Железный гидрид - Iron hydride. Гидриды металлов и их свойства Области практического применения интерметаллических гидридов

Неорганическая химия

Совместный гидролиз солей

Например:

Задача 1.1.

Задача 1.2

Ответы внизу

Задача 1.3.

Ответы внизу

Реакции оксидов с водой

Например:

Задача 2.1

Mn 2 O 7 + H 2 O =

Ответы внизу

Задача 3.1

Ответы внизу

Щелочной или кислотный гидролиз бинарных соединений

Для школьного курса – экзотическая вещь, но вот в ЕГЭ-2014 встретилось… Речь идет о таких, например, реакциях:

Ca 3 N 2 + HCl =

Здесь можно рассуждать так. Щелочь (NaOH) или кислота (HCl) реагируют с бинарным соединением в растворе. А это значит, что фактически сначала идет реакция с водой (гидролиз бинарного соединения):

PCl 5 + H 2 O → H 3 PO 4 + HCl

Ca 3 N 2 + H 2 O → Сa(OH) 2 + NH 3

А затем продукты гидролиза реагируют с щелочью (в первом случае) или с кислотой (во втором случае):

PCl 5 + H 2 O → H 3 PO 4 + HCl → (+NaOH) → Na 3 PO 4 + NaCl + H 2 O

Ca 3 N 2 + H 2 O → Сa(OH) 2 + NH 3 → (+HCl) → CaCl 2 + NH 4 Cl + (H 2 O)

В итоге уравнения будут выглядеть так:

PCl 5 + 8NaOH = Na 3 PO 4 + 5NaCl +4 H 2 O

Ca 3 N 2 + 8HCl = 3CaCl 2 + 2NH 4 Cl

Поупражняйтесь:

Задача 3.2 Рассуждая аналогично, определите, что получится при взаимодействии:

Na 3 N + HCl →

PBr 3 + NaOH →

Ответы внизу



Аммиак и его свойства

Аммиак реагирует с кислотами, присоединяя протон по донорно-акцепторному механизму и образуя при этом соли аммония.

Задача 4.1 . Через раствор серной кислоты пропустили аммиак. Какие две соли при этом могут образоваться? От чего это зависит? Напишите уравнения реакций.

Ответы внизу

Водный раствор аммиака обладает свойствами слабой щелочи, поэтому с его помощью можно осаждать нерастворимые гидроксиды металлов.

Задача 4.2 . Через водный раствор сульфата хрома (III) пропустили избыток аммиака. Запишите уравнение реакции.

Ответы внизу

3) Аммиак – восстановитель. В частности, способен восстанавливать металлы из оксидов.

Задача 4.3 . Через оксид меди (II) пропустили поток аммиака при нагревании. Напишите уравнение реакции.

Ответы внизу

4) Аммиак способен быть лигандом и может образовывать комплексы – аммиакаты. Особенно вероятно упоминание в ЕГЭ аммиачного комплекса меди, так как он имеет ярко-синее окрашивание и может использоваться для обнаружения соединений двухвалентной меди .

Задача 4.4 . К раствору сульфата меди (II) добавили избыток водного раствора аммиака. Запишите уравнение реакции.

Ответы внизу

Вообще с наибольшей скоростью идут те реакции, которые сопровождаются взрывами. А при обычных условиях – реакции ионного обмена в водных растворах. Почему? Потому что в них участвуют электролиты, которые уже диссоциированы, связи разрушены. Поэтому ничто не мешает ионам моментально соединиться между собой. Можно считать, что активационный барьер такой реакции приближается к нулю.

Например:

Какие вещества реагируют между собой с наибольшей скоростью при комнатной температуре:

1) HCl(p-p) и NaOH(p-p)

2) S(тв.) и H 2 (г)

3) CO 2 (г) и H 2 O(ж)

4) FeS 2 (тв.) и O 2 (г)

Правильный ответ – 1), так как это реакция ионного обмена.

Смешанные оксиды Fe 3 O 4 и Pb 3 O 4

Железо образует смешанный оксид – железную окалину Fe 3 O 4 (FeO ∙ Fe 2 O 3) со степенями окисления +2 и +3.



Свинец образует смешанный оксид – сурик Pb 3 O 4 (2PbO ∙ PbO 2) со степенями окисления +2 и +4.

