Kvant. Ионные кристаллы

С ионным (электростатическим) хар-ром связи между атомами. И. к. могут состоять как из одноатомных, так и многоатомных ионов. Примеры И. к. первого типа - кристаллы галогенидов щелочных и щёлочноземельных металлов, образованные положительно заряж. ионами металла и отрицательно заряж. ионами галогена (NaCl, CsCl, CaF2). Примеры И. к. второго типа - нитраты, сульфаты, фосфаты и др. соли металлов, где отрицат. ионы кислотных остатков состоят из неск. атомов. К И. к. относят также силикаты, в к-рых кремнекислородные радикалы SiO4 образуют цепи, слои или трёхмерный каркас, внутри радикалов атомы связаны ковалентной связью (см. МЕЖАТОМНОЕ ВЗАИМОДЕЙСТВИЕ .

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ИОННЫЕ КРИСТАЛЛЫ

Кристаллы с ионным (электростатич.) характером связи между атомами. И. к. могут состоять как из одноатомных, так и многоатомных ионов. Примеры И. к. первого типа - кристаллы галогенидов щелочных и щёлочноземельных металлов, образованные положительно заряженными ионами металла и отрицательно заряженными попами галогена (NaCl, CsCl, CaF 2). Примеры И. к. второго типа - карбонаты, сульфаты, фосфаты и др. соли металлов, где отрицат. ионы кислотных остатков, напр. СО 3 2- , SO 4 2- , состоят из неск. атомов. Формальный ионов, напр. Na + , Mg 2+ , O 2- , даже в наиболее типичных И. к., в действительности оказывается больше реального эфф. заряда, к-рый определяют рентгенография., спектральными и др. методами. Так, напр., в NaCl эфф. заряд составляет для Na ок. +0,9 е (е - элементарный электрич. заряд), а для Сl соответственно -0,9 е. Для MgF 2 , СаС1 2 оценка эфф. зарядов анионов приводит к значениям ок. -0,7 е, а для катионов - от +1,2 е до +1,4 е. В силикатах и окислах "двухвалентный" О 2- в действительности имеет заряд от -0,9 до -1,1 е. Т. о., фактически во мн. И. к. связь имеет ионно-ковалентный характер. прозрачность И. к. тем выше, чем выше доля ковалентной составляющей связи. Для описания структуры И. к. разработаны детальные системы кристаллохим. радиусов (см. Атомный радиус). Лит.: Современная , т. 2, М., 1979; Уэллс А., Структурная неорганическая химия, пер. с англ., т. 1, М., 1987. Б. К. Вайнштейн.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ИОННЫЕ КРИСТАЛЛЫ" в других словарях:

    ИОННЫЕ КРИСТАЛЛЫ, кристаллы с ионной (электростатической) связью (см. ИОННАЯ СВЯЗЬ) между атомами. В узлах кристаллической решетки ионных кристаллов поочередно располагаются ионы противоположного знака, в них нельзя выделить отдельные молекулы,… … Энциклопедический словарь

    Кристаллическая структура хлорида натрия (каменной соли). Каждый атом имеет шесть ближайших соседей, как в геометрии октаэдра. Этот механизм известен как кубическая плотная упаковка (КПУ). Светлоголубой = Na+ Тёмнозелёный = Cl Ионные кристаллы… … Википедия

    Кристаллы, в которых сцепление частиц обусловлено преимущественно ионными химическими связями (см. Ионная связь). И. к. могут состоять как из одноатомных, так и из многоатомных ионов. Примеры И. к. первого типа кристаллы галогенидов… … Большая советская энциклопедия

    ИОННЫЕ КРИСТАЛЛЫ - кристаллы с преимущественно ионным (электростатическим) характером связи между атомами … Палеомагнитология, петромагнитология и геология. Словарь-справочник.

