Ядерные реакции. Термоядерный синтез

Вторая половина XX века была периодом бурного развития ядерной физики. Стало ясно, что ядерные реакции можно использовать для получения огромной энергии из мизерного количества топлива. От взрыва первой ядерной бомбы до первой АЭС прошло всего девять лет, и когда в 1952 году была испытана водородная бомба, появились прогнозы, что уже в 1960-х вступят в строй термоядерные электростанции. Увы, эти надежды не оправдались.

Термоядерные реакции Из всех термоядерных реакций в ближайшей перспективе интересны лишь четыре: дейтерий+дейтерий (продукты – тритий и протон, выделяемая энергия 4,0 МэВ), дейтерий+дейтерий (гелий-3 и нейтрон, 3,3 МэВ), дейтерий+тритий (гелий-4 и нейтрон, 17,6 МэВ) и дейтерий+гелий-3 (гелий-4 и протон, 18,2 МэВ). Первая и вторая реакции идут параллельно с равной вероятностью. Образующиеся тритий и гелий-3 «сгорают» в третьей и четвертой реакциях

Игорь Егоров

Основной источник энергии для человечества в настоящее время — сжигание угля, нефти и газа. Но их запасы ограничены, а продукты сгорания загрязняют окружающую среду. Угольная электростанция дает больше радиоактивных выбросов, чем АЭС такой же мощности! Так почему же мы до сих пор не перешли на ядерные источники энергии? Причин тому много, но главной из них в последнее время стала радиофобия. Несмотря на то что угольная электростанция даже при штатной работе вредит здоровью куда большего числа людей, чем аварийные выбросы на АЭС, она делает это тихо и незаметно для публики. Аварии же на АЭС сразу становятся главными новостями в СМИ, вызывая общую панику (часто совершенно необоснованную). Впрочем, это вовсе не означает, что у ядерной энергетики нет объективных проблем. Немало хлопот доставляют радиоактивные отходы: технологии работы с ними все еще крайне дороги, и до идеальной ситуации, когда все они будут полностью перерабатываться и использоваться, еще далеко.


Из всех термоядерных реакций в ближайшей перспективе интересны лишь четыре: дейтерий+дейтерий (продукты — тритий и протон, выделяемая энергия 4,0 МэВ), дейтерий+дейтерий (гелий-3 и нейтрон, 3,3 МэВ), дейтерий+тритий (гелий-4 и нейтрон, 17,6 МэВ) и дейтерий+гелий-3 (гелий-4 и протон, 18,2 МэВ). Первая и вторая реакции идут параллельно с равной вероятностью. Образующиеся тритий и гелий-3 «сгорают» в третьей и четвертой реакциях.

От деления к синтезу

Потенциально решить эти проблемы позволяет переход от реакторов деления к реакторам синтеза. Если типичный реактор деления содержит десятки тонн радиоактивного топлива, которое преобразуется в десятки тонн радиоактивных отходов, содержащих самые разнообразные радиоактивные изотопы, то реактор синтеза использует лишь сотни граммов, максимум килограммы, одного радиоактивного изотопа водорода — трития. Кроме того, что для реакции требуется ничтожное количество этого наименее опасного радиоактивного изотопа, его производство к тому же планируется осуществлять непосредственно на электростанции, чтобы минимизировать риски, связанные с транспортировкой. Продуктами синтеза являются стабильные (не радиоактивные) и нетоксичные водород и гелий. Кроме того, в отличие от реакции деления, термоядерная реакция при разрушении установки моментально прекращается, не создавая опасности теплового взрыва. Так почему же до сих пор не построено ни одной действующей термоядерной электростанции? Причина в том, что из перечисленных преимуществ неизбежно вытекают недостатки: создать условия синтеза оказалось куда сложнее, чем предполагалось в начале.

Критерий Лоусона

Чтобы термоядерная реакция была энергетически выгодной, нужно обеспечить достаточно высокую температуру термоядерного топлива, достаточно высокую его плотность и достаточно малые потери энергии. Последние численно характеризуются так называемым «временем удержания», которое равно отношению запасённой в плазме тепловой энергии к мощности потерь энергии (многие ошибочно полагают, что «время удержания» — это время, в течение которого в установке поддерживается горячая плазма, но это не так). При температуре смеси дейтерия и трития, равной 10 кэВ (примерно 110 000 000 градусов), нам нужно получить произведение числа частиц топлива в 1 см 3 (т.е. концентрации плазмы) на время удержания (в секундах) не менее 10 14 . При этом неважно, будет ли у нас плазма с концентрацией 1014 см -3 и временем удержания 1 с, или плазма с концентрацией 10 23 и время удержания 1 нс. Это критерий называется «критерием Лоусона».
Кроме критерия Лоусона, отвечающего за получение энергетически выгодной реакции, существует ещё критерий зажигания плазмы, который для дейтерий-тритиевой реакции примерно втрое больше критерия Лоусона. «Зажигание» означает, что той доли термоядерной энергии, что остаётся в плазме, будет хватать для поддержания необходимой температуры, и дополнительный нагрев плазмы больше не потребуется.

Z-пинч

Первым устройством, в котором планировалось получить управляемую термоядерную реакцию, стал так называемый Z-пинч. Эта установка в простейшем случае состоит всего из двух электродов, находящихся среде дейтерия (водорода-2) или смеси дейтерия и трития, и батареи высоковольтных импульсных конденсаторов. На первый взгляд кажется, что она позволяет получить сжатую плазму, разогретую до огромной температуры: именно то, что нужно для термоядерной реакции! Однако в жизни все оказалось, увы, далеко не так радужно. Плазменный жгут оказался неустойчивым: малейший его изгиб приводит к усилению магнитного поля с одной стороны и ослаблению с другой, возникающие силы еще больше увеличивают изгиб жгута — и вся плазма «вываливается» на боковую стенку камеры. Жгут неустойчив не только к изгибу, малейшее его утоньшение приводит к усилению в этой части магнитного поля, которое еще сильнее сжимает плазму, выдавливая ее в оставшийся объем жгута, пока жгут не будет окончательно «передавлен». Передавленная часть обладает большим электрическим сопротивлением, так что ток обрывается, магнитное поле исчезает, и вся плазма рассеивается.


Принцип работы Z-пинча прост: электрический ток порождает кольцевое магнитное поле, которое взаимодействует с этим же током и сжимает его. В результате плотность и температура плазмы, через которую течёт ток, возрастают.

Стабилизировать плазменный жгут удалось, наложив на него мощное внешнее магнитное поле, параллельное току, и поместив в толстый проводящий кожух (при перемещении плазмы перемещается и магнитное поле, что индуцирует в кожухе электрический ток, стремящийся вернуть плазму на место). Плазма перестала изгибаться и пережиматься, но до термоядерной реакции в сколько-нибудь серьезных масштабах все равно было далеко: плазма касается электродов и отдает им свое тепло.

Современные работы в области синтеза на Z-пинче предполагают еще один принцип создания термоядерной плазмы: ток протекает через трубку из плазмы вольфрама, которая создает мощное рентгеновское излучение, сжимающее и разогревающее капсулу с термоядерным топливом, находящуюся внутри плазменной трубки, подобно тому, как это происходит в термоядерной бомбе. Однако эти работы имеют чисто исследовательский характер (изучаются механизмы работы ядерного оружия), а выделение энергии в этом процессе все еще в миллионы раз меньше, чем потребление.


Чем меньше отношение большого радиуса тора токамака (расстояния от центра всего тора до центра поперечного сечения его трубы) к малому (радиусу сечения трубы), тем больше может быть давление плазмы при том же магнитном поле. Уменьшая это отношение, учёные перешли от круглого сечения плазмы и вакуумной камеры к D-образному (в этом случае роль малого радиуса выполняет половина высоты сечения). У всех современных токамаков форма сечения именно такая. Предельным случаем стал так называемый «сферический токамак». В таких токамаках вакуумная камера и плазма имеют почти сферическую форму, за исключением узкого канала, соединяющего полюса сферы. В канале проходят проводники магнитных катушек. Первый сферический токамак, START, появился лишь в 1991-м году, так что это достаточно молодое направление, но оно уже показало возможность получить то же давление плазмы при втрое меньшем магнитном поле.

Пробкотрон, стелларатор, токамак

Другой вариант создания необходимых для реакции условий — так называемые открытые магнитные ловушки. Самая известная из них — «пробкотрон»: труба с продольным магнитным полем, которое усиливается на ее концах и ослабевает в середине. Увеличенное на концах поле создает «магнитную пробку» (откуда русское название), или «магнитное зеркало» (английское — mirror machine), которое удерживает плазму от выхода за пределы установки через торцы. Однако такое удержание неполное, часть заряженных частиц, движущихся по определенным траекториям, оказывается способной пройти через эти пробки. А в результате столкновений любая частица рано или поздно попадет на такую траекторию. Кроме того, плазма в пробкотроне оказалась еще и неустойчивой: если в каком-то месте небольшой участок плазмы удаляется от оси установки, возникают силы, выбрасывающие плазму на стенку камеры. Хотя базовая идея пробкотрона была значительно усовершенствована (что позволило уменьшить как неустойчивость плазмы, так и проницаемость пробок), к параметрам, необходимым для энергетически выгодного синтеза, на практике даже приблизиться не удалось.


Можно ли сделать так, чтобы плазма не уходила через «пробки»? Казалось бы, очевидное решение — свернуть плазму в кольцо. Однако тогда магнитное поле внутри кольца получается сильнее, чем снаружи, и плазма снова стремится уйти на стенку камеры. Выход из этой непростой ситуации тоже казался довольно очевидным: вместо кольца сделать «восьмерку», тогда на одном участке частица будет удаляться от оси установки, а на другом — возвращаться назад. Именно так ученые пришли к идее первого стелларатора. Но такую «восьмерку» нельзя сделать в одной плоскости, так что пришлось использовать третье измерение, изгибая магнитное поле во втором направлении, что тоже привело к постепенному уходу частиц от оси к стенке камеры.

Ситуация резко изменилась с созданием установок типа «токамак». Результаты, полученные на токамаке Т-3 во второй половине 1960-х годов, были столь ошеломляющими для того времени, что западные ученые приезжали в СССР со своим измерительным оборудованием, чтобы убедиться в параметрах плазмы самостоятельно. Реальность даже превзошла их ожидания.


Эти фантастически переплетенные трубы не арт-проект, а камера стелларатора, изогнутая в виде сложной трехмерной кривой.