При реакциях этих оксидов с кислотами могут получаться сразу две соли:

Fe 3 O 4 + 8HCl = FeCl 2 + 2FeCl 3 + 4H 2 O

Pb 3 O 4 + 4HNO 3 = 2Pb(NO 3) 2 + PbO 2 + H 2 O (PbO 2 амфотерен, поэтому в соль не превращается).

Переходы Fe +2 ↔ Fe +3 и Cu +1 ↔ Cu +2

Вот несколько сложных ситуаций:

Fe 3 O 4 + HNO 3 = что получится?

Казалось бы, должны получиться две соли и вода: Fe(NO 3) 2 + Fe(NO 3) 3 + H 2 O (смотри предыдущий раздел), но HNO 3 – сильный окислитель, поэтому будет окислять железо +2 в составе железной окалины до железа +3 и получится только одна соль:

Fe 3 O 4 + 10HNO 3 (конц) = 3Fe(NO 3) 3 + NO 2 + 5H 2 O

Аналогично в реакции Cu 2 O + HNO 3 может показаться, что продуктами будут CuNO 3 + H 2 O. А на самом деле одновалентная медь (Cu +1 2 O) может окисляться до двухвалентной, поэтому пойдет окислительно-восстановительная реакция:

Cu 2 O + 6HNO 3 (конц) = 2Сu(NO 3) 2 + 2NO 2 + 3H 2 O

Задача 7.1 . Запишите уравнения реакций:

Fe 3 O 4 + H 2 SO 4 (разб) =

Fe 3 O 4 + H 2 SO 4 (конц) =

Fe 2 (SO 4) 3 + H 2 S =

Ответы внизу

Разложение нитратов

В целом разложение нитратов происходит согласно известной схеме, и состав продуктов зависит от расположения металла в ряду активности. Но есть сложные ситуации:

Задача 9.1 Какие продукты получатся при разложении нитрата железа (II)? Запишите уравнение реакции.

Задача 9.2 Какие продукты получатся при разложении нитрата меди (II)? Запишите уравнение реакции.

Ответы внизу

Органическая химия

Тривиальные названия

Надо знать, какие органические вещества соответствуют названиям:

изопрен, дивинил, винилацетилен, толуол, ксилол, стирол, кумол, этиленгликоль, глицерин, формальдегид, уксусный альдегид, пропионовый альдегид, ацетон, первые шесть предельных одноосновных кислот (муравьиная, уксусная, пропионовая, масляная, валериановая, капроновая), акриловая кислота, стеариновая кислота, пальмитиновая кислота, олеиновая кислота, линолевая кислота, щавелевая кислота, бензойная кислота, анилин, глицин, аланин. Не путайте пропионовую кислоту с пропеновой!! Соли важнейших кислот: муравьиной – формиаты, уксусной – ацетаты, пропионовой – пропионаты, масляной – бутираты, щавелевой – оксалаты. Радикал –CH=CH 2 называется винил!!

Заодно и некоторые неорганические тривиальные названия:

Поваренная соль (NaCl), негашеная известь (CaO), гашеная известь (Ca(OH) 2), известковая вода (раствор Ca(OH) 2), известняк (CaCO 3), кварц (он же кремнезем или диоксид кремния – SiO 2), углекислый газ (CO 2), угарный газ (CO), сернистый газ (SO 2), бурый газ (NO 2), питьевая или пищевая сода (NaHCO 3), кальцинированная сода (Na 2 CO 3), аммиак (NH 3), фосфин (PH 3), силан (SiH 4), пирит (FeS 2), олеум (раствор SO 3 в концентрированной H 2 SO 4), медный купорос (CuSO 4 ∙5H 2 O).

Некоторые редкие реакции

1) Образование винилацетилена :

2) Реакция прямого окисления этилена в уксусный альдегид :

Эта реакция коварна тем, что мы хорошо знаем, как ацетилен превращается в альдегид (реакция Кучерова), а если в цепочке встретится превращение этилен → альдегид, то это может нас поставить в тупик. Так вот, имеется в виду эта реакция!

3) Реакция прямого окисления бутана в уксусную кислоту:

Эта реакция лежит в основе промышленного производства уксусной кислоты.

4) Реакция Лебедева:

Отличия фенолов от спиртов

Огромное количество ошибок в таких заданиях!!

1) Следует помнить, что фенолы более кислотны, чем спирты (связь О-Н в них более полярна). Поэтому спирты не реагируют с щелочью, а фенолы реагируют и с щелочью, и некоторыми солями (карбонаты, гидрокарбонаты).