    Кристаллич. в ва, в к рых сцепление между частицами обусловлено преим. ионными связями. Поскольку между ионными и полярными ковалентными связями существует непрерывный переход, нет резкой границы между И. к. и ковалентными кристаллами. К ионным… … Химическая энциклопедия

    - (твёрдые электролиты) вещества, обладающие в твёрдом состоянии высокой ионной проводимостью s, сравнимой с проводимостью жидких электролитов и расплавов солей (10 1 10 3 Ом 1 см 1). И. с. можно разделить на 2 типа. 1) Ионные кристаллы, способные… … Физическая энциклопедия

    - (от греч. krystallos, первоначальное значение лёд), твёрдые тела, обладающие трёхмерной периодич. ат. структурой и, при равновесных условиях образования, имеющие естеств. форму правильных симметричных многогранников (рис. 1). К. равновесное… … Физическая энциклопедия

    - (от греч. krystallos кристалл; первоначально лед), твердые тела, обладающие трехмерной периодич. атомной (или молекулярной) структурой и, при определенных условиях образования, имеющие естеств. форму правильных симметричных многогранников (рис.… … Химическая энциклопедия

    - (от греч. krystallos, букв. лёд; горный хрусталь) твёрдые тела, имеющие упорядоченное взаимное расположение образующих их частиц атомов, ионов, молекул. В идеальном К. частицы располагаются строго периодически в трёх измерениях, образуя т. н.… … Большой энциклопедический политехнический словарь

    Раздел физики, изучающий структуру и свойства твердых тел. Научные данные о микроструктуре твердых веществ и о физических и химических свойствах составляющих их атомов необходимы для разработки новых материалов и технических устройств. Физика… … Энциклопедия Кольера

Книги

  • Механика электромагнитных сплошных сред , Можен Ж.. Книга известного французского специалиста, объединяющая в себе достоинства учебного пособия и введения в актуальную область современной механики. В ней описываются свойства электромагнитных…

Ионные кристаллы представляют собой соединения с преобладающим ионным характером химической связи, в основе которой лежит электростатическое взаимодействие между заряженными ионами. Типичными представителями ионных кристаллов являются галогениды щелочных металлов, например, со структурой типа NaCl и СaСl.

При образовании кристаллов типа каменной соли (NaCl) атомы галогенов (F, Сl, Вг, I), обладающие большим сродством к электрону захватывают валентные электроны щелочных металлов (Li, Nа, К, Rb, I), имеющих низкие ионизационные потенциалы, при этом образуются положительные и отрицательные ионы, электронные оболочки которых подобны сферически симметричным заполненным s 2 p 6 -оболочкам ближайших инертных газов (например, оболочка N + подобна оболочке Ne, а оболочка Сl - оболочке Аr). В результате кулоновского притяжения анионов и катионов происходит перекрытие шести внешних р-орбиталей и образуется решетка типа NаСl, симметрия которой и координационное число, равное 6, отвечают шести валентным связям каждого атома со своими соседями (Рис.3.4). Существенным является то, что приперекрытии р-орбиталей имеет место понижение номинальных зарядов (+1 для Nа и -1 для Сl) на ионах до небольших реальных значений вследствие сдвига электронной плотности в шести связях от аниона к катиону, так что реальный заряд атомов в соединении оказывается, например, для Nа равным +0,92е, а для Сl- отрицательный заряд становится также меньше -1 е.

Понижение номинальных зарядов атомов до реальных значений в соединениях свидетельствует о том, что даже при взаимодействии наиболее электроотрицательными электроположительных элементов образуются соединения, в которых связь не является чисто ионной.

Рис. 3.4. Ионный механизм образования межатомных связей в структурах типа NaCl . Стрелками показаны направления сдвига электронной плотности

По описанному механизму образуются не только галогениды щелочных металлов, но также нитриды, карбиды переходных металлов, большинство которых имеют структуру типа NаCl.

В силу того что ионная связь ненаправленна, ненасыщенна, для ионных кристаллов характерны большие координационные числа. Основные особенности строения ионных кристаллов хорошо описываются на основе принципа плотнейших упаковок из шаров определенных радиусов. Так, в структуре NаСl крупные анионы Сl образуют кубическую плотнейшую упаковку, в которой заселены все октаэдрические пустоты более мелкими по размеру катионами Na. Таковы структуры KCl, RbCl и многих других соединений.

К ионным кристаллам относятся большинство диэлектриков с высокими значениями удельного электрического сопротивления. Электропроводность ионных кристаллов при комнатной температуре более чем на двадцать порядков меньше электропроводности металлов. Электропроводность в ионных кристаллах осуществляется, в основном, ионами. Большинство ионных кристаллов прозрачны в видимой области электромагнитного спектра.

