля полного электрического сопротивления в диапазоне, лежащем выше частоты основного резонанса, не должно отличаться от номинального электрического сопротивления более чем на минус 20%». Таким образом, значение модуля полного электрического сопротивления 4-х омной системы не может быть меньше 3.2 Ома, а 8-ми омной — 6.4 Ома и т.д. Тогда, согласно закона Ома для измерения динамика с номинальным сопротивлением 4 Ома мы должны подвести к нему 2 Вольта (корень из 4), 8 Ом — 2.82В, а для 16 Ом — 4 В.

В западных описаниях и паспортах часто встречается графа «чувствительность», с характеристикой 1м/2.8В, в сочетании с «сопротивлением», например, 6 Ом. При измерении оказывается, что минимальное сопротивление такого изделия 3.4 Ома. Значит система оказывается реально 4 Омная, а мы подаем на нее 2 Вт (По закону Ома 2.8В2/4=2Вт) и получаем прирост чувствительности 3 дБ. Дополнительно к этому, частотная характеристика, особенно динамиков в отдельности имеет области провалов и подъемов, что позволяет зафиксировать чувствительность именно в области этого подъема. Не говоря уже о возможности простой приписки. В результате мы легко получаем прирост значения чувствительности 4-8 дБ. Проведение измерения акустических систем западных производителей, в том числе и именитых, к сожалению, показал, что данная практика является обычной и применяется, за редким исключением, повсеместно.

Для чего это делается?

Все дело в низких частотах, т.к. уровень низких частот при указании частотного диапазона в паспорте, и при прослушивании отсчитывается именно от среднего уровня звукового давления — чувствительности и, следовательно, системы с реальной низкой чувствительностью имеют выигрыш в количестве и глубине низких частот. А получить при определенном размере динамиков и акустических систем глубокие низкие частоты и высокую чувствительность очень непросто. Ведь нельзя же в паспорте написать чувствительность 80дБ, ее же никто не купит! Значительно проще написать нормальный уровень чувствительности и при прослушивании предоставить клиенту могучий басс.

Данный текст написан не для того, чтобы обвинить кого-то в фальсификации, а для того чтобы предоставить потребителю более полную информацию.

Одним из важнейших показателей качества тракта приема является чувствительность приемника. Она характеризует способность приемника принимать слабые сигналы. Чувствительность приемника определяется как минимальный уровень входного сигнала устройства, необходимый для обеспечения требуемого качества полученной информации. Качество может быть оценено заданной битовой вероятностью ошибки (BER), вероятностью приема ошибочного сообщения (MER) или отношением сигнал-шум SNR (Signal-to-Noise Ratio) на входе демодулятора приемника. Если чувствительность приемника ограничивается , то ее можно оценить реальной или предельной чувствительностью приемника, коэффициентом шума или шумовой температурой.

Чувствительность приемника с небольшим усилением, на выходе которого шумы практически отсутствуют, определяется э.д.с, (или номинальной мощностью) сигнала в антенне (или ее эквиваленте), при которой обеспечивается заданное напряжение (мощность) сигнала на выходе приемника.

Чувствительность приемника определяется коэффициентом его усиления К УС. Приемник должен обеспечивать усиление даже самых слабых входных сигналов до выходного уровня, необходимого для нормального функционирования устройства, однако, на входе приемника действуют помехи и шумы, которые также усиливаются в приемнике и могут ухудшать качество его функционирования. Кроме того, на выходе приемника появляются его усиленные внутренние шумы. Чем меньше внутренние шумы, тем лучше качество приемника, тем выше чувствительность приемника.

Реальная чувствительность приемника равна э.д.с. (или номинальной мощности) сигнала в антенне, при которой напряжение (мощность) сигнала на выходе приемника превышает напряжение (мощность) помех в заданное число раз. Предельная чувствительность приемника равна э.д.с. или номинальной мощности Р АП сигнала в антенне, при которой на выходе его линейной части (т. е. на входе детектора), мощность сигнала равна мощности внутреннего шума.

При задании чувствительности приемника в виде э.д.с., она измеряется в микровольтах. Современные приемники мобильной связи обладают чувствительностью на уровне десятых долей микровольта. Способ задания чувствительности приемника в виде э.д.с. приводит к тому, что при различном входном сопротивлении приемника мы будем получать различное значение э.д.с. Поэтому, несмотря на то, что все современные приемники систем мобильной связи имеют входное сопротивление 50 Ом, чувствительность приемников задается в терминах мощности сигнала на входе приемника. Чувствительность определяется как отношение мощности на входе приемника к уровню мощности 1 мВт и выражается в логарифмическом масштабе в дБм.

Предельную чувствительность приемника можно также характеризовать коэффициентом шума N 0 , равным отношению мощности шумов, создаваемых на выходе линейной части приемника эквивалентом антенны (при комнатной температуре T 0 = 290 К) и линейной частью, к мощности шумов, создаваемых только эквивалентом антенны. Очевидно,

, (1)

где k = 1,38 10 –23 Дж/град — постоянная Больцмана;
П ш — шумовая полоса линейной части приемника, Гц;
Р АП — мощность сигнала, Вт.

Из (1) видно, что мощность сигнала, соответствующую его предельной чувствительности и отнесенную к единице полосы частот, можно выразить в единицах kT 0:

, (2)

Предельную чувствительность приемника можно также характеризовать шумовой температурой приемника Т пр, на которую надо дополнительно нагреть эквивалент антенны, чтобы на выходе линейной части приемника мощность создаваемых им шумов равнялась мощности шумов линейной части. Очевидно, , откуда

(3)

На реальную антенну воздействуют внешние шумы, номинальная мощность которых ,
где Т A — шумовая температура антенны. Поэтому на выходе линейной части

Для получения равенства мощностей сигнала и шумов необходима мощность

Литература:

  1. "Проектирование радиоприемных устройств" под ред. А.П. Сиверса - М.: "Высшая школа" 1976 стр. 7-8
  2. "Радиоприемные устройства" под ред. Жуковского - М.: "Сов. радио" 1989 стр. 8 - 10
  3. Палшков В.В. "Радиоприемные устройства" - М.: "Радио и связь" 1984 стр. 12 - 14

Вместе со статьей "Чувствительность приемника" читают:

В зависимости от значения принимаемой частоты схемные и конструктивные решения радиоприемников могут значительно различаться.
https://сайт/WLL/DiapPrmFr.php

Избирательность по соседнему каналу - это способность приемника принимать полезный сигнал на заданной частоте канала с заданной вероятностью ошибки
https://сайт/WLL/ChastotIzbirat.php

Интермодуляция, блокирование, однодецибельная точка компрессии, вот основные источники возникновения побочных каналов приема! Знать и уметь бороться с этими явлениями - задача любого технического специалиста.
https://сайт/WLL/NelinPrm.php

Динамический диапазон приемника с одной стороны определяет способность приемника обнаруживать слабый входной сигнал, с другой - обрабатывать сигналы большого уровня без искажения.
https://сайт/WLL/DinDiapPrm.php