Механизмы ингибирования. Конкурентное ингибирование: определение, особенности и примеры

Ограниченный протеолиз.

Регуляция активности с помощью гормонов.

Гормональная регуляция осуществляется на генетическом уровне путём обратимого фосфорилирования. Например, под действием адреналина происходит активация процесса распада гликогена. В ходе этого процесса образуется небелковое соединения – у-АМФ. у-АМФ – внутриклеточный гормон (вторичный посредник) является аллостерическим регулятором большого числа протеинлипаз. у-АМФ образуется из АТФ под действием аденилатциклаз.

Регуляция активности путём химической модификации.

Химическая модификация - присоединение каких-либо функциональных групп к ферменту, с последующим изменением его активности. Химическая модификация обратима. Так например, ключевые ферменты энергетического обмена - фосфорилаза, гликогенсинтаза контролируются путём фосфорилирования и дефосфорилирования, осуществляемого специфическими ферментами - протеинилазой и фософотазой. И уровень активности ключевых ферментов будет определятся соотношением фосфорилированных и дефосфорилированных форм этих ферментов.

Все ферменты ЖКТ и поджелудочной железы синтезируются в неактивной форме в виде проферментов. Регуляция в этом случае сводится к превращению их в активную форму. Так, например, активация трипсиногена идёт под действием энтерокиназы и ведёт к отщеплению избыточной последовательности аминокислот. При этом происходит формирование активного центра и третичной структуры трипсина. Это явление получило название ограниченный протеолиз . Его биологическое значение заключается в том, что он исключает самопереваривание органа (аутокатализ), что, например, происходит при активации трипсина в самой поджелудочной железе. Во-вторых, обеспечивается более тонкая регуляция количества фермента.

Ограниченный протеолиз находится под контролем факторов среды, рН, в клетке – под контролем Са.

Скорость ферментативной реакции определяется присутствием в среде эффекторов: активаторов и ингибиторов. Активаторы повышают скорость реакции и иногда модифицируют её, а ингибиторы - тормозят её.

Активаторы: коферменты, ионы Ме, SH- реагенты. Активизирующее влияние связано с оптимизацией структуры белковой молекулы и активного центра фермента. Это улучшает взаимодействие фермента и субстрата.

Активатор панкреатической липазы – желчные кислоты.

Активатор трипсиногена – энтерокиназы.

Активатор хематрипсиногена – трипсин.

Активатор пепсина и амилазы – ионы Са.

В качестве активаторов могут выступать и Ме:

Zn – активатор угольной ангидразы.

Ингибиторами принято называть вещества, вызывающее частичное или полное торможение реакции.



Любые агенты, вызывающие денатурацию фермента, являются ингибиторами. Однако такое ингибирование неспецифично потому, что не связано с механизмом действия ферментов. Гораздо больше специфических ингибиторов, которые оказывают действия на один какой – либо фермент или на группу родственных ферментов. Такие ингибиторы могут дать ценную информацию о природе активного центра фермента. На ингибировании ферментов основан механизм действия многих токсинов и ядов на организм. Так, при отравлении синильной кислотой спазм наступает вследствие полного торможения дыхательных ферментов (цитохромоксидазы).

Типы ингибирования :

1) Обратимое

2) Необратимое

Если молекула ингибитора вызывает стойкие изменения или модификацию активного центра фермента, то такой тип ингибирования называется необратимым .

Обратимое ингибирование встречается чаще, и его делят на конкурентное и неконкурентное , в зависимости от того удаётся или не удаётся преодолеть торможение ферментативной реакции путём повышения {S}. Конкурентное ингибирование возможно при наличии структурного сходства субстрата и ингибитора. Например, торможение активности сукцинатдегидрогеназы малоновой кислотой:

НООС - 2Н НООС

СН -------- СН

СН СДГ СН

НООС НООС

сукцинат фумарат

Если в среду вместо сукцината внести малонат, то в силу его структурного сходства с сукцинатом он будет реагировать с активным центром СДГ. Однако при этом перенос 2Н от малоната не происходит, так как структуры малоната и сукцината всё же несколько отличаются и они будут конкурировать за связывание с активным центром СДГ и степень торможения будет определена соотношением концентраций малоната и сукцината. Особенность этого ингибирования – обратимость за счёт увеличения {S}.