В ионных кристаллах притяжение обусловлено, главным образом, кулоновским взаимодействием между заряженными ионами. - Кроме притяжения между разноименно заряженными ионами существует также отталкивание, обусловленное, с одной стороны, отталкиванием одноименных зарядов, с другой - действием принципа запрета Паули, поскольку каждый ион обладает устойчивыми электронными конфигурациями инертных газов с заполненными оболочками. С точки зрения сказанного в простой модели ионного кристалла можно принять, что ионы представляют собой жесткие непроницаемые заряженные сферы, хотя реально под действием электрических полей соседних ионов сферически-симметричная форма ионов в результате поляризации несколько нарушается.

В условиях, когда существуют одновременно и силы притяжения и силы отталкивания, устойчивость ионных кристаллов объясняется тем, что расстояние между разноименными зарядами меньше, чем между одноименными. Поэтому силы притяжения преобладают над силами отталкивания.

Снова, как и в случае молекулярных кристаллов, при расчете энергии сцепления ионных кристаллов можно исходить из обычных классических представлений, считая, что ионы находятся в узлах кристаллической решетки (положениях равновесий), их кинетическая энергия пренебрежимо мала и силы, действующие между ионами, являются центральными.

Идеальный ионный кристалл состоит из положительно и отрицательно заряженных сферических ионов. Этому представлению более всего соответствуют если не все, то по крайней мере некоторые щелочно-галоидные соединения, т.е. соли, образуемые одним из щелочных металлов (литий, натрий, калий, рубидий, цезий) и одним из галогенов (фтор, хлор, бром, иод). Имеются доказательства того, что кристаллы этих солей действительно образованы положительными ионами металлов и отрицательно заряженными ионами галогенов. Самое прямое из них – данные рентгеноструктурного анализа, на основе которых рассчитывается распределение электронного заряда (см. рис. 9 для случая NaCl). (22.74 Кб)

То, что подобные твердые тела состоят из ионов, а не атомов, можно объяснить следующим образом. Прежде всего все атомы щелочных металлов имеют один внешний валентный электрон, тогда как внешняя оболочка атомов галогенов содержит семь валентных электронов. При переходе валентного электрона от атома щелочного металла к атому галогена образуются два иона, каждый из которых обладает устойчивой электронной конфигурацией, характерной для атомов инертных газов. Еще более важен выигрыш в энергии, обусловленный кулоновским притяжением между положительными и отрицательными ионами. Рассмотрим в качестве примера хлорид натрия (NaCl). Чтобы оторвать внешний (валентный) электрон от атома Na, нужно затратить 5,14 эВ (энергию ионизации). Когда этот электрон присоединяется к атому Cl, получается выигрыш в энергии, равный 3,61 эВ (энергия сродства к электрону). Таким образом, энергия, необходимая для перехода валентного электрона от Na к Cl, равна (

5,14 - 3,61) эВ = 1,53 эВ. Кулоновская же энергия притяжения между двумя возникшими ионами Na + и Cl - при расстоянии между ними (в кристалле), равном 2,18 , составляет 5,1 эВ. Эта величина с избытком компенсирует полную энергию перехода электрона и приводит к понижению полной энергии системы ионов по сравнению с аналогичной системой свободных атомов. В этом основная причина того, что щелочно-галоидные соединения состоят именно из ионов, а не атомов.

Вычисления энергии ионных кристаллов на самом деле сложнее, чем это может показаться из проведенных выше рассуждений. Но по крайней мере для щелочно-галоидных кристаллов наблюдается хорошее согласие между теоретическим и экспериментальным значениями энергии связи. Ионные связи достаточно сильны, на что указывает, например, высокая температура плавления, равная 1074 K для NaCl.