Например:

Задача 10.1

Какие из этих веществ реагируют с литием:

а) этиленгликоль, б) метанол, в) фенол, г) кумол, д) глицерин.

Задача 10.2

Какие из этих веществ реагируют с гидроксидом калия:

а) этиленгликоль, б) стирол, в) фенол, г) этанол, д) глицерин.

Задача 10.3

Какие из этих веществ реагируют с гидрокарбонатом цезия:

а) этиленгликоль, б) толуол, в) пропанол-1, г) фенол, д) глицерин.

2) Следует помнить, что спирты реагируют с галогеноводородами (эта реакция идет по связи С-О), а фенолы нет (в них связь С-О из-за эффекта сопряжения малоподвижна).

Дисахариды

Основные дисахариды: сахароза, лактоза и мальтоза имеют одинаковую формулу C 12 H 22 O 11 .

О них следует помнить:

1) что они способны гидролизоваться на те моносахариды, из которых состоят: сахароза – на глюкозу и фруктозу, лактоза – на глюкозу и галактозу, мальтоза – на две глюкозы.

2) что лактоза и мальтоза обладают альдегидной функцией, то есть являются восстанавливающими сахарами (в частности, дают реакции «серебряного» и «медного» зеркала), а сахароза – невосстанавливающий дисахарид, не имеет альдегидной функции.

Механизмы реакций

Будем надеяться, что достаточно следующих знаний:

1) для алканов (в том числе в боковых цепях аренов, если эти цепи предельные) характерны реакции свободнорадикального замещения (с галогенами), которые идут по радикальному механизму (инициирование цепи – образование свободных радикалов, развитие цепи, обрыв цепи на стенках сосуда или при соударении радикалов);

2) для алкенов, алкинов, аренов характерны реакции электрофильного присоединения , которые идут по ионному механизму (через образование пи-комплекса и карбокатиона ).

Особенности бензола

1. Бензол в отличие от других аренов не окисляется перманганатом калия.

2. Бензол и его гомологи способны вступать в реакцию присоединения с водородом. Но только бензол способен также вступать в реакцию присоединения с хлором (только бензол и только с хлором!). При этом все арены способны вступать в реакцию замещения с галогенами.

Реакция Зинина

Восстановление нитробензола (или аналогичных ему соединений) в анилин (или другие ароматические амины). Эта реакция в одном из ее видов почти обязательно встретится!

Вариант 1 – восстановление молекулярным водородом:

C 6 H 5 NO 2 + 3H 2 → C 6 H 5 NH 2 +2H 2 O

Вариант 2 – восстановление водородом, полученным при реакции железа (цинка) с соляной кислотой:

C 6 H 5 NO 2 + 3Fe + 7HCl → C 6 H 5 NH 3 Cl +3FeCl 2 + 2H 2 O

Вариант 3 – восстановление водородом, полученным при реакции алюминия с щелочью:

C 6 H 5 NO 2 + 2Al + 2NaOH + 4H 2 O → C 6 H 5 NH 2 +2Na

Свойства аминов

Почему-то свойства аминов запоминаются хуже всего. Возможно, это связано с тем, что амины изучаются в курсе органической химии последними, и их свойства не удается повторить, изучая другие классы веществ. Поэтому рецепт такой: просто выучить все свойства аминов, аминокислот и белков.

Разложение ацетатов

Почему-то составители ЕГЭ считают, что нужно знать, как разлагаются ацетаты. Хотя в учебниках этой реакции нет. Разные ацетаты разлагаются по-разному, но давайте запомним реакцию, которая попадается в ЕГЭ:

при термическом разложении ацетата бария (кальция) получается карбонат бария (кальция) и ацетон!!!

Ba(CH 3 COO) 2 → BaCO 3 + (CH 3) 2 CO (t 0 )

Ca(CH 3 COO) 2 → CaCO 3 + (CH 3) 2 CO (t 0 )

По сути, при этом происходит декарбоксилирование:

Ответы:

1.1. При совместном гидролизе солей, одна из которых гидролизуется по катиону, а другая – по аниону, гидролиз взаимно усиливается и идет до образования конечный продуктов гидролиза обеих солей: 2AlCl 3 + 3Na 2 S + 6H 2 O = 2Al(OH) 3 ↓ + 3H 2 S + 6NaCl