I(+) E + I ------ EI




Часто имеет место частично неконкурентное ингибирование, при котором снижение Vmax сочетается с повышением Km. В редких случаях степень торможения активности фермента может повышаться с повышением {S}. Это так называемое бесконкурентное ингибирование . В этом случае возможно соединение ингибитора с комплексом ES, следовательно, образуется неактивный или медленно реагирующий комплекс

ES + I ------ ESI

Действие многих лекарств основано как раз на этих всех методах ингибирования. Так, например, сульфаниламидные препараты применяются для лечения некоторых инфекций, которые имеют структурное сходство с ПАБК, которую бактериальная клетка использует в каестве субстрата для синтеза фолиевой кислоты. Благодаря сходству сульфаниламид блокирует действие фермента путём вытеснения ПАБК из комплекса ES , что ведёт к снижению роста бактерий. Это конкурентное ингибирование .

Оглавление темы "Ингибирование. Клетка.":









В этом случае вещество, близкое по своей структуре к обычному субстрату фермента , соединяется с активным центром фермента, но не может прореагировать с ним. Находясь здесь, оно преграждает доступ к активному центру любой молекуле настоящего субстрата.

Поскольку в этом случае ингибитор и субстрат конкурируют за место на активном центре фермента , эту форму ингибирования называют конкурентным ингиЖированием. Для конкурентного ингибирования характерно, что, если концентрация субстрата увеличивается, то скорость реакции возрастает, т. е. это ингибирование обратимо.

Рисунок иллюстрирует один из примеров конкурентного ингибирования .

Явление конкурентного ингибирования помогает понять механизм действия некоторых лекарственных препаратов, в частности сульфаниламидов. Цель химиотерапии - уничтожить при помощи тех или иных химических препаратов возбудителя болезни, не повреждая при этом ткани организма-хозяина. Первыми такими препаратами были сульфаниламиды, антибактериальное действие которых было обнаружено в 30-е годы XX в. Во время второй мировой войны их широко применяли для борьбы с раневыми инфекциями. Сульфаниламиды по своей химической природе близки к парааминобензойной кислоте (ПАБК) - необходимому фактору роста многих патогенных бактерий. ПАБК требуется бактериям для синтеза фолиевой кислоты, которая служит у них одним из кофакторов ферментов. Сульфаниламиды ингибируют один из ферментов, участвующих в синтезе фолиевой кислоты из ПАБК.

Животные клетки нечувствительны к сульфаниламидам , хотя им для некоторых реакций и требуется фолиевая . Объясняется это тем, что они используют уже образованную фолиевую кислоту; метаболический путь, который бы обеспечивал ее синтез, у них отсутствует.

Неконкурентное обратимое ингибирование

Ингибиторы этого типа не родственны по своей структуре субстрату данного фермента; в образовании комплекса с ингибитором участвует в этом случае не активный центр фермента, а какая-нибудь другая часть его молекулы. Это не препятствует соединению субстрата с ферментом, но делает невозможным катализ.

С повышением концентрации ингибитора скорость реакции все более снижается. К моменту насыщения ингибитором она оказывается практически равной нулю. В отличие от конкурентного инги-бирования в этом случае повышение концентрации субстрата на скорость реакции не влияет.

Различают обратимое и необратимое ингибирование. Если ингибитор вызывает стойкие изменения пространственной третичной структуры молекулы фермента или модификацию функциональных групп фермента, то такой тип ингибирования называется необратимым. Чаще, однако, имеет место обратимое ингибирование, поддающееся количественному изучению на основе уравнения Михаэлиса-Ментен. Обратимое ингибирование в свою очередь разделяют на конкурентное и неконкурентное в зависимости от того, удается или не удается преодолеть торможение ферментативной реакции путем увеличения концентрации субстрата.