Благодаря высокой степени устойчивости электронной структуры ионные кристаллы попадают в разряд диэлектриков. Поскольку положительные и отрицательные ионы взаимодействуют с электромагнитными волнами, ионные кристаллы обнаруживают сильное оптическое поглощение в инфракрасной области спектра. (Частота осциллирующего внешнего электрического поля в этой области спектра близка к собственной частоте поперечных решеточных волн, в которых положительные и отрицательные ионы кристалла движутся во встречных направлениях.) В видимой области спектра частоты колебаний слишком велики, для того чтобы массивные ионы успевали реагировать на воздействие таких волн. Поэтому световые волны проходят через кристалл без взаимодействия, т.е. такие кристаллы прозрачны. При еще более высоких частотах – в ультрафиолетовой области спектра – кванты поля могут иметь достаточную энергию для возбуждения валентных электронов, обеспечивающего переход валентных электронов отрицательных ионов в незанятые состояния положительных ионов. Это приводит к сильному оптическому поглощению.

Ковалентные кристаллы . Наиболее известные ковалентные кристаллы – это алмаз, кремний и германий. Каждый атом в таких кристаллах окружен четырьмя соседними атомами, расположенными в вершинах правильного тетраэдра. Свободные атомы каждого из указанных элементов имеют по четыре валентных электрона, а этого достаточно для образования четырех парных электронных связей (между данным атомом и четырьмя его ближайшими соседями). Таким образом, два электрона коллективизируются двумя атомами, образующими связь, и располагаются в пространстве вдоль линии, соединяющей атомы. Это почти такая же связь, как и между двумя атомами водорода в молекуле водорода H 2 . В алмазе эти связи очень сильны, и, поскольку они имеют строго определенное направление относительно друг друга, алмаз является чрезвычайно твердым материалом. Силу ковалентной связи электрона с кристаллом характеризует так называемая энергетическая щель – минимальная энергия, которую необходимо передать электрону, чтобы он мог свободно двигаться в кристалле и создавать электрический ток. Для алмаза, кремния и германия ширина этой щели составляет 5,4, 1,17 и 0,744 эВ соответственно. Поэтому алмаз является хорошим диэлектриком; энергия тепловых колебаний в нем при комнатной температуре слишком мала, чтобы освободить валентные электроны. В кремнии же и особенно в германии благодаря сравнительно малой ширине энергетической щели возможно тепловое возбуждение некоторого числа валентных электронов при комнатной температуре. Таким образом, они проводят ток, но поскольку их проводимость значительно меньше, чем у металлов, кремний и германий относятся к полупроводникам.

В сложных кристаллах, состоящих из элементов различной валентности, возможно образование ионного типа связи. Такие кристаллы называют ионными.

При сближении атомов и перекрытии валентных энергетических зон между элементами происходит перераспределение электронов. Электроположительный элемент теряет валентные электроны, превращаясь в положительный ион, а электроотрицательный - приобретает его, достраивая тем самым свою валентную зону до устойчивой конфигурации, как у инертных газов. Таким образом, в узлах ионного кристалла располагаются ионы.

Представитель этой группы - кристалл оксида решетка которого состоит из отрицательно заряженных ионов кислорода и положительно заряженных ионов железа.

Перераспределение валентных электронов при ионной связи происходит между атомами одной молекулы (одним атомом железа и одним атомом кислорода).

Для ковалентных кристаллов координационное число К, а слелователыю, и возможный тип решетки определяются валентностью элемента. Для ионных кристаллов координационное число определяется соотношением радиусов металлического и неметаллического ионов, так как каждый ион стремится притянуть к себе как можно больше ионов противоположного знака. Ионы в решетке укладываются как шары разных диаметров.

Радиус неметаллического иона больше радиуса металлического, и поэтому металлические ионы заполняют поры в кристаллической решетке, образованной ионами неметалла. В ионных кристаллах координационное число

определяет число ионов противоположного знака, которые окружают данный ион.

Приведенные ниже значения отношений радиуса металла к радиусу неметалла и соответствующие им координационные числа вытекают из геометрии упаковки шаров разных диаметров.

Для координационное число будет равно 6, так как указанное соотношение равно 0,54. На рис. 1.14 приведена кристаллическая решетка Ионы кислорода образуют ГЦК решетку, ионы железа занимают в ней поры. Каждый ион железа окружен шестью ионами кислорода, и, наоборот, каждый ион кислорода окружен шестью ионами железа, В связи с этим в ионных кристаллах нельзя выделить пару ионов, которые можно было бы считать молекулой. При испарении такой кристалл распадается на молекулы.