1.2. Аналогично: 2FeCl 3 + 3Na 2 CO 3 + 3H 2 O = 2Fe(OH) 3 ↓ + 3CO 2 + 6NaCl

1.3. Последовательность реакций:

2Al + 3I 2 = 2AlI 3

AlI 3 + 3NaOH = Al(OH) 3 + 3NaI

Al(OH) 3 + 3HCl = AlCl 3 + 3H 2 O

2AlCl 3 + 3Na 2 CO 3 + 3H 2 O = 2Al(OH) 3 +3CO 2 + 6NaCl

NO + H 2 O = не реагируют (так как несолеобразующий оксид)

BaO + H 2 O = Ba(OH) 2 (реагируют, так как получается растворимый гидроксид)

CrO + H 2 O = (не реагируют, так как гидроксид хрома (II) нерастворим)

SO 2 + H 2 O = H 2 SO 3 (реагируют, так как получается растворимый гидроксид)

SiO 2 + H 2 O = (не реагируют, так как гидроксид кремния (IV), то есть кремниевая кислота - нерастворима)

Mn 2 O 7 + H 2 O = 2HMnO 4 (реагируют, так как получается растворимый гидроксид – марганцевая кислота)

2NO 2 + H 2 O = HNO 2 + HNO 3

3.1. При гидролизе бинарных соединений получается гидроксид первого элемента и водородное соединение второго элемента. В случае гидрида вторым продуктом будет просто водород:

NaH + H 2 O = NaOH + H 2

MgH 2 + 2H 2 O = Mg(OH) 2 + 2H 2

Na 3 N + 4HCl → 3NaCl + NH 4 Cl

PBr 3 + 6NaOH → Na3PO3 + 3NaBr + 3H 2 O

4.1 При пропускании аммиака через растворы многоосновных кислот могут получаться средние или кислые соли, в зависимости от того, какой из реагентов в избытке:

NH 3 + H 2 SO 4 = NH 4 HSO 4 (кислота в избытке)

2NH 3 + H 2 SO 4 = 2 (NH 4) 2 SO 4 (аммиак в избытке)

Cr 2 (SO 4) 3 + 6NH 3 + 6H 2 O = 2Cr(OH) 3 ↓ + 3(NH 4) 2 SO 4

(Фактически это та же реакция, что и:

Cr 2 (SO 4) 3 + 6NH 4 OН = 2Cr(OH) 3 ↓ + 3(NH 4) 2 SO 4 ,

но формулу NH 4 OН сейчас писать не принято).

3CuO + 2NH 3 = 3Cu + N 2 + 3H 2 O

CuSO 4 + 4NH 3 = SO 4

(Хотя на самом деле сначала пойдет такая реакция:

CuSO 4 + 2NH 3 + 2H 2 O = Cu(OH) 2 ↓ + (NH 4) 2 SO 4 (так как аммиак действует как щелочь)

А потом: Cu(OH) 2 ↓ + 4NH 3 = (OH) 2)

В общем, в любом случае при достаточном количестве аммиака получится комплекс и ярко-синее окрашивание!

K 3 + 6HBr = 3KBr + AlBr 3 + 6H 2 O

K 3 + 3HBr = 3KBr + Al(OH) 3 ↓ + 3H 2 O

Na 2 + 2CO 2 = 2NaHCO 3 + Zn(OH) 2 ↓

K = KAlO 2 + 2H 2 O (t 0 )

Cl + 2HNO 3 = 2NH 4 NO 3 + AgCl↓

2СuSO 4 + 4KI = 2CuI + I 2 + 2K 2 SO 4 (двухвалентная медь восстанавливается до одновалентной)

Fe 2 O 3 + 6HI = 2FeI 2 + I 2 + 3H 2 O

KNO 2 + NH 4 I = KI + N 2 + 2H 2 O

H 2 O 2 + 2KI = I 2 + 2KOH

Fe 3 O 4 + 4H 2 SO 4 (разб) = FeSO 4 + Fe 2 (SO 4) 3 + 4H2O

так как разбавленная серная кислота не является сильным окислителем, то идет обычная обменная реакция.

2Fe 3 O 4 + 10H 2 SO 4 (конц) = 3Fe 2 (SO 4) 3 + SO 2 + 10H 2 O

так как концентрированная серная кислота является сильным окислителем, то железо +2 окисляется до железа +3.

Fe 2 (SO 4) 3 + H 2 S = 2FeSO 4 + S + H 2 SO 4

так как сероводород является восстановителем, то железо +3 восстанавливается до железа +2.