В руках инерции

Помимо магнитного удержания существует и принципиально иной подход к термоядерному синтезу — инерциальное удержание. Если в первом случае мы стараемся долгое время удерживать плазму очень низкой концентрации (концентрация молекул в воздухе вокруг вас в сотни тысяч раз больше), то во втором — сжимаем плазму до огромной плотности, на порядок выше плотности самых тяжелых металлов, в расчете, что реакция успеет пройти за то короткое время, пока плазма не успела разлететься в стороны.

Первоначально, в 1960-х годах, планировалось использовать маленький шарик из замороженного термоядерного топлива, равномерно облучаемый со всех сторон множеством лазерных лучей. Поверхность шарика должна была моментально испариться и, равномерно расширяясь во все стороны, сжать и нагреть оставшуюся часть топлива. Однако на практике облучение оказалось недостаточно равномерным. Кроме того, часть энергии излучения передавалась во внутренние слои, вызывая их нагрев, что усложняло сжатие. В итоге шарик сжимался неравномерно и слабо.


Есть ряд современных конфигураций стеллараторов, и все они близки к тору. Одна из наиболее распространённых конфигураций предполагает использование катушек, аналогичных катушкам полоидального поля токамаков, и четырёх-шести скрученных винтом вокруг вакуумной камеры проводников с разнонаправленным током. Создаваемое при этом сложное магнитное поле позволяет надёжно удерживать плазму, не требуя протекания через неё кольцевого электрического тока. Кроме того, в стеллараторах могут быть использованы и катушки тороидального поля, как у токамаков. А винтовые проводники могут отсутствовать, но тогда катушки «тороидального» поля устанавливаются вдоль сложной трёхмерной кривой. Последние разработки в области стеллараторов предполагают использование магнитных катушек и вакуумной камеры очень сложной формы (сильно «мятый» тор), просчитанной на компьютере.

Проблему неравномерности удалось решить, существенно изменив конструкцию мишени. Теперь шарик размещается внутри специальной небольшой металлической камеры (она называется «хольраум», от нем. hohlraum — полость) с отверстиями, через которые внутрь попадают лазерные лучи. Кроме того, используются кристаллы, конвертирующие лазерное излучение ИК-диапазона в ультрафиолетовое. Это УФ-излучение поглощается тончайшим слоем материала хольраума, который при этом нагревается до огромной температуры и излучает в области мягкого рентгена. В свою очередь, рентгеновское излучение поглощается тончайшим слоем на поверхности топливной капсулы (шарика с топливом). Это же позволило решить и проблему преждевременного нагрева внутренних слоев.

Однако мощность лазеров оказалась недостаточной для того, чтобы в реакцию успела вступить заметная часть топлива. Кроме того, эффективность лазеров была весьма мала, лишь около 1%. Чтобы синтез был энергетически выгодным при таком низком КПД лазеров, должно было прореагировать практически все сжатое топливо. При попытках заменить лазеры на пучки легких или тяжелых ионов, которые можно генерировать с куда большим КПД, ученые также столкнулись с массой проблем: легкие ионы отталкиваются друг от друга, что мешает их фокусировке, и тормозятся при столкновениях с остаточным газом в камере, а ускорителей тяжелых ионов с нужными параметрами создать не удалось.

Магнитные перспективы

Большинство надежд в области термоядерной энергетики сейчас связано с токамаками. Особенно после открытия у них режима с улучшенным удержанием. Токамак является одновременно и свернутым в кольцо Z-пинчем (по плазме протекает кольцевой электрический ток, создающий магнитное поле, необходимое для ее удержания), и последовательностью пробкотронов, собранных в кольцо и создающих «гофрированное» тороидальное магнитное поле. Кроме того, на тороидальное поле катушек и поле плазменного тока накладывается перпендикулярное плоскости тора поле, создаваемое несколькими отдельными катушками. Это дополнительное поле, называемое полоидальным, усиливает магнитное поле плазменного тока (также полоидальное) с внешней стороны тора и ослабляет его с внутренней стороны. Таким образом суммарное магнитное поле со всех сторон от плазменного жгута оказывается одинаковым, и его положение остается стабильным. Меняя это дополнительное поле, можно в определенных пределах перемещать плазменный жгут внутри вакуумной камеры.


Принципиально иной подход к синтезу предлагает концепция мюонного катализа. Мюон — это нестабильная элементарная частица, имеющая такой же заряд, как и электрон, но в 207 раз большую массу. Мюон может замещать электрон в атоме водорода, при этом размер атома уменьшается в 207 раз. Это позволяет одному ядру водорода приближаться к другому, не затрачивая на это энергию. Но на получение одного мюона тратится порядка 10 ГэВ энергии, что означает необходимость произвести нескольких тысяч реакций синтеза на один мюон для получения энергетической выгодны. Из-за возможности «прилипания» мюона к образующемуся в реакции гелию пока не удалось достичь более нескольких сотен реакций. На фото — сборка стелларатора Wendelstein z-x института физики плазмы Макса Планка.

Важной проблемой токамаков долгое время была необходимость создавать в плазме кольцевой ток. Для этого через центральное отверстие тора токамака пропускали магнитопровод, магнитный поток в котором непрерывно изменяли. Изменение магнитного потока рождает вихревое электрическое поле, которое ионизирует газ в вакуумной камере и поддерживает ток в получившейся плазме. Однако ток в плазме должен поддерживаться непрерывно, а это означает, что магнитный поток должен непрерывно изменяться в одном направлении. Это, разумеется, невозможно, так что ток в токамаках удавалось поддерживать лишь ограниченное время (от долей секунды до нескольких секунд). К счастью, был обнаружен так называемый бутстреп-ток, который возникает в плазме без внешнего вихревого поля. Кроме того, были разработаны методы нагрева плазмы, одновременно вызывающие в ней необходимый кольцевой ток. Совместно это дало потенциальную возможность сколь угодно длительного поддержания горячей плазмы. На практике рекорд на данный момент принадлежит токамаку Tore Supra, где плазма непрерывно «горела» более шести минут.


Второй тип установок удержания плазмы, с которым связаны большие надежды, — это стеллараторы. За прошедшие десятилетия конструкция стеллараторов кардинально изменилась. От первоначальной «восьмерки» почти ничего не осталось, и эти установки стали гораздо ближе к токамакам. Хотя пока время удержания у стеллараторов меньше, чем у токамаков (из-за менее эффективной H-моды), а себестоимость их постройки выше, поведение плазмы в них более спокойное, что означает более высокий ресурс первой внутренней стенки вакуумной камеры. Для коммерческого освоения термоядерного синтеза этот фактор представляет очень большое значение.

Выбор реакции

На первый взгляд, в качестве термоядерного топлива логичнее всего использовать чистый дейтерий: он стоит относительно дёшево и безопасен. Однако дейтерий с дейтерием реагирует в сотню раз менее охотно, чем с тритием. Это означает, что для работы реактора на смеси дейтерия и трития достаточно температуры 10 кэВ, а для работы на чистом дейтерии нужна температура более 50 кэВ. А чем выше температура — тем выше потери энергии. Поэтому как минимум первое время термоядерную энергетику планируется строить на дейтерий-тритиевом топливе. Тритий при этом будет нарабатываться в самом реакторе за счёт облучения образующимися в нём быстрыми нейтронами лития.
«Неправильные» нейтроны. В культовом фильме «9 дней одного года» главный герой, работая на термоядерной установке, получил серьёзную дозу нейтронного облучения. Однако позднее оказалось, что нейтроны эти рождены не в результате реакции синтеза. Это не выдумка режиссера, а реальный эффект, наблюдаемый в Z-пинчах. В момент обрыва электрического тока индуктивность плазмы приводит к генерации огромного напряжения — миллионы вольт. Отдельные ионы водорода, ускорившись в этом поле, способны буквально выбивать нейтроны из электродов. Поначалу это явление действительно было принято за верный признак протекания термоядерной реакции, но последующий анализ спектра энергий нейтронов показал, что они имеют иное происхождение.
Режим с улучшенным удержанием. H-мода токамака — это такой режим его работы, когда при большой мощности дополнительного нагрева потери плазмой энергии резко уменьшаются. Случайное открытие в 1982 году режима с улучшенным удержанием по своей значимости не уступает изобретению самого токамака. Общепринятой теории этого явления пока еще не существует, но это ничуть не мешает использовать его на практике. Все современные токамаки работают в этом режиме, так как он уменьшает потери более чем в два раза. Впоследствии подобный режим был обнаружен и на стеллараторах, что указывает на то, что это общее свойство тороидальных систем, однако на них удержание улучшается лишь примерно на 30%.
Нагрев плазмы. Существует три основных метода нагрева плазмы до термоядерных температур. Омический нагрев — это нагрев плазмы за счёт протекания через неё электрического тока. Этот метод наиболее эффективен на первых этапах, так как с ростом температуры у плазмы снижается электрическое сопротивление. Электромагнитный нагрев использует электромагнитные волны с частотой, совпадающей с частотой вращения вокруг магнитных силовых линий электронов или ионов. При инжекции быстрых нейтральных атомов создаётся поток отрицательных ионов, которые затем нейтрализуются, превращаясь в нейтральные атомы, способные проходить через магнитное поле в центр плазмы, чтобы передать свою энергию именно там.
А реакторы ли это? Тритий радиоактивен, а мощное нейтронное облучение от D-T реакции создаёт наведённую радиоактивность в элементах конструкции реактора. Приходится использовать роботов, что усложняет работу. В то же время поведение плазмы обычного водорода или дейтерия весьма близко к поведению плазмы из смеси дейтерия и трития. Это привело к тому, что за всю историю лишь две термоядерные установки полноценно работали на смеси дейтерия и трития: токамаки TFTR и JET. На остальных установках даже дейтерий используется далеко не всегда. Так что название «термоядерная» в определении установки вовсе не означает, что в ней когда-либо реально происходили термоядерные реакции (а в тех, где происходят, почти всегда используют чистый дейтерий).
Гибридный реактор. D-T реакция рождает 14 МэВ нейтроны, которые могут делить даже обеднённый уран. Деление одного ядра урана сопровождается выделением примерно 200 МэВ энергии, что в десять с лишним раз превосходит энергию, выделяющуюся при синтезе. Так что уже существующие токамаки могли бы стать энергетически выгодными, если бы их окружили урановой оболочкой. Перед реакторами деления такие гибридные реакторы имели бы преимущество в невозможности развития в них неуправляемой цепной реакции. Кроме того, крайне интенсивные потоки нейтронов должны перерабатывать долгоживущие продукты деления урана в короткоживущие, что существенно снижает проблему захоронения отходов.