Конкурентное ингибирование может быть вызвано веществами, имеющими структуру, похожую на структурусубстрата, но несколько отличающуюся от структуры истинного субстрата. Такое ингибирование основано на связывании ингибитора с субстратсвязывающим (активным) центром. Классическим примером подобного типа ингибирования является торможение сукцинатдегидрогеназы (СДГ) малоновой кислотой. Этот ферменткатализирует окисление путем дегидрирования янтарной кислоты (сукцината) в фумаровую:

Если в среду добавить малонат (ингибитор), то в результате структурного сходства его с истиннымсубстратом сукцинатом (наличие двух таких же ионизированных карбоксильных групп) он будет взаимодействовать с активным центром с образованием фермент-ингибиторного комплекса, однако при этом полностью исключается перенос атома водорода от малоната. Структуры субстрата (сукцинат) и ингибитора(малонат) все же несколько различаются. Поэтому они конкурируют за связывание с активным центром, и степень торможения будет определяться соотношением концентраций малоната и сукцината, а не абсолютной концентрацией ингибитора. Таким образом, ингибитор может обратимо связываться сферментом, образуя фермент-ингибиторный комплекс. Этот тип ингиби-рования иногда называют ингибированием по типу метаболического антагонизма (рис. 4.20).

В общей форме реакция взаимодействия ингибитора с ферментом может быть представлена следующим уравнением:

Образовавшийся комплекс, называемый фермент-ингибиторным комплексом ЕI, в отличие от фермент-субстратного комплекса ES не распадается с образованием продуктов реакции. Константу диссоциациикомплекса EI, или ингибиторную константу К i , можно, следуя теории Михаэлиса–Мен-тен, определить как отношение констант обратной и прямой реакций:

Метод конкурентного торможения нашел широкое применение в медицинской практике. Известно, например, что для лечения некоторых инфекционных заболеваний, вызываемых бактериями, применяютсульфаниламидные препараты. Оказалось, что эти препараты имеют структурное сходство спарааминобензойной кислотой, которую бактериальная клетка использует для синтеза фолиевой кислоты, являющейся составной частью


Рис. 4.20. Действие конкурентного ингибитора (схема по В.Л. Кретовичу). Е - фермент; S - субстрат; Р 1 и Р 2 - продукты реакции; I - ингибитор.

ферментов бактерий. Благодаря этому структурному сходству сульфаниламид блокирует действие ферментапутем вытеснения парааминобензой-ной кислоты из комплекса с ферментом, синтезирующим фолиевую кислоту, что ведет к торможению роста бактерий.

Неконкурентное ингибирование вызывается веществами, не имеющими структурного сходства с субстратами и часто связывающимися не с активным центром, а в другом месте молекулы фермента. Степень торможения во многих случаях определяется продолжительностью действия ингибитора на фермент. При данном типе ингибирования благодаря образованию стабильной ковалентной связи фермент часто подвергается полной инактивации, и тогда торможение становится необратимым. Примером необратимого ингибирования является действие йодацетата, ДФФ, а также диэтил-n-нитрофенилфосфата и солей синильной кислоты. Это действие заключается в связывании и выключении функциональных групп или ионов металлов и молекулефермента.


Все типы ингибирования ферментов можно разделить на две большие группы: необратимое и обратимое ингибирование. Необратимые ингибиторы прочно связываются с молекулой фермента, и после удаления ингибитора (например, с помощью диализа), активность фермента не восстанавливается. Наиболее известными необратимыми ингибиторами являются фосфорорганические яды, применяемые в качестве инсектицидов и как боевые отравляющие вещества, цианиды и ионы тяжелых металлов, например, ртути, кадмия, меди, свинца, связывающиеся с карбоксильными и сульфгидрильными (- SH) группами в белках.

Обратимые ингибиторы отделяются от комплекса фермента с ингибитором при понижении их концентрации, и фермент восстанавливает свою каталитическую активность. По типу воздействия на зависимость ферментативной реакции от концентрации субстрата обратимые ингибиторы делятся на конкурентные, неконкурентные , безконкурентные и смешанные.

Конкурентные ингибиторы являются структурными аналогами субстрата и связываются в активном центре фермента, конкурируя с субстратом за место связывания. Они вызывают увеличение (ухудшение) константы Михаэлиса, но не влияют на максимальную скорость реакции (рис.9)

Рис. 9. Зависимость скорости ферментативной реакции от концентрации субстрата в присутствии конкурентного ингибитора (а) и ее представление в двойных обратных координатах (б). Где 1 – график без ингибитора, 2 - график с ингибитором. Vi – Vмах в присутствии ингибитора.