NaHSO 4 + NaOH = Na 2 SO 4 + H 2 O

Na 2 SO 4 + NaOH – не реагируют

NaHSO 4 + Ba(OH) 2 = BaSO 4 + NaOH + H 2 O

Na 2 SO 4 + Ba(OH) 2 = BaSO 4 + 2NaOH

Сu + 2H 2 SO 4 (конц) = CuSO 4 + SO 2 + 2H 2 O

Сu + HCl – не реагируют

CuO + 2HCl = CuCl 2 + H2O

ZnS + 2HCl = ZnCl 2 + H 2 S

ZnO + 2HCl = ZnCl 2 + H 2 O

Cu 2 O + 3H 2 SO 4 = 2CuSO 4 + SO 2 + 3H 2 O (тут дело в том, что, поскольку кислота концентрированная, то она доокисляпет Cu +1 до Cu +2 .

CuO + H 2 SO 4 = CuSO 4 + H 2 O

Казалось бы, при разложении нитрата железа (II) должны получиться оксид железа (II), оксид азота (IV) и кислород. Но хитрость в том, что поскольку в оксиде железа (II) железо имеет не высшую степень окисления, а в реакции выделяется кислород, то железо будет окисляться до +3 и получится оксид железа (III):

Fe(NO 3) 2 → Fe 2 O 3 + NO 2 + O 2

В этой реакции сразу два восстановителя – железо и кислород. С коэффициентами будет так:

4Fe(NO 3) 2 = 2Fe 2 O 3 + 8NO 2 + O 2

В этой реакции ничего особенного нет, кроме того, что часто забывают, что медь относится еще к тем металлам, при разложении которых получается оксид металла, а не сам металл:

2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2

А вот все металлы, которые за медью, при разложении своих нитратов будут давать уже просто металл.

Правильные ответы: а,б,в,д (в кумоле вообще нет гидроксильной группы, это арен).

Правильные ответы: в (в стироле вообще нет гидроксильной группы, это арен).

Правильные ответы: нет правильного ответа (в толуоле вообще нет гидроксильной группы, это арен. Фенол недостаточно кислотный. Могла бы реагировать какая-нибудь карбоновая кислота.).

Неорганическая химия

Совместный гидролиз солей

Например:

Задача 1.1. Что получится при сливании водных растворов хлорида алюминия и сульфида натрия (напишите уравнение реакции)?

Задача 1.2 . Что получится при сливании водных растворов хлорида железа (III) и карбоната натрия (напишите уравнение реакции)?

Ответы внизу

Совместный гидролиз часто встречается в задачах С2, где его не так-то просто обнаружить. Вот пример:

Задача 1.3. Порошок металлического алюминия смешали с твердым иодом и добавили несколько капель воды. К полученной соли добавили раствор гидроксида натрия до выпадения осадка. Образовавшийся осадок растворили в соляной кислоте. При последующем добавлении раствора карбоната натрия вновь наблюдали выпадение осадка. Напишите уравнения четырех описанных реакций.

Ответы внизу

Реакции оксидов с водой

Вопрос: Когда оксиды реагируют с водой?

Ответ: с водой реагируют только солеобразующие оксиды и только если получается растворимый гидроксид.

Например:

Задача 2.1 . Запишите уравнения осуществимых реакций:

Mn 2 O 7 + H 2 O =

Ответы внизу

Гидриды металлов и их свойства

Водород способен реагировать с активными металлами (преимущественно стоящими до алюминия в ряду активности металлов, то есть это щелочные и щелочно-земельные металлы). При этом образуются гидриды, например: LiH, CaH 2 .

В гидридах степень окисления водорода равна -1!

Гидриды – это бинарные соединения, а потому способны гидролизоваться.

Задача 3.1 Запишите уравнения гидролиза гидрида натрия, гидрида магния.

В случае хранения водорода в гидридной форме отпадает необходимость в громоздких и тяжелых баллонах, требуемых при хранении газообразного водорода в сжатом виде, или сложных в изготовлении и дорогих сосудов для хранения жидкого водорода. При хранении водорода в виде гидридов объем системы уменьшается примерно в 3 раза по сравнению с объемом хранения в баллонах. Упрощается транспортирование водорода. Отпадают расходы на конверсию и сжижение водорода.