При нагреве соотношение ионных радиусов может изменяться, так как ионный радиус неметалла растет интенсивнее, чем радиус металлического иона. Это приводит к изменению типа кристаллической структуры, т. е. к полиморфизму. Например, у оксида при нагреве шпинельная кристаллическая решетка изменяется на ромбоэдрическую решетку (см. п. 14.2),

Рис. 1.14. Кристаллическая решетка а - схема; б - пространственное изображение

Энергия связи ионного кристалла по своей величине близка к энергии связи ковалентных кристаллов и превышает энергию связи металлических и тем более молекулярных кристаллов. В связи с этим ионные кристаллы имеют высокую температуру плавления и испарения, высокий модуль упругости и низкие коэффициенты сжимаемости и линейного расширения.

Заполнение энергетических зон вследствие перераспределения электронов делает ионные кристаллы полупроводниками или диэлектриками.

Такие вещества образуются с помощью химической связи, в основе которой лежит электростатическое взаимодействие между ионами. Ионная связь (по типу полярности – гетерополярная ) в основном ограничивается бинарными системами типа NaCl (рис.1.10, а ), то есть устанавливается между атомами элементов, которые обладают наибольшим сродством к электрону, с одной стороны, и атомами элементов, которые имеют наименьший потенциал ионизации, с другой. При образовании ионного кристалла ближайшими соседями данного иона оказываются ионы противоположного знака. При наиболее благоприятном соотношении размеров положительных и отрицательных ионов они касаются друг друга, и достигается предельно высокая плотность упаковки. Небольшое изменение межионного расстояния в сторону его уменьшения от равновесного вызывает возникновение сил отталкивания электронных оболочек.

Степень ионизации атомов, которые образуют ионный кристалл, часто такая, что электронные оболочки ионов соответствуют электронным оболочкам, характерным для атомов инертных газов. Грубую оценку энергии связи можно сделать, предполагая, что основная ее часть обусловлена кулоновским (то есть электростатическим) взаимодействием. Например, в кристалле NaCl расстояние между ближайшими положительными и отрицательными ионами составляет приблизительно 0,28 нм, что дает величину потенциальной энергии, связанной с взаимным притяжением пары ионов, около 5,1 эВ. Экспериментально определенное значение энергии для NaCl составляет 7,9 эВ на одну молекулу. Таким образом, обе величины одного порядка и это позволяет использовать такой подход для более точных расчетов.

Ионные связи являются ненаправленными и ненасыщенными. Последнее сказывается в том, что каждый ион стремится приблизить к себе наибольшее количество ионов противоположного знака, то есть образовать структуру с высоким координационным числом . Ионная связь распространена среди неорганических соединений: металлы с галоидами, сульфиды, окислы металлов и др. Энергия связи в таких кристаллах составляет несколько электрон-вольт на атом, поэтому такие кристаллы имеют большую прочность и высокие температуры плавления.

Вычислим энергию ионной связи. Для этого напомним составляющие потенциальной энергии ионного кристалла:

кулоновское притяжение ионов разного знака;

кулоновское отталкивание ионов одного знака;

квантово-механическое взаимодействие при перекрывании электронных оболочек;

ван-дер-ваальсовское притяжение между ионами.

Основной вклад в энергию связи ионных кристаллов вносит электростатическая энергия притяжения и отталкивания, роль последних двух вкладов незначительна. Следовательно, если обозначить энергию взаимодействия между ионами i и j через , то полная энергия иона с учетом всех его взаимодействий будет составлять



Предоставим в виде суммы потенциалов отталкивания и притяжения:

где знак «плюс» берется в случае одинаковых, а «минус» – в случае разноименных зарядов. Полная энергия решетки ионного кристалла, который состоит из N молекул (2N ионов), будет составлять

При расчете полной энергии каждую взаимодействующую пару ионов следует учитывать лишь один раз. Для удобства введем следующий параметр , где – расстояние между двумя соседними (разноименными) ионами в кристалле. Таким образом

где постоянная Маделунга α и постоянная D определяются следующим образом:

Сумы (2.44) и (2.45) должны учитывать вклад всей решетки. Знак «плюс» отвечает притяжению разноименных ионов, знак «минус» – отталкиванию одноименных ионов.

Постоянную определим следующим образом. В равновесном состоянии полная энергия минимальна. Следовательно, , и потому имеем

где – равновесное расстояние между соседними ионами.