Неконкурентное ингибирование наблюдается, если ингибитор связывается вне активного центра. К неконкурентным ингибиторам относятся, например, тиоловые яды.

Неконкурентные ингибиторы не влияют на константу Михаэлиса, но уменьшают максимальную скорость ферментативной реакции (рис.8):

Рис. 10. Зависимость скорости ферментативной реакции от концентрации субстрата в присутствии неконкурентного ингибитора. Обозначения как на рисунке 9.

Бесконкурентное ингибирование - ингибитор связывается только с фермент-субстратным комплексом, но не со свободным ферментом, изменяя его конформацию, что затрудняет катализ. Максимальная скорость реакции и константа Михаэлиса уменьшаются в одинаковое количество раз и на графике в двойных обратных координатах наблюдаются параллельные прямые (рис.11).

Рис. 11. Зависимость скорости ферментативной реакции от концентрации субстрата в присутствии бесконкурентного ингибитора.

Смешанное ингибирование встречается, если ингибитор связывается как в активном центре, так и вне его, а комплекс ЕI сохраняет частичную активность по сравнению с нативным ферментом. Такие ингибиторы увеличивают константу Михаэлиса и уменьшают максимальную скорость ферментативной реакции. В двойных обратных координатах ситуация выглядит так (рис.12):

Рис.12. Представление зависимости скорости ферментативной реакции от концентрации субстрата в присутствии смешанного ингибитора в двойных обратных координатах.

Типы обратимого ингибирования ферментов представлены в таблице.

Классификация ферментов

Стремительное развитие энзимологии в 20 веке привело к тому, что остро встала проблема разработки единой классификации и унификации названий ферментов. В 1961 г. на V Международном биохимическом конгрессе в Москве была утверждена современная классификация ферментов, в основе которой лежит их разделение на шесть классов в зависимости от типа катализируемой реакции .

1) Оксидоредуктазы катализируют окислительно-восстановительные реакции.

Пример: исп.

В большинстве случаев дегидрогеназы катализируют обратимые реакции

2) Трансферазы катализируют реакции межмолекулярного переноса различных групп атомов,

где Т - транспортируемая группа,

АТ – субстрат – донор,

В – субстрат - акцептор транспортируемой группы.

Пример 1 – аминотрансферазы, переносят альфа-аминогруппу аминокислот на место альфа-кетогруппы в кетокислотах. На схеме АЛТ – аланинаминотрансфераза.

Пример 2 - один из наиболее распространённых видов посттрансляционной модификации белка (синтез фосфопротеинов) - фосфорилирование, которое катализируют фосфотрансферазы (киназы), осуществляющие перенос фосфатной группы от молекулы аденозинтрифосфата (АТФ) на различные субстраты.

3) Гидролазы катализируют расщепление внутримолекулярных связей с присоединением воды по разорванной связи:

Где А-В - субстрат

В качестве примеров гидролаз можно привести протеиназы, катализирующие расщепление белков и пептидов; эстеразы, гидролизующие сложноэфирные связи, гликозидазы, разрывающие гликозидные связи с присоединением воды. Все пищеварительные ферменты относятся к классу гидролаз (некоторые из них: пепсин, трипсин, химотрипсин, амилаза, липаза, рибонуклеаза).

4) Лиазы катализируют разрыв и синтез связей С-О, С-N, С-C, а также обратимые реакции негидролитического отщепления групп с образованием двойной связи.

5) Изомеразы. К классу изомераз относят ферменты, катализирующие обратимые взаимопревращения изомеров. В качестве примера приведем следующую реакцию:

6) Лигазы (синтетазы) катализируют реакции синтеза различных веществ с использованием энергии АТФ или других макроэргических молекул. В качестве примера можно привести синтез карбамоилфосфата.

На основании приведенной системы классификации ферментов (КФ) был издан список ферментов, где каждому ферменту присвоен четырехзначный номер (номенклатура ферментов). Первая цифра номера указывает на принадлежность фермента к одному из шести классов. В пределах классов ферменты группируются в подклассы и подподклассы в соответствии с особенностями катализируемых реакций, четвертое число - порядковый номер фермента в его подподклассе.