Водород из гидридов металлов можно получить по двум реакциям: гидролиза и диссоциации:

Методом гидролиза можно получать вдвое больше водорода, чем его находится в гидриде. Однако этот процесс практически необратим. Метод получения водорода термической диссоциацией гидрида дает возможность создать аккумуляторы водорода, для которых незначительное изменение температуры и давления в системе вызывает существенное изменение равновесия реакции образования гидрида.

Стационарные устройства для хранения водорода в форме гидридов не имеет строгих ограничений по массе и объему, поэтому лимитирующим фактором выбора того или иного гидрида будет, по всей вероятности, его стоимость. Для некоторых направлений использования может оказаться полезным гидрид ванадия, поскольку он хорошо диссоциирует при температуре, близкой в 270 К. Гидрид магния является относительно недорогим, но имеет сравнительно высокую температуру диссоциации 560-570 К и высокую теплоту образования. Железо-титановый сплав сравнительно недорог, а гидрид его диссоциирует при температурах 320-370 К с низкой теплотой образования.

Использование гидридов имеет значительные преимущества в отношении техники безопасности. Поврежденный сосуд с гидридом водорода представляет значительно меньшую опасность, чем поврежденный жидководородный танк или сосуд высокого давления, заполненный водородом.

Существенно, что связывание водорода с металлом протекает с выделением тепла. Экзотермический процесс образования гидрида из водорода М металла (зарядка) и эндотермический процесс освобождения водорода из гидрида (разрядка) можно представить в виде следующих реакций:


Для технического использования гидридов особый интерес представляют температуры, при которых давление диссоциации водорода в гидриде достигает значения выше 0,1 МПа. Гидриды, у которых давление диссоциации выше 0,1 МПа достигается при температуре ниже точки замерзания воды, называются низкотемпературными. Если же это давление достигается при температуре выше точки кипения воды, то такие гидриды считаются высокотемпературными.

Для нужд автомобильного транспорта создаются гидриды, которые теоретически могут содержать до 130-140 кг водорода в 1 м 3 металлического гидрида. Однако реализуемая емкость гидрида вряд ли будет превышать 80 кг/м 3 Но и такое содержание водорода в баке емкостью 130 дм 3 достаточно на 400 км пробега автомобиля. Это реальные для применения показатели, но следует учитывать увеличение массы бака, заполненного гидридом. Например, масса латан-никелевого гидрида достигает 1 т, а гидрида магния - 400 кг.

К настоящему времени синтезированы и изучены гидриды металлов с широким интервалом свойств. Данные о свойствах некоторых гидридов, которые представляют наибольший потенциальный интерес, для промышленного использования, приведены в табл. 10.3 и 10.4. Как видно из табл. 10.3, например, гидрид магния дает возможность хранить 77 г Н 2 на 1 кг массы гидрида, в то время как в баллоне под давлением 20 МПа приходится лишь 14 г на 1 кг емкости. В случае жидкого водорода можно хранить 500 г на 1 кг емкости.

В Комплексной программе поисковых, научно-исследовательских и опытно-конструкторских работ по водородной энергетике и топливным элементам запланировано исследование палладия. Металл платиновой группы палладий является одним из основных материалов для топливных элементов и всей водородной энергетики. На его основе изготовляются катализаторы, мембранные аппараты для получения чистого водорода, материалы с повышенными функциональными характеристиками, топливные элементы, электролизёры, сенсоры для определения водорода. Палладий может эффективно накапливать водород, особенно, нанопорошок палладия .

Помимо водородной энергетики, палладий находит применение в катализаторах для доочистки выхлопных газов обычных автомобилей; электролизёрах для получения водорода и кислорода путем разложения воды; портативных топливных элементах, в частности метанольных; твердооксидных электролизёрах с электродами на основе палладия; устройствах для получения кислорода из воздуха, в том числе и в медицинских целях; сенсорах для анализа сложных газовых смесей.

Важно отметить, что наша страна контролирует около 50% мирового производства этого необходимого для получения водорода металла. В настоящее время в Институте проблем химической физики РАН в Черноголовке ведутся работы по созданию аккумуляторов водорода на основе гидридов металла.

Свойства некоторых гидридов

Таблица 10.3

Характерно, что продукт взаимодействия водорода с торием по сравнению с водородными производными всех остальных металлов содержит наибольшее количество водорода и отвечает по составу соотношению ТhН 3,75 , т. е. приближается к составу, соответствующему максимальной валентности элементов IV группы. Плотность водородсодержащего тория почти на 30% меньше плотности металла, в то время как для остальных элементов подгруппы титана изменение плотности при взаимодействии с водородом составляет примерно 15%.