Из (2.46) получим

и выражение для полной энергии кристалла в равновесном состоянии принимает вид

Величина представляет так называемую энергию Маделунга. Поскольку показатель , то полную энергию можно практически полностью отождествлять с кулоновской энергией. Малая величина показывает, что силы отталкивания являются короткодействующими и резко изменяются с расстоянием.



В качестве примера рассчитаем постоянную Маделунга для одномерного кристалла – бесконечной цепочки ионов противоположного знака, которые чередуются (рис.2.4).

Выбрав любой ион, например, знака «–» за начальный, будем иметь два иона знака «+» на расстоянии r 0 от него, два иона знака «–» на расстоянии 2r 0 и так далее.

Следовательно, имеем

Воспользовавшись разложением в ряд , получим в случае одномерного кристалла постоянную Маделунга

Таким образом, выражение для энергии, приходящейся на одну молекулу, принимает следующий вид

В случае трехмерного кристалла ряд сходится условно, то есть результат зависит от способа суммирования. Можно улучшить сходимость ряда, если выделить в решетке группы ионов таким образом, чтобы группа была электрически нейтральной, причем при необходимости делить ион между разными группами и вводить дробные заряды (метод Эвьена (Evjen H.M.,1932 )).

Будем рассматривать заряды на гранях кубической решетки кристалла (рис.2.5) следующим образом: заряды на гранях принадлежат двум соседним ячейкам (в каждой ячейке заряд составляет 1/2), заряды на ребрах принадлежат четырем ячейкам (по 1/4 в каждом ячейке), заряды в вершинах принадлежат восьми ячейкам (по 1/8 в каждой ячейке). Вклад в α т первого куба можно записать в виде суммы:

Если взять следующий по величине куб, который включает в себя рассмотренный нами, то получим , что хорошо совпадает с точным значением для решетки типа . Для структуры типа получено , для структуры типа – .

Сделаем оценку энергии связи для кристалла , допуская, что параметр решетки и модуль упругости В известны. Модуль упругости можно определить следующим образом:

где – объем кристалла. Объемный модуль упругости В является мерой сжатия при всестороннем сжатии. Для гранецентрированной кубической (ГЦК) структуры типа объем, который занимают молекулы, равняется

Тогда можно записать

Из (2.53) легко получить вторую производную

В состоянии равновесия первая производная обращается в нуль, следовательно, из (2.52–2.54) определим

Воспользуемся (2.43) и получим

Из (2.47), (2.56) и (2.55) найдем объемный модуль упругости В :

Выражение (2.57) позволяет вычислить показатель степени в потенциале отталкивания, пользуясь экспериментальными значениями и . Для кристалла , , . Тогда из (2.57) имеем

Заметим, что для большинства ионных кристаллов показатель степени n в потенциале сил отталкивания изменяется в пределах 6–10.

Следовательно, большая величина степени обуславливает короткодействующий характер сил отталкивания. Воспользовавшись (2.48), вычислим энергию связи (энергия на одну молекулу)

ЭВ/молекула. (2.59)

Это хорошо совпадает с экспериментальным значением -7,948 эВ/ молекула. Следует помнить, что в расчетах мы учитывали только кулоновские силы.

Кристаллы с ковалентными и ионными типами связи можно рассматривать как предельные случаи; между ними располагается ряд кристаллов, которые обладают промежуточными типами связи. Такую частично ионную () и частично ковалентную () связь можно описать с помощью волновой функции

в этом случае степень ионности можно определить следующим образом:

В табл.2.1 приведены некоторые примеры для кристаллов бинарных соединений.

Таблица 2.1. Степень ионности в кристаллах

Кристалл Степень ионности Кристалл Степень ионности Кристалл Степень ионности
SiC ZnO ZnS ZnSe ZnTe CdO CdS CdSe CdTe 0,18 0,62 0,62 0,63 0,61 0,79 0,69 0,70 0,67 InP InAs InSb GaAs GaSb CuCl CuBr AgCl AgBr 0,44 0,35 0,32 0,32 0,26 0,75 0,74 0,86 0,85 AgI MgO MgS MgSe LiF NaCl RbF 0,77 0,84 0,79 0,77 0,92 0,94 0,96