Например, кислая фосфатаза имеет шифр 3.1.3.2; это означает, что она относится к классу гидролаз (3.), подклассу этих ферментов, действующих на сложноэфирные связи (3.1.), к подподклассу ферментов, гидролизующих моноэфиры фосфорной кислоты (3.1.3.), а порядковый номер фермента в данном подподклассе - 2 (3.1.3.2).


Конкурентное ингибирование

Существуют обратимые ингибиторы двух типов – конкурентные и неконкурентные. Изучение обратимых ингибиторов ферментов позволило получить весьма важные сведения о структуре активных центров различных ферментов.

Конкурентный ингибитор конкурирует с субстратом за связывание с активным центром, но в отличие от субстрата связанный с ферментом конкурентный ингибитор не подвергается ферментативному превращению (Рисунок 1). Отличительная особенность конкурентного ингибирования состоит в том, что его можно устранить или ослабить, просто повысив концентрацию субстрата.

Рисунок 1- Схема конкурентного ингибирования активности фермента

Например, если при заданных концентрациях субстрата и конкурентного ингибитора активность фермента подавлена на 50%, то мы можем уменьшить степень ингибирования, повысив концентрацию субстрата.

По своей трехмерной структуре конкурентные ингибиторы обычно напоминают субстрат данного фермента. Благодаря такому сходству конкурентному ингибитору удается «обмануть» фермент и связаться с ним. Конкурентное ингибирование можно количественно изучать на основе теории МихаэлисаМентен. Конкурентньпй ингибитор I просто обратимо присоединяется к ферменту Е, образуя с ним комплекс EI.Однако в отличие от субстрата ингибитор не подвергается действию фермента и новые продукты реакции не образуются (Рисунок 1).

Классическим примером конкурентного ингибирования служит ингибирование сукцинатдегидрогеназы анионом малоновой кислоты (Рисунок 2). Сукцинатдегидрогеназа входит в состав группы ферментов, катализирующих реакции цикла трикарбоновых кислот - конечный метаболический путь окислительного разрушения углеводов и жиров в митохондриях. Этот фермент катализирует отщепление двух атомов водорода от сукцината - по одому от каждой из двух метиленовых (-СН 2 -) групп. Сукцинатдегидрогеназа ингибируется малонатом, который напоминает сукцинат тем, что он также содержит две карбоксильные группы, принимающие при рН 7,0 ионизированную (депротонированную) форму. Однако он отличается от сукцината тем, что в его молекуле имеется только три атома углерода. Сукцинат-дегидрогеназа не способна отщеплять водород от малоната, но мапонат занимает активный центр фермента, не давая ему возможности взаимодействовать с нормальным субстратом. Малонат является обратимым ингибитором, так как повышение концентрации сукцината при заданной концентрации малоната снижает степень ингибирования фермента. В качестве конкурентных ингибиторов сукцинатдегидрогеназы могут выступать и другие соединения, содержащие две отрицательно заряженные группы, расположенные на соответствующем расстоянии друг от друга. К ним относится, например, оксалоацетат - промежуточный продукт в цикле трикарбоновых кислот.


Рисунок 2 - Реакция, катализируемая сукцинатдегидрогеназой, и ее конкурентное ингибирование

Конкурентные ингибиторы напоминают в структурном отношении сукципат: они содержат две определенным образом расположенные в пространстве отрицательно заряженные группы, которые соответствуют конформацин активного центра.

Изучение структурных особенностей всех этих ингибиторов позволило сделать вывод, что в каталитическом центре сукцинатдегидрогеназы находятся две определенным образом расположенные в пространстве положительно заряженные группы, способные притягивать две отрицательно заряженные карбоксильные группы сукцинат-аниона. Таким образом, каталитический центр сукцинатдегидрогеназы оказывается комплементарным структуре своего субстрата (Рисунок 2).

Конкурентное ингибирование проще всего можно распознать экспериментальным путем, определив влияние концентрации ингибитора на зависимость начальной скорости реакции от концентрации субстрата. Для выяснения вопроса о том, по какому типу конкурентному или неконкурентному происходит обратимое ингибирование фермента, весьма удобно преобразовать уравнение Михаэлиса-Ментен в линейную форму. Чаще всего для этой цели используют метод двойных обратных величин. Из графиков, построенных в двойных обратных координатах, можно определить также значение константы диссоциации комплекса фермент ингибитор. Для реакции диссоциации

константа диссоциации равна