Инерциальные надежды

Инерциальный синтез тоже не стоит на месте. За десятки лет развития лазерной техники появились перспективы повысить КПД лазеров примерно в десять раз. А их мощность на практике удалось повысить в сотни и тысячи раз. Ведутся работы и над ускорителями тяжелых ионов с параметрами, пригодными для термоядерного применения. Кроме того, важнейшим фактором прогресса в области инерциального синтеза стала концепция «быстрого поджига». Она предполагает использование двух импульсов: один сжимает термоядерное топливо, а другой разогревает его небольшую часть. Предполагается, что начавшаяся в небольшой части топлива реакция впоследствии распространится дальше и охватит все топливо. Такой подход позволяет существенно снизить затраты энергии, а значит, сделать реакцию выгодной при меньшей доле прореагировавшего топлива.

Проблемы токамаков

Несмотря на прогресс установок иных типов, токамаки на данный момент все равно остаются вне конкуренции: если на двух токамаках (TFTR и JET) еще в 1990-х реально было получено выделение термоядерной энергии, приблизительно равное затратам энергии на нагрев плазмы (пусть такой режим и длился лишь около секунды), то на установках других типов ничего подобного добиться не удалось. Даже простое увеличение размеров токамаков приведет к осуществимости в них энергетически выгодного синтеза. Сейчас во Франции строится международный реактор ITER, который должен будет продемонстрировать это на практике.


Однако проблем хватает и у токамаков. ITER стоит миллиарды долларов, что неприемлемо для будущих коммерческих реакторов. Ни один реактор не работал непрерывно в течение даже нескольких часов, не говоря уж о неделях и месяцах, что опять же необходимо для промышленного применения. Пока нет уверенности, что материалы внутренней стенки вакуумной камеры смогут выдержать длительное воздействие плазмы.

Сделать проект менее затратным сможет концепция токамака с сильным полем. За счет увеличения поля в два-три раза планируется получить нужные параметры плазмы в относительно небольшой установке. На такой концепции, в частности, основан реактор Ignitor, который совместно с итальянскими коллегами сейчас начинают строить в подмосковном ТРИНИТИ (Троицкий институт инновационных и термоядерных исследований). Если расчеты инженеров оправдаются, то при многократно меньшей по сравнению с ITER цене в этом реакторе удастся получить зажигание плазмы.

Вперед, к звездам!

Продукты термоядерной реакции разлетаются в разные стороны со скоростями, составляющими тысячи километров в секунду. Это делает возможным создание сверхэффективных ракетных двигателей. Удельный импульс у них будет выше, чем у лучших электрореактивных двигателей, а потребление энергии при этом может быть даже отрицательным (теоретически возможна выработка, а не потребление энергии). Более того, есть все основания полагать, что сделать термоядерный ракетный двигатель будет даже проще, чем наземный реактор: нет проблемы с созданием вакуума, с теплоизоляцией сверхпроводящих магнитов, нет ограничений по габаритам и т. д. Кроме того, выработка двигателем электроэнергии желательна, но вовсе не обязательна, достаточно, чтобы он не слишком много ее потреблял.

Электростатическое удержание

Концепцию электростатического удержания ионов легче всего понять на примере установки, называемой «фузором». Её основу составляет сферический сетчатый электрод, на который подаётся отрицательный потенциал. Ускоренные в отдельном ускорителе или полем самого центрального электрода ионы попадают внутрь его и удерживаются там электростатическим полем: если ион стремится вылететь наружу, поле электрода разворачивает его назад. Увы, вероятность столкновения иона с сеткой на много порядков выше, чем вероятность вступить в реакцию синтеза, что делает энергетически выгодную реакцию невозможной. Подобные установки нашли применение лишь в качестве источников нейтронов.
Стремясь совершить сенсационное открытие, многие учёные стремятся видеть синтез везде, где только можно. В прессе многократно возникали сообщения по поводу различных вариантов так называемого «холодного синтеза». Синтез обнаруживали в «пропитанных» дейтерием металлах при протекании через них электрического тока, при электролизе насыщенных дейтерием жидкостей, во время образования в них кавитационных пузырьков, а также в других случаях. Однако большинство из этих экспериментов не имели удовлетворительной воспроизводимости в других лабораториях, а их результаты практически всегда можно объяснить без использования синтеза.
Продолжая «славную традицию», начавшуюся с «философского камня», а затем превратившуюся в «вечный двигатель», многие современные мошенники предлагают уже сейчас купить у них «генератор холодного синтеза», «кавитационный реактор» и прочие «бестопливные генераторы»: про философский камень все уже забыли, в вечный двигатель не верят, а вот ядерный синтез сейчас звучит вполне убедительно. Но, увы, на самом деле таких источников энергии пока не существует (а когда их удастся создать, это будет во всех выпусках новостей). Так что знайте: если вам предлагают купить устройство, вырабатывающее энергию за счёт холодного ядерного синтеза, то вас пытаются просто «надуть»!

По предварительным оценкам, даже при современном уровне техники возможно создание термоядерного ракетного двигателя для полета к планетам Солнечной системы (при соответствующем финансировании). Освоение технологии таких двигателей в десятки раз повысит скорость пилотируемых полетов и даст возможность иметь на борту большие резервные запасы топлива, что позволит сделать полет на Марс не более сложным занятием, чем сейчас работа на МКС. Для автоматических станций потенциально станет доступной скорость в 10% от скорости света, что означает возможность отправки исследовательских зондов к ближайшим звездам и получение научных данных еще при жизни их создателей.


Наиболее проработанной в настоящее время считается концепция термоядерного ракетного двигателя на основе инерциального синтеза. При этом отличие двигателя от реактора заключается в магнитном поле, которое направляет заряженные продукты реакции в одну сторону. Второй вариант предполагает использование открытой ловушки, у которой одна из пробок намеренно ослаблена. Истекающая из нее плазма будет создавать реактивную силу.

Термоядерное будущее

Освоение термоядерного синтеза оказалось на много порядков сложнее, чем это казалось вначале. И хотя множество проблем уже решено, оставшихся хватит на несколько ближайших десятилетий напряженного труда тысяч ученых и инженеров. Но перспективы, которые открывают перед нами превращения изотопов водорода и гелия, столь велики, а проделанный путь уже столь значителен, что останавливаться на полпути не имеет смысла. Что бы ни говорили многочисленные скептики, будущее, безусловно, за синтезом.

​Ученые Принстонской лаборатории физики плазмы предложили идею самого долговечного устройства для ядерного синтеза, которое сможет работать более 60 лет. В данный момент это трудноосуществимая задача: ученые бьются над тем, чтобы заставить термоядерный реактор проработать в течение нескольких минут - а тут годы. Несмотря на сложность, строительство термоядерного реактора - одна из самых перспективных задач науки, которая может принести огромную пользу. Рассказываем, что нужно знать о термоядерном синтезе.

1. Что такое термоядерный синтез?

Не пугайтесь этого громоздкого словосочетания, на деле все довольно просто. Термоядерный синтез - это разновидность ядерной реакции.

В ходе ядерной реакции ядро атома взаимодействует либо с элементарной частицей, либо с ядром другого атома, за счет чего состав и строение ядра изменяются. Тяжелое атомное ядро может распасться на два-три более легких - это реакция деления. Существует также реакция синтеза: это когда два легких атомных ядра сливаются в одно тяжелое.

В отличие от ядерного деления, которое может проходить как самопроизвольно, так и вынужденно, ядерный синтез невозможен без подвода внешней энергии. Как известно, притягиваются противоположности, но вот атомные ядра заряжены положительно - поэтому они отталкиваются друг от друга. Эта ситуация называется кулоновским барьером. Чтобы преодолеть отталкивание, необходимо разогнать эти частицы до сумасшедших скоростей. Это можно осуществить при очень высокой температуре - порядка нескольких миллионов кельвинов. Именно такие реакции и называются термоядерными.

2. Зачем нам термоядерный синтез?

В ходе ядерных и термоядерных реакций выделяется огромное количество энергии, которую можно использовать в различных целях - можно создать мощнейшее оружие, а можно преобразовать ядерную энергию в электричество и снабдить им весь мир. Энергия распада ядра давно используется на атомных электростанциях. Но термоядерная энергетика выглядит перспективнее. При термоядерной реакции на каждый нуклон (так называются составляющие ядра, протоны и нейтроны) выделяется намного больше энергии, чем при ядерной реакции. К примеру, при делении ядра урана на один нуклон приходится 0,9 МэВ (мегаэлектронвольт), а при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ. Поэтому ученые учатся проводить термоядерные реакции.

Исследования термоядерного синтеза и строительство реакторов позволяют расширить высокотехнологичное производство, которое полезно и в других сферах науки и хай-тека.

3. Какие бывают термоядерные реакции?

Термоядерные реакции делят на самоподдерживающиеся, неуправляемые (используются в водородных бомбах) и управляемые (подходят для мирных целей).

Самоподдерживающиеся реакции проходят в недрах звезд. Однако на Земле нет условий для проведения таких реакций.

Неуправляемый, или взрывной термоядерный синтез люди проводят давно. В 1952 году в ходе операции "Иви Майк" американцы взорвали первое в мире термоядерное взрывное устройство, которое не имело практической ценности в качестве оружия. А в октябре 1961 года прошли испытания первой в мире термоядерной (водородной) бомбы ("Царь-бомба", "Кузькина мать"), разработанной советскими учеными под руководством Игоря Курчатова. Это было самое мощное взрывное устройство за всю историю человечества: полная энергия взрыва, по разным данным, составляла от 57 до 58,6 мегатонн в тротиловом эквиваленте. Чтобы взорвать водородную бомбу, необходимо сначала в ходе обычного ядерного взрыва получить высокую температуру - лишь тогда атомные ядра начнут реагировать.

Мощность взрыва при неуправляемой ядерной реакции очень велика, кроме того, высока доля радиоактивного загрязнения. Поэтому чтобы использовать термоядерную энергию в мирных целях, необходимо научиться ею управлять.

4. Что нужно для управляемой термоядерной реакции?

Удержать плазму!

Непонятно? Сейчас поясним.

Во-первых, атомные ядра. В ядерной энергетике используются изотопы - атомы, отличающиеся друг от друга количеством нейтронов и, соответственно, атомной массой. Изотоп водорода дейтерий (D) добывают из воды. Сверхтяжелый водород или тритий (Т) - радиоактивный изотоп водорода, который является побочным продуктом реакций распада, проводимых на обычных ядерных реакторах. Также в термоядерных реакциях используется легкий изотоп водорода - протий: это единственный стабильный элемент, не имеющий нейтронов в ядре. Гелий-3 содержится на Земле в ничтожно малых количествах, зато его очень много в лунном грунте (реголите): в 80-х гг НАСА разрабатывало план гипотетических установок по переработке реголита и выделению ценного изотопа. Зато на нашей планете широко распространен другой изотоп - бор-11. 80% бора на Земле - это необходимый ядерщикам изотоп.