Простейшие гидриды элементов подгруппы углерода - углерода, кремния, германия, олова, свинца являются четырехвалентными и соответствуют общей формуле МеН 4 . Термическая стабильность гидридов элементов IV группы постепенно уменьшается с увеличением атомного веса этих элементов и радиуса атома.

Подгруппа ванадия V группы . Взаимодействие водорода с ванадием, ниобием и танталом во многом аналогично. Химических соединений точного стехиометрического состава в этих системах не обнаружено. Поскольку абсорбция и десорбция водорода вызывают необратимые изменения структуры металлического тантала, возможно наличие в системе тантал - водород и, по-видимому, в системе ниобий - водород некоторой доли химических связей промежуточного типа.

Простые гидриды азота, фосфора, мышьяка, сурьмы и висмута имеют общую формулу МеН3. Гидриды элементов V группы менее стойки, чем элементов IV и VI групп. Большинство элементов V группы, помимо простых гидридов типа NH 3 , образует и более сложные соединения с водородом.

Из элементов подгруппы хрома VI группы - хрома, молибдена, вольфрама и урана изучен только гидрид урана UH 3 . Химическая связь в этом соединении объясняется, возможно, наличием водородных мостиков, но отнюдь не ковалентностью, что согласуется со свойствами UH 3 . Образование гидрида урана сопровождается резким (почти на 42%) уменьшением плотности урана. Такая степень уменьшения плотности является максимальной среди изученных водородных производных металлов и по порядку величины, соответствует увеличению плотности, наблюдаемому при образовании гидридов щелочных металлов I группы. О получении химических соединений точного стехиометрического состава при взаимодействии водорода с хромом, молибденом и вольфрамом достоверных сведений нет.

Гидриды элементов этой группы можно получить прямым взаимодействием элементов с водородом. В ряду Н 2 О, H 2 S, H 2 Se, H 2 Te и Н 2 Ро термическая стойкость гидридов быстро уменьшается.

Относительно химического взаимодействия водорода с элементами VIII группы периодической системы - железом, никелем и кобальтом - в литературе имеются противоречивые данные. Естественно, возникают сомнения в реальном существовании гидридов этих элементов. Взаимодействие водорода с железом, кобальтом и никелем при повышенных температурах не является химическим процессом в общепринятом смысле. Однако это еще не доказывает невозможности существования гидридов этих элементов.

Многие исследователи сообщают о получении продуктов, которые, по их мнению, являются гидридами. Так, имеются сведения о получении косвенным путем гидридов железа - FeH, FeH 2 и FеН 3 , стабильных при температуре ниже 150° С, выше которой они разлагаются. Сообщалось и о получении гидридов никеля и кобальта. Полученные продукты представляли собой темные тонкодисперсные пирофорные порошки. Согласно одним авторам, вещества этого типа, в действительности, представляют собой не гидриды, а тонкодисперсные восстановленные металлы, содержащие значительные количества водорода, физически адсорбированного на поверхности. Другие считают, что адсорбированный водород находится на поверхности металла в атомарном состоянии и образует химическую связь с атомами металла.

О химическом взаимодействии водорода с остальными элементами VIII группы (за исключением палладия) имеется очень мало согласующихся между собой данных.

В табл. 5 приведены имеющиеся данные об изменении плотности металлов при взаимодействии с водородом.

Системы водород - металл часто являются прототипами при изучении ряда фундаментальных физических свойств. Предельная простота электронных свойств и малая массы атомов водорода позволяют анализировать явления на микроскопическом уровне. Рассматриваются следующие задачи:

  • Перестройка электронной плотности вблизи протона в сплаве с малыми концентрациями водорода вкючая сильное электрон-ионное взаимодействие
  • Определение косвенного взаимодействия в металлической матрице через возмущение «электронной жидкости» и деформацию кристаллической решётки.
  • При больших концентрациях водорода возникает проблема формирования металлического состояния в сплавах с нестехиометрическим составом.