Во-вторых, очень высокая температура. Вещество, участвующее в термоядерной реакции, должно представлять собой практически полностью ионизированную плазму - это газ, в котором отдельно плавают свободные электроны и ионы различных зарядов. Чтобы превратить вещество в плазму, необходима температура 10 7 –10 8 К - это сотни миллионов градусов Цельсия! Такие сверхвысокие температуры можно получить путем создания в плазме электрических разрядов большой мощности.

Однако просто нагреть необходимые химические элементы нельзя. Любой реактор моментально испарится при таких температурах. Здесь требуется совершенно иной подход. На сегодняшний день удается удерживать плазму на ограниченной территории с помощью сверхмощных электрических магнитов. Но полноценно использовать получаемую в результате термоядерной реакции энергию пока не удается: даже под воздействием магнитного поля плазма растекается в пространстве.

5. Какие реакции наиболее перспективны?

В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий (2H) и тритий (3H), а в более отдалённой перспективе гелий-3 (3He) и бор-11 (11B).

Вот как выглядят самые интересные реакции.

1) 2 D+ 3 T -> 4 He (3.5 MeV) + n (14.1 MeV) - реакция дейтерий-тритий.

2) 2 D+ 2 D -> 3 T (1.01 MeV) + p (3.02 MeV) 50%

2 D+ 2 D -> 3 He (0.82 MeV) + n (2.45 MeV) 50% - это так называемое монотопливо из дейтерия.

Реакции 1 и 2 чреваты нейтронным радиоактивным загрязнением. Поэтому наиболее перспективны "безнейтронные" реакции.

3) 2 D+ 3 He -> 4 He (3.6 MeV) + p (14.7 MeV) - дейтерий реагирует с гелием-3. Проблема в том, что гелий-3 чрезвычайно редок. Однако безнейтронный выход делает эту реакцию перспективной.

4) p+ 11 B -> 3 4 He + 8.7 MeV - бор-11 реагирует с протием, в результате получаются альфа-частицы, которые можно поглотить алюминиевой фольгой.

6. Где провести такую реакцию?

Естественным термоядерным реактором является звезда. В ней плазма удерживается под действием гравитации, а излучение поглощается - таким образом, ядро не остывает.

На Земле же термоядерные реакции можно провести лишь в специальных установках.

Импульсные системы. В таких системах дейтерий и тритий облучают сверхмощными лазерными лучи или пучками электронов/ионов. Такое облучение вызывает последовательность термоядерных микровзрывов. Однако такие системы невыгодно использовать в промышленных масштабах: на разгон атомов тратится намного больше энергии, чем получается в результате синтеза, так как не все разгоняемые атомы вступают в реакцию. Поэтому многие страны строят квазистационарные системы.

Квазистационарные системы. В таких реакторах плазма удерживается с помощью магнитного поля при низком давлении и высокой температуре. Существует три типа реакторов, основанных на различных конфигурациях магнитного поля. Это токамаки, стеллараторы (торсатроны) и зеркальные ловушки.

Токамак расшифровывается как "тороидальная камера с магнитными катушками". Это камера в виде "бублика" (тора), на которую намотаны катушки. Главной особенностью токамака является использование переменного электрического тока, который протекает через плазму, нагревает ее и, создавая вокруг себя магнитное поле, удерживает ее.

В стеллараторе (торсатроне) магнитное поле полностью удерживается с помощью магнитных катушек и, в отличие от токамака, может работать постоянно.

В зеркальных (открытых) ловушках используется принцип отражения. Камера с двух сторон закрыта магнитными "пробками", которые отражают плазму, удерживая ее в реакторе.

Долгое время зеркальные ловушки и токамаки боролись за первенство. Изначально концепция ловушки казалась более простой и потому более дешевой. В начале 60-х годов открытые ловушки обильно финансировались, однако нестабильность плазмы и неудачные попытки удержать ее магнитным полем заставляли усложнять эти установки - простые на вид конструкции превратились в адские машины, и добиться стабильного результата не выходило. Поэтому в 80-х годах на первый план вышли токамаки. В 1984 году был запущен европейский токамак JET, стоимость которого составила всего 180 млн долларов и параметры которого позволяли провести термоядерную реакцию. В СССР и Франции проектировали сверхпроводящие токамаки, которые почти не тратили энергию на работу магнитной системы.

7. Кто сейчас учится проводить термоядерные реакции?

Многие страны строят свои термоядерные реакторы. Свои экспериментальные реакторы есть в Казахстане, Китае, США и Японии. Курчатовский институт работает над реактором IGNITOR. Германия запустила термоядерный реактор-стелларатор Wendelstein 7-X.

Наиболее известен международный проект токамака ИТЭР (ITER, Международный экспериментальный термоядерный реактор) в исследовательском центре Кадараш (Франция). Его строительство предполагалось закончить в 2016 году, однако размеры необходимого финансового обеспечения выросли, а сроки экспериментов сдвинулись на 2025 год. В деятельности ИТЭР участвует Евросоюз, США, Китай, Индия, Япония, Южная Корея и Россия . Основную долю в финансировании играет ЕС (45%), остальные участники поставляют высокотехнологичное оборудование. В частности, Россия производит сверхпроводниковые материалы и кабели, радиолампы для нагрева плазмы (гиротроны) и предохранители для сверхпроводящих катушек, а также компоненты для сложнейшей детали реактора - первой стенки, которая должна выдержать электромагнитные силы, нейтронное излучение и излучение плазмы.

8. Почему мы до сих пор не пользуемся термоядерными реакторами?

Современные установки токамак - не термоядерные реакторы, а исследовательские установки, в которых возможно лишь на некоторое время существование и сохранение плазмы. Дело в том, что ученые пока не научились удерживать плазму в реакторе на длительный срок.

На данный момент одним из самых больших достижений в области ядерного синтеза считается успех немецких ученых, которым удалось нагреть водородный газ до 80 миллионов градусов по Цельсию и поддерживать облако плазмы водорода в течение четверти секунды. А в Китае водородную плазму нагрели до 49.999 миллионов градусов и продержали ее 102 секунды. Российским ученым из (Институт ядерной физики имени Г. И. Будкера, Новосибирск) удалось добиться стабильного нагрева плазмы до десяти миллионов градусов Цельсия. Однако недавно американцы предложили способ удержания плазмы в течение 60 лет - и это внушает оптимизм.

Кроме того, ведутся споры относительно рентабельности термоядерного синтеза в промышленности. Неизвестно, покроют ли выгоды от производства электроэнергии затраты на термоядерный синтез. Предлагается экспериментировать с реакциями (например, отказаться от традиционной реакции дейтерий-тритий или монотоплива в пользу других реакций), конструкционными материалами - а то и отказаться от идеи промышленного термоядерного синтеза, используя лишь его для отдельных реакций в реакциях деления. Однако ученые все равно продолжают эксперименты.

9. Безопасны ли термоядерные реакторы?

Относительно. Тритий, который используется в термоядерных реакциях, радиоактивен. Кроме того, нейроны, выделяющиеся в результате синтеза, облучают конструкцию реактора. Сами элементы реактора покрываются радиоактивной пылью из-за воздействия плазмы.

Тем не менее, термоядерный реактор намного безопасней ядерного реактора в радиационном отношении. Радиоактивных веществ в реакторе относительно мало. Кроме того, сама конструкция реактора предполагает отсутствие "дыр", через которые может просочиться радиация. Вакуумная камера реактора должна быть герметичной, иначе реактор просто не сможет работать. При строительстве термоядерных реакторов применяются испытанные ядерной энергетикой материалы, а в помещениях поддерживается пониженное давление.

  • Когда появятся термоядерные электростанции?

    Ученые чаще всего говорят, что-то вроде “через 20 лет мы решим все принципиальные вопросы”. Инженеры из атомной индустрии говорят про вторую половину 21 века. Политики рассуждают про море чистой энергии за копейки, не утруждая себя датами.

  • Как ученые ищут темную материю в недрах Земли

    Сотни миллионов лет назад минералы под земной поверхностью могли сохранять в себе следы загадочного вещества. Осталось только до них добраться. ​Больше двух десятков подземных лабораторий, разбросанных по всему миру, заняты поиском темной материи.

  • Как сибирские ученые помогли человеку улететь к звездам

    ​12 апреля 1961 года Юрий Гагарин совершил первый полет в космос - добродушная улыбка летчика и его бодрое "Поехали!" стали триумфом советской космонавтики. Чтобы этот полет состоялся, ученые по всей стране ломали головы, как же сделать такую ракету, которая бы выдержала все опасности неизведанного космоса, - здесь не обошлось без идей ученых Сибирского отделения Академии наук.

  • И способность использовать ядерную энергию, как в созидательных (атомная энергетика), так и разрушительных (атомная бомба) целях стало, пожалуй, одним из самых значимых изобретений прошлого ХХ века. Ну а в основе всей той грозной силы, что таиться в недрах крохотного атома лежат ядерные реакции.

    Что такое ядерные реакции

    Под ядерными реакциями в физике понимается процесс взаимодействия атомного ядра с другим подобным ему ядром либо разными элементарными частичками, в результате чего происходит изменения состава и структуры ядра.

    Немного истории ядерных реакций

    Первая ядерная реакция в истории была сделана великим ученым Резерфордом в далеком 1919 году во время опытов по обнаружению протонов в продуктах распада ядер. Ученый бомбардировал атомы азота альфа частицами, и при соударении частиц происходила ядерная реакция.

    А так выглядело уравнение этой ядерной реакции. Именно Резерфорду принадлежит заслуга открытия ядерных реакций.

    Затем последовали многочисленные опыты ученых по осуществлению различных типов ядерных реакций, например, весьма интересной и значимой для науки была ядерная реакция, вызванная бомбардировкой атомных ядер нейтронами, которую провел выдающийся итальянский физик Э. Ферми. В частности Ферми обнаружил, что ядерные преобразования могут быть вызваны не только быстрыми нейтронами, но и медленными, который двигаются с тепловыми скоростями. К слову ядерные реакции, вызванные воздействием температуры, получили название термоядерных. Что же касается ядерных реакций под действием нейтронов, то они очень быстро получили свое развитие в науке, да еще какое, об этом читайте дальше.

    Типичная формула ядерной реакции.

    Какие ядерные реакции есть в физике

    В целом известные на сегодняшний день ядерные реакции можно разделить на:

    • деление атомных ядер
    • термоядерные реакции

    Ниже детально напишем о каждой из них.

    Деление атомных ядер

    Реакция деления атомных ядер подразумевает распад собственно ядра атома на две части. В 1939 году немецкими учеными О. Ганом и Ф. Штрассманом было открыто деления ядер атома , продолжая исследования своих ученых предшественников, они установили, что при бомбардировке урана нейтронами возникают элементы средней части периодической таблицы Менделеева, а именно радиоактивные изотопы бария, криптона и некоторых других элементов. К сожалению, эти знания первоначально были использованы в ужасающих, разрушительных целях, ведь началась вторая мировая война и немецкие, а с другой стороны, американские и советские ученые наперегонки занимались разработкой ядерного оружия (в основе которого была ядерная реакция урана), закончившейся печально известными «ядерными грибами» над японскими городами Хиросимой и Нагасаки.

    Но вернемся к физике, ядерная реакция урана при расщеплении его ядра обладает просто таки колоссальной энергией, которую наука смогла поставить себе на службу. Как же происходит подобная ядерная реакция? Как мы написали выше, она происходит вследствие бомбардировки ядра атома урана нейтронами, от чего ядро раскалывается, при этом возникает огромная кинетическая энергия, порядка 200 МэВ. Но что самое интересное, в качестве продукта ядерной реакции деления ядра урана от столкновения с нейтроном, возникает несколько свободных новых нейтронов, которые, в свою очередь, сталкиваются с новыми ядрами, раскалывают их, и так далее. В результате нейтронов становится еще больше и еще больше ядер урана раскалывается от столкновений с ними – возникает самая настоящая цепная ядерная реакция.

    Вот так она выглядит на схеме.

    При этом коэффициент размножения нейтронов должен быть больше единицы, это необходимое условие ядерной реакции подобного вида. Иными словами, в каждом последующем поколении нейтронов, образованных после распада ядер, их должно быть больше, нежели в предыдущем.

    Стоит заметить, что по похожему принципу ядерные реакции при бомбардировке могут проходить и во время деления ядер атомов некоторых других элементов, с теми нюансами, что ядра могут бомбардироваться самыми разными элементарными частичками, да и продукты таких ядерных реакций будут разниться, чтобы описать их более детально, нужна целая научная монография

    Термоядерные реакции

    В основе термоядерных реакций лежат реакции синтеза, то есть, по сути, происходит процесс обратный делению, ядра атомов не раскалываются на части, а наоборот сливаются друг с другом. При этом также происходит выделение большого количества энергии.

    Термоядерные реакции, как это следует из самого из названия (термо — температура) могут протекать исключительно при очень высоких температурах. Ведь чтобы два ядра атомов слились, они должны приблизиться на очень близкое расстояние друг к другу, при этом преодолев электрическое отталкивание их положительных зарядов, такое возможно при существовании большой кинетической энергии, которая, в свою очередь, возможна при высоких температурах. Следует заметить, что на происходят термоядерные реакции , впрочем, не только на нем, но и на других звездах, можно даже сказать, что именно она лежит в самой основе их природы всякой звезды.

    Ядерные реакции, видео

    И в завершение образовательное видео по теме нашей статьи, ядерным реакциям.

    Атом - это строительный элемент Вселенной. Существует всего около сотни атомов различных типов. Большинство элементов стабильны (например, кислород и азот атмосферы; углерод, кислород и водород - основные составляющие нашего тела и всех других живых организмов). Другие элементы, главным образом очень тяжелые, нестабильны, и это означает, что они спонтанно распадаются, порождая другие элементы. Это преобразование называется ядерной реакцией.

    Ядерные реакции - превращения атомных ядер при взаимодействии с элементарными частицами, г-квантами или друг с другом.

    Ядерные реакции разделяют на два вида: ядерное деление и термоядерный синтез.

    Ядерная реакция деления -- процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном, альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным.

    Самопроизвольное (спонтанное) - это деление ядер, в процессе которого некоторые достаточно тяжелые ядра распадаются на два осколка с примерно равными массами.

    Самопроизвольное деление впервые было обнаружено для природного урана. Как и любой другой вид радиоактивного распада, спонтанное деление характеризуется периодом полураспада (периодом деления). Период полураспада для спонтанного деления меняется для разных ядер в очень широких пределах (от 1018 лет для 93Np237 до нескольких десятых долей секунды для трансурановых элементов).

    Вынужденное деление ядер может быть вызвано любыми частицами: фотонами, нейтронами, протонами, дейтронами, б-частицами и т.д., если энергия, которую они вносят в ядро, достаточна для преодоления барьера деления. Для атомной энергетики большее значение играет деление, вызванное нейтронами. Реакция деления тяжелых ядер осуществлена впервые на уране U235. Чтобы ядро урана распалось на два осколка, ему сообщается энергия активации. Эту энергию ядро урана получает, захватывая нейтрон. Ядро приходит в возбужденное состояние, деформируется, возникает "перемычка" между частями ядра и под действием кулоновских сил отталкивания происходит деление ядра на два осколка неравной массы. Оба осколка радиоактивны и испускают 2 или 3 вторичных нейтрона.

    Рис. 4

    Вторичные нейтроны поглощаются соседними ядрами урана, что вызывает их деление. При соответствующих условиях может возникнуть саморазвивающийся процесс массового деления ядер, называемый цепной ядерной реакцией. Такая реакция сопровождается выделением колоссальной энергии. Например, при полном сгорании 1 г урана выделяется 8.28·1010 Дж энергии. Ядерная реакция характеризуется тепловым эффектом, который представляет собой разность масс покоя вступающих в ядерную реакцию и образующихся в результате реакции ядер, т.е. энергетический эффект ядерной реакции определяется в основном разницей масс конечных и исходных ядер. На основании эквивалентности энергии и массы можно вычислить энергию, выделяющуюся или затраченную при протекании ядерной реакции, если точно знать массу всех ядер и частиц, участвующих в реакции. Согласно закону Эйнштейна:

    • ?Е=?mс2
    • ?E = (mA + mx - mB - my)c2

    где mА и mх - массы соответственно ядра мишени и бомбардирующего ядра(частицы);

    mB и my - массы и образующихся в результате реакции ядер.

    Чем больше энергии выделяется при образовании ядра, тем оно прочнее. Энергией связи ядра называют количество энергии, требуемой для разложения ядра атома на составные части - нуклоны (протоны и нейтроны).

    Примером неуправляемой цепной реакции деления может послужить взрыв атомной бомбы, управляемая ядерная реакция осуществляется в ядерных реакторах.

    Термоядерный синтез - это реакция, обратная делению атомов, реакция слияния легких атомных ядер в более тяжелые ядра, происходящая при сверхвысокой температуре и сопровождающаяся выделением огромных количеств энергии. Осуществление управляемого термоядерного синтеза даст человечеству новый экологически чистый и практически неисчерпаемый источник энергии, который основан на столкновении ядер изотопов водорода, а водород - самое распространенное вещество во Вселенной.

    Процесс синтеза идёт с заметной интенсивностью только между лёгкими ядрами, обладающими малым положительным зарядом и только при высоких температурах, когда кинетическая энергия сталкивающихся ядер оказывается достаточной для преодоления кулоновского потенциального барьера. С несравненно большей скоростью идут реакции между тяжёлыми изотопами водорода (дейтерием 2H и тритием 3H) с образованием сильно связанных ядер гелия.

    2D + 3T > 4He (3,5 МэВ) + 1n (14,1 МэВ)

    Эти реакции представляют наибольший интерес для проблемы управляемого термоядерного синтеза. Дейтерий содержится в морской воде. Его запасы общедоступны и очень велики: на долю дейтерия приходится около 0,016% общего числа атомов водорода, входящих в состав воды, в то время как мировой океан покрывает 71% площади поверхности Земли. Реакция с участием трития является более привлекательной, т. к. сопровождается большим выделением энергии и протекает со значительной скоростью. Тритий радиоактивен (период полураспада 12,5 лет) и не встречается в природе. Следовательно, для обеспечения работы предполагаемого термоядерного реактора, использующего в качестве ядерного горючего тритий, должна быть предусмотрена возможность воспроизводства трития.

    Реакция c так называемым лунным изотопом 3Не имеет ряд преимуществ по сравнению с наиболее достижимой в земных условиях дейтериево-тритиевой реакцией.

    2D + 3He > 4He (3,7 МэВ) + 1p (14,7 МэВ)

    Преимущества:

    • 1. 3He не радиоактивен.
    • 2. В десятки раз более низкий поток нейтронов из зоны реакции, что резко уменьшает наведённую радиоактивность и деградацию конструкционных материалов реактора;
    • 3. Получаемые протоны, в отличие от нейтронов, легко улавливаются и могут быть использованы для дополнительной генерации электроэнергии.

    Природная изотопная распространённость в атмосфере 3He составляет 0,000137 %. Большая часть 3He на Земле сохранилась со времён её образования. Он растворён в мантии и постепенно поступает в атмосферу. На Земле его добывают в очень небольших количествах, исчисляемых несколькими десятками граммов за год.

    Гелий-3 является побочным продуктом реакций, протекающих на Солнце. В результате, на Луне, у которой нет атмосферы, этого ценного вещества находится до 10 миллионов тонн (по минимальным оценкам -- 500 тысяч тонн). При термоядерном синтезе, когда в реакцию вступает 1 тонна гелия-3 с 0,67 тоннами дейтерия, высвобождается энергия, эквивалентная сгоранию 15 миллионов тонн нефти (однако на настоящий момент не изучена техническая возможность осуществления данной реакции). Следовательно, населению нашей планеты лунного ресурса гелия-3 должно хватить как минимум на ближайшее тысячелетие. Основной проблемой остаётся реальность добычи гелия из лунного грунта. Содержание гелия-3 в реголите составляет ~1 г на 100 т. Поэтому для добычи тонны этого изотопа следует переработать не менее 100 миллионов тонн грунта. Температура, при которой возможно осуществление реакции термоядерного синтеза достигает величины порядка 108 - 109 К. При этой температуре вещество находится в полностью ионизированном состоянии, которое называется плазмой. Таким образом, сооружение реактора предполагает: получение плазмы, нагретой до температур в сотни миллионов градусов; сохранение плазменной конфигурации в течение времени, для протекания ядерных реакций.