Сплавы водород - металл

Водород, локализованный в междоузлиях металлической матрицы слабо искажает кристаллическую решётку. С точки зрения статистической физики реализуется модель взаимодействующего «решёточного газа». Особый интерес представляет исследование термодинамических и кинетических свойств вблизи точек фазового перехода. При низкихтемпературах образуется квантовая подсистема с большой энергией нулевых колебаний и с большой амплитудой смещения. Это позволяет изучать квантовые эффекты при фазовых превращениях. Большая подвижность атомов водорода в металле делает возможным изучение процессов диффузии . Другим направлением исследований являются физика и физхимия поверхностных явлений взаимодействия водорода с металлами: распад молекулы водорода и адсорбция на поверхности атомарного водорода. Особый интерес представляет случай, когда начальное состояние водорода является атомарным, а конечное - молекулярным. Это важно при создании метастабильных металл-водородных систем.

Применение систем водород - металл

  • Очистка водорода и водородные фильтры
  • Использование металлогидридов в ядерных реакторах в качестве замедлителей, отражателей и т. д.
  • Разделение изотопов
  • Термоядерные реакторы - извлечение трития из лития
  • Устройства для диссоциации воды
  • Электроды для топливных элементов и батарей
  • Аккумуляция водорода для автомобильных двигателей на базе металлогидридов
  • Тепловые насосы на базе металлогидридов, включая кондиционеры для автотранспорта и жилища
  • Преобразователи энергии для тепловых электростанций

Интерметаллические металлогидриды

Гидриды интерметаллических соединений нашли широкое применение в промышленности. Основная часть перезаряжаемых батарей и аккумуляторов , например, для сотовых телефонов, переносных компьютеров (ноутбуков), фото- и видеокамер содержит электрод из металлогидрида. Такие аккумуляторы являются экологически чистыми, так как не содержат кадмия .

Типичные никель-металлогидридные аккумуляторы


Wikimedia Foundation . 2010 .

Смотреть что такое "Металлические гидриды" в других словарях:

    Соединения водорода с металлами и с имеющими меньшую электроотрицательность, чем водород, неметаллами. Иногда к гидридам причисляют соединения всех элементов с водородом,. Классификация В зависимости от характера связи водорода различают… … Википедия

    Соединения водорода с металлами или менее электроотрицательными, чем водород, неметаллами. Иногда к Г. относят соед. всех хим. элементов с водородом. Различают простые, или бинарные, Г., комплексные (см., напр., Алюмогидриды, Борогидриды металлов … Химическая энциклопедия

    Соединения водорода с другими элементами. В зависимости от характера связи водорода различают три типа Г.: ионные, металлические и ковалентные. К ионным (солеобразным) Г. относятся Г. щелочных и щёлочноземельных металлов. Это… …

    - (металлиды), обладают металлич. св вами, в частности электрич. проводимостью, что обусловлено металлич. характером хим. связи. К М. с. относятся соед. металлов друг с другом интер металлиды и мн. соед. металлов (в осн. переходных) с неметаллами.… … Химическая энциклопедия

    Гидриды бора, бораны, соединения бора с водородом. Известны Б., содержащие от 2 до 20 атомов бора в молекуле. Простейший Б., BH3, в свободном состоянии не существует, он известен лишь в виде комплексов с аминами, эфирами и т.п. Характер… … Большая советская энциклопедия

    Простые вещества, обладающие в обычных условиях характерными свойствами: высокой электропроводностью и теплопроводностью, отрицательным температурным коэффициентом электропроводности, способностью хорошо отражать электромагнитные волны… … Большая советская энциклопедия

    ПОДГРУППА VA. СЕМЕЙСТВО АЗОТА ФОСФОРА Тенденция изменения свойств от неметаллических до металлических, которая выявлена в подгруппах IIIA и IVA, характерна и для этой подгруппы. Переход к металличности (хотя и нерезкий) начинается с мышьяка, у… … Энциклопедия Кольера

    - (от лат. inter между и металл) (интерметаллич. соединения), хим. соед. двух или неск. металлов между собой. Относятся к металлическим соединениям, или металлидам. И. образуются в результате взаимод. компонентов при сплавлении, конденсации из пара … Химическая энциклопедия

    - (от греч. metallon первоначально, шахта, копи), в ва, обладающие в обычных условиях характерными, металлическими, свойствами высокими электрич. проводимостью и теплопроводностью, отрицат. температурным коэф. электрич. проводимости, способностью… … Химическая энциклопедия

    Металл - (Metal) Определение металла, физические и химические свойства металлов Определение металла, физические и химические свойства металлов, применение металлов Содержание Содержание Определение Нахождение в природе Свойства Характерные свойства… … Энциклопедия инвестора