    Термоядерная энергетика имеет важные преимущества перед атомными станциями: в ней используется абсолютно нерадиоактивные дейтерий и изотоп гелия-3 и радиоактивный тритий, но в объемах в тысячи раз меньших, чем в атомной энергетике. А в возможных аварийных ситуациях радиоактивный фон вблизи термоядерной электростанции не превысит природных показателей. При этом на единицу веса термоядерного топлива получается примерно в 10 млн. раз больше энергии, чем при сгорании органического топлива, и примерно в 100 раз больше, чем при расщеплении ядер урана. В природных условиях термоядерные реакции протекают в недрах звёзд, в частности во внутренних областях Солнца, и служат тем постоянным источником энергии, который определяет их излучение. Сгорание водорода в звёздах идёт с малой скоростью, но гигантские размеры и плотности звёзд обеспечивают непрерывное испускание огромных потоков энергии в течение миллиардов лет.

    Все химические элементы нашей планеты и Вселенной в целом образовались в результате термоядерных реакций, которые происходят в ядрах звезд. Термоядерные реакции в звездах приводят к постепенному изменению химического состава звездного вещества, что вызывает перестройку звезды и ее продвижение по эволюционному пути. Первый этап эволюции заканчивается истощением водорода в центральных областях звезды. Затем после повышения температуры, вызванного сжатием центральных слоев звезды, лишенных источников энергии, становятся эффективными термоядерные реакции горения гелия, которые сменяются горением C, O, Si и последующих элементов - вплоть до Fe и Ni. Каждому этапу звездной эволюции соответствуют определенные термоядерные реакции. Первыми в цепи таких ядерных реакций стоят водородные термоядерные реакции. Они протекают двумя путями в зависимости от начальной температуры в центре звезды. Первый путь - водородный цикл, второй путь - CNO-цикл.

    Водородный цикл:

    • 1H + 1H = 2D + e+ + v +1,44 МэВ
    • 2D + 1H = 3He + г +5,49 МэВ

    I: 3He + 3He = 4He + 21H + 12,86 МэВ

    или 3He + 4He = 7Be + г + 1,59 МэВ

    7Be + e- = 7Li + v + 0,862 МэВ или 7Be + 1H = 8B + г +0,137 МэВ

    II: 7Li + 1H = 2 4He + 17,348 МэВ 8B = 8Be* + e+ + v + 15,08МэВ

    III. 8Be* = 2 4He + 2,99 МэВ

    Водородный цикл начинается реакцией столкновения двух протонов (1H, или р) с образованием ядра дейтерия (2D). Дейтерий реагирует с протоном, образуя лёгкий (лунный) изотоп гелия 3Не с испусканием гамма-фотона (г). Лунный изотоп 3Не может реагировать двумя различными путями: два ядра 3Не при столкновении образуют 4Не с отщеплением двух протонов либо 3Не соединяется с 4Не и даёт 7Ве. Последний в свою очередь захватывает либо электрон (е-), либо протон и возникает ещё одно разветвление протон - протонной цепочки реакций. В результате водородный цикл может заканчиваться тремя различными путями I, II и III. Для реализации ветви I первые две реакции В. ц. должны осуществиться дважды, поскольку в этом случае исчезают сразу два ядра 3Не. В ветви III испускаются особенно энергичные нейтрино при распаде ядра бора 8В с образованием неустойчивого ядра бериллия в возбуждённом состоянии (8Ве*), который почти мгновенно распадается на два ядра 4Не. CNO-цикл -- это совокупность трёх сцепленных друг с другом или, точнее, частично перекрывающихся циклов: CN, NO I, NO II. Синтез гелия из водорода в реакциях этого цикла протекает при участии катализаторов, роль которых играют малые примеси изотопов C, N и O в звездном веществе.

    Основной путь реакции CN-цикла:

    • 12C + p = 13N + г +1,95 МэВ
    • 13N = 13C + e+ + н +1,37 МэВ
    • 13C + p = 14N + г +7,54 МэВ (2,7·106 лет)
    • 14N + p = 15O + г +7,29 МэВ (3,2·108 лет)
    • 15O = 15N + e+ + н +2,76 МэВ (82 секунды)
    • 15N + p = 12C + 4He +4,96 МэВ (1,12·105 лет)

    Суть этого цикла состоит в непрямом синтезе б-частицы из четырёх протонов при их последовательных захватах ядрами, начиная с 12C.

    В реакции с захватом протона ядром 15N возможен ещё один исход -- образование ядра 16О и рождается новый цикл NO I-цикл.

    Он имеет в точности ту же структуру, что и CN-цикл:

    • 14N + 1H = 15O + г +7,29 МэВ
    • 15O = 15N + e+ + н +2,76 МэВ
    • 15N + 1H = 16O + г +12.13 МэВ
    • 16O + 1H = 17F + г +0,60 МэВ
    • 17F = 17O + e+ + н +2,76 МэВ
    • 17O + 1H = 14N + 4He +1,19 МэВ

    NO I-цикл повышает темп энерговыделения в CN-цикле, увеличивая число ядер-катализаторов CN-цикла.

    Последняя реакция этого цикла также может иметь другой исход, порождая ещё один NO II-цикл:

    • 15N + 1H = 16O + г +12.13 МэВ
    • 16O + 1H = 17F + г +0,60 МэВ
    • 17F = 17O + e+ + н +2,76 МэВ
    • 17O + 1H = 18F + г +5,61 МэВ
    • 18O + 1H = 15N + 4He +3, 98 МэВ

    Таким образом, циклы CN, NO I и NO II образуют тройной CNO-цикл.

    Имеется ещё один очень медленный четвёртый цикл, OF-цикл, но его роль в выработке энергии ничтожно мала. Однако этот цикл является весьма важным, при объяснении происхождения 19F.

    • 17O + 1H = 18F + г + 5.61 МэВ
    • 18F = 18O + e+ + н + 1.656 МэВ
    • 18O + 1H = 19F + г + 7.994 МэВ
    • 19F + 1H = 16O + 4He + 8.114 МэВ
    • 16O + 1H = 17F + г + 0.60 МэВ
    • 17F = 17O + e+ + н + 2.76 МэВ

    При взрывном горении водорода в поверхностных слоях звёзд, например, при вспышках сверхновых, могут развиваться очень высокие температуры, и характер CNO-цикла резко меняется. Он превращается в так называемый горячий CNO-цикл, в котором реакции идут очень быстро и запутанно.

    Химические элементы тяжелее 4He начинают синтезироваться лишь после полного выгорания водорода в центральной области звезды:

    4He + 4He + 4He > 12C + г + 7,367 МэВ

    Реакции горения углерода:

    • 12C + 12C = 20Ne + 4He +4,617 МэВ
    • 12C + 12C = 23Na + 1H -2,241 МэВ
    • 12C + 12C = 23Mg + 1n +2,599 МэВ
    • 23Mg = 23Na + e+ + н + 8, 51 МэВ
    • 12C + 12C = 24Mg + г +13,933 МэВ
    • 12C + 12C = 16O + 24He -0,113 МэВ
    • 24Mg + 1H = 25Al + г

    При достижении температуры 5·109 K в звездах в условиях термодинамического равновесия протекает большое количество разнообразных реакций, в результате чего образуются атомные ядра вплоть до Fe и Ni.

    Из четырёх основных источников ядерной энергии в настоящее время удалось довести до промышленной реализации только два: энергия радиоактивного распада утилизируется в источниках тока, а цепная реакция деления - в атомных реакторах. Третий источник ядерной энергии - аннигиляция элементарных частиц пока не вышел из области фантастики. Четвертый же источник - управляемый термоядерный синтез, УТС, находится на повестке дня. Этот источник по своему потенциалу хотя и меньше третьего, но существенно превышает второй.

    Термоядерный синтез в лабораторных условиях осуществить достаточно просто, но добиться воспроизводства энергии до сих пор не удалось. Однако работы в этом направлении ведутся, отрабатываются и радиохимические методики, в первую очередь - технологии получения тритиевого топлива для установок УТС.

    В данной главе рассмотрены некоторые радиохимические аспекты термоядерного синтеза и обсуждены перспективы использования установок для УТС в атомной энергетике.

    Управляемый термоядерный синтез - реакция слияния лёгких атомных ядер в более тяжёлые ядра, происходящая при сверхвысокой температуре и сопровождающаяся выделением огромных количеств энергии. В отличие от взрывного термоядерного синтеза (используемого в водородной бомбе) носит управляемый характер. В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться -Н и 3 Н, а в более отдалённой перспективе 3 Не и “В.

    Надежды на управляемый термоядерный синтез связаны с двумя обстоятельствами: i) полагают, что звезды существует за счёт стационарной термоядерной реакции, и 2) неконтролируемый термоядерный процесс удалось довольно просто реализовать во взрыве водородной бомбы. Кажется, нет никаких принципиальных препятствий для поддержания управляемой реакции ядерного синтеза. Однако интенсивные попытки реализовать в лабораторных условиях УТС с получением энергетического выигрыша окончились полным провалом.

    Тем не менее, сейчас УТС рассматривается как важное технологическое решение, направленное на замену ископаемого топлива в производстве энергии. Всемирная потребность в энергии требующая увеличения производства электроэнергии и исчерпаемость невобновляемого сырья стимулирует поиск новых решений.

    В термоядерных реакторах используется энергия, выделяющаяся при слиянии лёгких атомных ядео. Напоимео:

    Реакция слияния ядер трития и дейтерия является перспективной для осуществления управляемого термоядерного синтеза, так как ее сечение даже при низких энергиях достаточно велико. Эта реакция обеспечивает удельную теплотворную способность 3,5-ю 11 Дж/г. Основная реакция D+T=n+a имеет наибольшее сечение о т ах =5 барн в резонансе при энергии дейтронов Е пШ х= 0,108 МэВ, по сравнению с реакциями D+D=n+3He a,„ a *=0,i05 барн; Е тах = 1,9 МэВ, D+D=p+T о тах = 0,09 барн; Е тах = 2,0 Мэв, а также с реакцией 3He+D=p+a a m ах=0,7 барн; Еотах= 0,4 МэВ. В последней реакции выделяется 18,4 МэВ. В реакции (3) сумма энергий п+а равна 17,6 МэВ, энергия образующихся нейтронов?„=14,1 МэВ; а энергия возникших а-частиц 3,5 МэВ. Если в реакциях T(d,n)a и:} He(d,p)a резонансы довольно узкие, то в реакциях D(d,n)3He и D(d,p)T имеют место очень широкие резонансы с большими значениями сечений в области от 1 до ю МэВ и линейным ростом от 0,1 МэВ до 1 МэВ.

    Замечание. Проблемы легко зажигаемого DT топлива заключаются в том, что тритий не встречается в природе и его надо получать из лития в бридерном бланкете термоядерного реактора; тритий радиоактивен (Ti/ 2 =12,6 лет), в системе DT - реактора содержится от ю до юо кг трития; 8о% энергии в реакции DT выделяется с 14-МэВ-ными нейтронами, которые наводят искусственную радиоактивность в конструкциях реактора и производят радиационные разрушения.

    На рис. 1 представлены энергетические зависимости сечений реакций (1 - з). Графики для сечений реакций (1) и (2) практически одинаковые - при росте энергии сечение возрастает и при больших энергиях вероятность реакции стремится к постоянному значению. Сечение реакции (3) сначала возрастает, достигает максимума ю барн при энергиях порядка 90 МэВ, а затем с ростом энергии уменьшается.

    Рис. 1. Сечения некоторых термоядерных реакций как функция энергии частиц в системе центра масс: 1 - ядерная реакция (3); 2 - реакции (1) и (2).

    Вследствие большого сечения рассеяния при бомбардировке ядер трития ускоренными дейтронами энергетический баланс процесса термоядерного синтеза по D - Т реакции может быть отрицательным, т.к. на ускорение дейтронов затрачивается больше энергии, чем выделяется при синтезе. Положительный энергетический баланс возможен, если бомбардирующие частицы после упругого столкновения будут способны вновь участвовать в реакции. Для преодоления электрического отталкивания ядра должны обладать большой кинетической энергией. Эти условия могут быть созданы в высокотемпературной плазме, в которой атомы или молекулы находятся в полностью ионизированном состоянии. Например, D-T - реакция начинает протекать только при температурах выше ю 8 К. Лишь при таких температурах выделяется больше энергии на единицу объёма и в единицу" времени, чем затрачивается. Поскольку на одну реакцию синтеза D-Т приходится ~Ю5 обычных столкновений ядер, проблема УТС состоит в решении двух задач: нагрева вещества до необходимых температур и его удержания на время, достаточное для «сжигания» заметной части термоядерного топлива.

    Считается, что управляемый термоядерный синтез может быть реализован при выполнении критерия Лоусона (лт>10‘4 с см-з, где п - плотность высокотемпературной плазмы, т - время удержания её в системе).

    При выполнении этого критерия энергия, выделяющаяся при УТС, превышает энергию, вводимую в систему.

    Плазму необходимо удерживать внутри заданного объёма, т. к. в свободном пространстве плазма моментально расширяется. Вследствие высоких температур плазму нельзя поместить в резервуар из какого-либо


    материала. Для удержания плазмы приходится использовать магнитное поле высокой напряженности, которое создают с помощью сверхпроводящих магнитов.

    Рис. 2. Принципиальная схема токамака.

    Если не ставить целью получения энергетического выигрыша, то в лабораторных условиях УТС осуществить достаточно просто. Для этого достаточно опустить в канал любого медленного реактора, работающего на реакции деления урана, ампулу с дейтеридом лития (можно использовать литий с природным изотопным составом (7% 6 Li), но лучше, если он обогащён стабильным изотопом 6 Li). Под действием тепловых нейтронов идёт следующая ядерная реакция:

    В результате этой реакции, возникают «горячие» атомы трития. Энергии атома отдачи трития (~з МэВ) достаточно для протекания реакции взаимодействия трития с находящимся в LiD дейтерием:

    Для энергетических целей этот метод не годится: затраты энергии на процесс превышают выделяющуюся энергию. Поэтому" приходится искать друтие варианты осуществления УТС, варианты, обеспечивающие большой энергетический выигрыш.

    УТС с энергетическим выигрышем пытаются реализовать или в квазистационарных (т>1 с, тг >юи см "О, или в импульсных системах (t*io -8 с, п>ю 22 см*з). В первых (токамак, стелларатор, зеркальная ловутпка и т.п.) удержание и термоизоляция плазмы осуществляются в магнитных полях различной конфигурации. В импульсных системах плазма создаётся при облучении твёрдой мишени (крупинки смеси дейтерия и трития) сфокусированным излучением мощного лазера или электронными пучками: при попадании в фокус пучка малых твёрдотельных мишеней происходит последовательная серия термоядерных микровзрывов.

    Среди различных камер для удержания плазмы перспективной является камера с тороидальной конфигурацией. При этом плазму создают внутри тороидальной камеры с помощью безэлектродного кольцевого разряда. В токамаке ток, индуцированный в плазме, является как бы вторичной обмоткой трансформатора. Магнитное поле, удерживая плазму, создаётся как за счёт тока, протекающего через обмотку вокруг камеры, так и за счёт тока, индуцированного в плазме. Для получения устойчивой плазмы используется внешнее продольное магнитное поле.

    Термоядерный реактор - устройство для получения энергии за счёт реакций синтеза лёгких атомных ядер, происходящих в плазме при очень высоких температурах (>ю 8 К). Основное требование, которому должен удовлетворять термоядерный реактор, заключается в том, чтобы энерговыделение в результате

    термоядерных реакций с избытком компенсировало затраты энергии от внешних источников на поддержание реакции.

    Рис. з. Основные компоненты реактора для управляемого термоядерного синтеза.

    Термоядерный реактор типа ТО- КАМАК (Тороидальная Камера с Магнитными Катушками) состоит из вакуумной камеры, образующей канал, где циркулирует плазма, магнитов, создающих поле и систем нагрева плазмы. К этому прилагаются вакуумные насосы, постоянно откачивающие газы из канала, система доставки топлива по мере его выгорания и дивертор - система, через которую полученная в результате термоядерной реакции энергия выводится из реактора. Тороидальная плазма находится в вакуумной оболочке. а-Частицы, образующиеся в плазме в результате термоядерного синтеза и находящиеся в ней, повышают её температуру. Нейтроны через стенку вакуумной камеры проникают в зону бланкета, содержащего жидкий литий, или соединение лития, обогащённое по 6 Li. При взаимодействии с литием кинетическая энергия нейтронов превращается в тепло, одновременно генерируется тритий. Бланкет помещён в специальную оболочку, которая защищает магнит от вылетающих нейтронов, у- излучения и потоков тепла.

    В установках типа токамак плазму создают внутри тороидальной камеры с помощью безэлектродного кольцевого разряда. С этой целью в плазменном сгустке создают электрический ток, и при этом у него появляется собственное магнитное поле - сгусток плазмы сам становится магнитом. Теперь с помощью внешнего магнитного поля определенной конфигурации можно подвесить плазменное облако в центре камеры, не позволяя ему соприкасаться со стенками.

    Дивертор - совокупность устройств (специальные полоидальные магнитные катушки; контактирующие с плазмой панели - нейтрализаторы плазмы), с помощью которых область непосредственного контакта стенки с плазмой максимально удалена от основной горячей плазмы. Служит для отвода тепла из плазмы в виде потока заряженных частиц и для откачки нейтрализованных на диверторных пластинах продуктов реакции: гелия и протия. Очищает плазму от загрязняющих примесей, мешающих протеканию реакции синтеза.

    Термоядерный реактор характеризуется коэффициентом усиления мощности, равным отношению тепловой мощности реактора к мощности затрат на её производство. Тепловая мощность реактора складывается:

    • - из мощности, выделяемой при термоядерной реакции в плазме;
    • - из мощности, которая вводится в плазму для поддержания температуры горения термоядерной реакции или стационарного тока в плазме;
    • - из мощности, выделяющейся в бланкете - оболочке, окружающей плазму, в которой утилизуется энергия термоядерных нейтронов и которая служит защитой магнитных катушек от радиационных воздествий. Бланкет термоядерного реактора - одна из основных частей термоядерного реактора, специальная оболочка, окружающая плазму, в которой происходят термоядерные реакции и которая служит для утилизации энергии термоядерных нейтронов.

    Бланкет со всех сторон охватывает кольцо плазмы, и родившиеся при D-Т синтезе основные носители энергии - 14-МэВ-ные нейтроны - отдают её бланкет}", нагревая его. В бланкете находятся теплообменники, по которым пропускают воду. При работе токамака в составе электростанции пар вращает паровую турбину, а она - ротор генератора.

    Основная задача бланкета - съём энергии, трансформация её в тепло и передача его на электрогенераторные системы, а также защита операторов и окружающей среды от ионизирующего излучения, создаваемого термоядерным реактором. За бланкетом в термоядерном реакторе располагается слой радиационной защиты, функции которого заключаются в дальнейшем ослаблении потока нейтронов и образующихся при реакциях с веществом у-квантов для обеспечения работоспособности электромагнитной системы. Затем следует биологическая защита, за которой может работать персонал станции.

    «Активный» бланкет - бридер, предназначен для наработки одного из компонентов термоядерного топлива. В реакторах, расходующих тритий, в бланкет включают бридерные материалы (соединения лития), призванные обеспечить эффективную наработку трития.

    При работе термоядерного реактора на дейтерий-тритиевом топливе необходимо пополнять количество топлива (D+T) в реакторе и удалять 4Не из плазмы. В результате реакций в плазме происходит выгорание трития, а основная часть энергии синтеза передаётся нейтронам, для которых плазма прозрачна. Это приводит к необходимости размещения между плазмой и электромагнитной системой специальной зоны, в которой воспроизводится выгорающий тритий и происходит поглощение основной части энергий нейтронов. Такая зона и называется бридерным бланкетом. В нём воспроизводится сгоревший в плазме тритий.

    Тритий в бланкете можно нарабатывать, облучая литий потоками нейтронов по ядерным реакциям: 6 Li(n,a)T+4,8 МэВ и 7 Li(n,n’a) - 2,4 МэВ.

    При наработке трития из лития следует учитывать, что природный литий состоит из двух изотопов: 6 Li (7,52%) и 7 Li (92,48%). Сечение поглощения тепловых нейтронов чистым 6 Li 0=945 барн, а сечение активации по реакции (п,р) - 0,028 барн. У природного лития сечение выведения нейтронов, образующихся при делении урана, равно 1,01 барн, а сечение поглощения тепловых нейтронов о а =70,4 барн.

    Спектры энергии у-излучения при радиационном захвате тепловых нейтронов 6 Li характеризуются величинами: средняя энергия у-квантов, испускаемых на один поглощённый нейтрон, в диапазоне энергий 6^-7 МэВ =0,51 МэВ, в диапазоне энергий 7-г8 МэВ - 0,94 МэВ. Полная энергия

    В термоядерном реакторе, работающем на D-Т топливе, в результате реакции:

    у-излучения на один захват нейтрона равна 1,45 МэВ. У 7 Li сечение поглощения равно 0,047 барн, а сечение активации - 0,033 барна (при энергиях нейтронов выше 2,8 МэВ). Сечение выведения нейтронов деления LiH природного состава =1,34 барн, металлического Li - 1,57 барн, LiF - 2,43 барна.

    образуются термоядерные нейтроны, которые, покидая объём плазмы, попадают в область бланкета, содержащую литий и бериллий, где протекают следующие реакции:

    Таким образом, термоядерный реактор будет сжигать дейтерий и литий, а в результате реакций будет образовываться инертный газ гелий.

    При D-Т реакции в плазме происходит выгорание трития и образуется нейтрон с энергией 14,1 МэВ. В бланкете необходимо, чтобы этот нейтрон породил не менее одного атома трития для покрытия его потерь в плазме. Коэффициент воспроизводства трития к ("количество образующегося в бланкете трития в расчёте на один падающий термоядерный нейтрон) зависит от спектра нейтронов в бланкете, величины поглощения и утечки нейтронов. При юо% покрытии плазмы бланкетом необходимо значение к> 1,05.

    Рис. 4. Зависимости сечения ядерных реакций образования трития от энергии нейтронов: 1 - реакция 6 Li(n,t)‘»He, 2 - реакция 7 Li(n,n’,0 4 He.

    У ядра 6 Li сечение поглощения тепловых нейтронов с образованием трития очень велико (953 барн при 0,025 эВ). При низких энергиях сечение поглощения нейтронов в Li идёт по закону (l/u) и в случае природного лития достигает значения 71 барн для тепловых нейтронов. У 7 Li сечение взаимодействия с нейтронами равно всего 0,045 барн. Поэтому для повышения производительности бридера природный литий следует обогащать по изотопу 6 Li. Однако увеличение содержания 6 Li в смеси изотопов мало влияет на коэффициент воспроизводства трития: имеет место возрастание на 5% при увеличении обогащения изотопом 6 Li до 50% в смеси. В реакции 6 Li(n, Т)»Не поглотятся все замедлившиеся нейтроны. Кроме сильного поглощения в тепловой области небольшое поглощение (

    Зависимость сечения реакции 6 Li(n,T) 4 He от энергии нейтронов приведена на рис. 7. Как это характерно для многих других ядерных реакций, сечение реакции 6 Li(n,f) 4 He уменьшается по мере увеличения энергии нейтронов (за исключением резонанса при энергии 0,25 МэВ).

    Реакция с образованием трития на изотопе?Li идёт на быстрых нейтронах при энергии?„>2.8 МэВ. В этой реакции

    производится тритий и нет потери нейтрона.

    Ядерная реакция на 6 Li не может дать расширенного воспроизводства трития и только компенсирует выгоревший тритий

    Реакция на?1л приводит к появлению одного ядра трития на каждый поглощённый нейтрон и регенерации этого нейтрона, который затем поглощается при замедлении и даёт ещё одно ядро трития.

    Замечание. В природном Li коэффициент воспроизводства трития к «2. Для Li, LiFBeF 2 , Li 2 0, LiF, У^РЬвз k= 2,0; 0,95; 1,1; 1,05 и i,6, соответственно. Расплавленная соль LiF (66%) + BeF 2 (34%) носит название флайб (FLiBe ), её использование предпочтительно по условиям безопасности и уменьшения потерь трития.

    Поскольку не каждый нейтрон D-T-реакции участвует в образовании атома трития, необходимо размножить первичные нейтроны (14,1 МэВ) с помощью (п, 2н) или (п, зп)-реакции, на элементах, имеющих достаточно большое сечение при взаимодействии быстрых нейтронов, например, на у Ве, Pb, Mo, Nb и многих других материалах с Z> 25. Для бериллия порог (п, 2п) реакции 2,5 МэВ; при 14 МэВ 0=0,45 барн. В результате, в вариантах бланкета с жидким или керамическим литием (LiA10 2) возможно достижение к* 1.1+1.2. В случае окружения камеры реактора урановым бланкетом размножение нейтронов может быть существенно увеличено за счёт реакций деления и (п,2п), (п,зл) реакций.

    Замечание 1. Наведённая активность лития при облучении нейтронами практически отсутствует, так как образующийся радиоактивный изотоп 8 Li (cr-излучение с энергией 12,7 МэВ и /?-излучение с энергией ~6 МэВ) обладает весьма малым периодом полураспада - 0,875 с. Низкая активация лития и короткий период полураспада облегчают биологическую защиту установки.

    Замечание 2. Активность трития, содержащегося в бланкете термоядерного DT- реактора ~*ю 6 Ки, поэтому использование DT-топлива не исключает теоретической возможности аварии масштаба нескольких процентов от Чернобыльской (выброс составил 510 7 Ки). Выброс трития с образованием Т 2 0 может приводить к радиоактивным осадкам, попаданию трития в грунтовые воды, водоёмы, живые организмы, растения с накоплением, в конечном счёте, в продуктах питания.

    Выбор материала и агрегатного состояния бридера представляет собой серьёзную проблему. Материал бридера должен обеспечить высокий процент превращения лития в тритий и лёгкое извлечение последнего для последующей передачи в систему подготовки топлива.

    К основные функциям бридерного бланкета относятся: формирование плазменной камеры; производство трития с коэффициентом k>i; превращение кинетической энергии нейтрона в тепло; утилизация тепла, образующегося в бланкете в процессе работы термоядерного реактора; радиационная защита электромагнитной системы; биологическая защита от радиации.

    Термоядерный реактор на D-T-топливе в зависимости от материала бланкета может быть «чистым» или гибридным. Бланкет «чистого» термоядерного реактора содержит Li, в нём под действием нейтронов получается тритий и происходит усиление термоядерной реакции с 17,6 МэВ до 22,4

    МэВ. В бланкете гибридного («активного») термоядерного реактора не только производится тритий, но и имеются зоны, в которые помещается отвальный 2 з 8 и для получения 2 39Ри. При этом в бланкете выделяется энергия равная 140 МэВ на один нейтрон. Энергетическая эффективность гибридного термоядерного реактора в шесть раз выше, чем чистого. Одновременно достигается лучшее поглощение термоядерных нейтронов, что повышает безопасность установки. Однако наличие делящихся радиоактивных веществ создаёт радиационную обстановку, аналогичную существующей в ядерных реакторах деления.

    Рис. 5.

    Существуют две концепции чистого бридерного бланкета, основанные на применении жидких тритий-воспроизводящих материалов, или на применении твёрдых литий содержащих материалов. Варианты конструкций бланкетов связаны с типом выбранных теплоносителей (жидкометаллические, жидкосолевые, газовые, органические, вода) и классом возможных конструкционных материалов.

    В жидкостном варианте бланкета литий является теплоносителем, а тритий - воспроизводящим материалом. Секция бланкета состоит из первой стенки, бридерной зоны (расплавленная соль лития, рефлектора (сталь или вольфрам) и лёгкой компоненты защиты (например, гидрид титана). Основная особенность литиевого самоохлаждаемого бланкета - отсутствие дополнительного замедлителя и размножителя нейтронов. В бланкете с жидким бридером можно использовать следующие соли: Li 2 BeF 4 (Т пл = 459°), LiBeF 3 {T wx . =380°), FLiNaBe (7^=305-320°). Среди приведённых солей Li 2 BeF 4 обладает наименьшей вязкостью, но наибольшей T wl . Перспек- тина эвтектика Pb-Li и расплав FLiNaBe, который выступает ещё и в качестве самоохладителя. Размножителями нейтронов в таком бридере служат сферические гранулы Be диаметром 2 мм.

    В бланкете с твёрдым бридером в качестве бридерного материала используется литийсодержащая керамика, а размножителем нейтронов служит бериллий. В состав такого бланкета входят такие элементы, как первая стенка с коллекторами теплоносителя; зона размножения нейтронов; зона воспроизводства трития; каналы охлаждения зон размножения и воспроизводства трития; железоводная защита; элементы крепления бланкета; магистрали подвода и отвода теплоносителя и газа-носителя трития. Конструкционные материалы - ванадиевые сплавы и сталь ферритного или ферритно-мартенситного класса. Радиационная защита изготовлена из стальных листов. В качестве теплоносителя используется газообразный гелий под давлением юМПа с температурой входа 300 0 , выходная температура теплоносителя 650 0 .

    Радиохимическая задача заключается в выделении, очистке и возвращении в топливный цикл трития. При этом важным является выбор функциональных материалов для систем регенерации компонентов топлива (бридерных материалов). Материал размножителя (бридера) должен обеспечить съём энергии термоядерного синтеза, генерацию трития и эффективное его извлечение для последующей очистки и трансформации в реакторное топливо. Для этой цели требуется материал с высокой температурной, радиационной и механической стойкостью. Не менее важны и диффузионные характеристики материала, обеспечивающие высокую подвижность трития и, как следствие, хорошую эффективность извлечения трития из бридерного материала при сравнительно низких температурах.

    Рабочими веществами бланкета могут служить: керамика Li 4 Si0 4 (или Li 2 Ti0 3) - воспроизводящий материал и бериллий - размножитель нейтронов. И бридер и бериллий используются в форме слоя монодисперс- ных пэбблов (гранул с формой, близкой к сферической). Диаметры гранул Li 4 Si0 4 и Li 2 Ti0 3 варьируются в диапазонах 0.2-Ю.6 мм и о.8-м мм, соответственно, а гранулы бериллия имеют диаметр 1 мм. Доля эффективного объёма слоя гранул - 63%. Для воспроизводства трития, керамический бридер обогащают изотопом 6 Li. Типичный уровень обогащения по 6 Li: 40% для Li 4 Si0 4 и 70% для Li 2 Ti0 3 .

    В настоящее время наиболее перспективным считается метатитанат лития 1л 2 ТЮ 3 из-за сравнительно большой скорости высвобождения трития при сравнительно низких температурах (от 200 до 400 0), радиационной и химической стойкости. Было продемонстрировано, что гранулы из тита- ната лития, обогащённого до 96% 6 Li в условиях интенсивного нейтронного облучения и термических воздействий, позволяют в течение двух лет генерировать литий практически с постоянной скоростью. Извлечение трития из облучённой нейтронами керамики проводят программированным нагревом бридерного материала в режиме непрерывной откачки.

    Предполагается, что в ядерной индустрии установки термоядерного синтеза могут быть использованы по трём направлениям:

    • - гибридные реакторы, в которых бланкет содержит делящиеся нуклиды (уран, плутоний), деление которых управляется мощным потоком высокоэнергетических (14 МэВ) нейтронов;
    • - инициаторы горения в электроядерных подкритических реакторах;
    • - трансмутация долгоживущих экологически опасных радионуклидов с целью обезвреживания РАО.

    Высокая энергия термоядерных нейтронов предоставляет большие возможности выделения энергетических групп нейтронов для сжигания конкретного радионуклида в резонансной области сечений.