Спирты: физические и химические свойства, получение, применение. Спирты — понятие, свойства, применение Формулы спиртов по химии

Спирты – это производные углеводородов, в молекулах которых содержится одна или несколько гидроксильных ОН – групп, связанных с насыщенным атомом углерода.

Номенклатура: систематическая – к названию соответствующего углеводорода добавляют окончание – ол, цифрой указывают положение ОН-группы; применяют тривиальные названия.

КЛАССИФИКАЦИЯ

По числу ОН – групп спирты делятся на

● одноатомные

● двухатомные (диолы)

● трехатомные (триолы)

● многоатомные (полиолы)

В зависимости от положения ОН-групп различают

● первичные

● вторичные

● третичные

В зависимости от природы радикала R различают

● насыщенные

● ненасыщенные

● ароматические

● алициклические

Изомерия

1. Углеродного скелета

2. Положение функциональной группы:

3. Межклассовая изомерия (спирты изомерны классу простых эфиров)

§3. Способы получения одноатомных спиртов .

1. Гидратация алкенов

В зависимости от строения непредельного углеводорода могут образовываться первичные, вторичные и третичные спирты:

этилен этанол

пропилен 2-пропанол

метилпропен 2-метил-2-пропанол

2. Гидролиз галогенпроизводных; осуществляется под действием водного р-ра щелочи:

3. Гидролиз сложных эфиров:

4. Восстановление карбонильных соединений:

5. Некоторые специфические методы получения:

а) получение метанола из синтез-газа (давление – 50 – 150атм, температура – 200 - 300°С, катализаторы – оксиды цинка, хрома, алюминия):

б) получение этанола брожением сахаров:

Физические свойства

Метиловый спирт – бесцветная жидкость с характерным спиртовым запахом,

Т кип. = 64,7 о С, горит бледным пламенем. Сильно ядовит.

Этиловый спирт – бесцветная жидкость с характерным спиртовым запахом,

Т кип. =78,3 о С

Спирты С 1 – С 11 – жидкости, С 12 и выше – твердые вещества.

спирты С 4 – С 5 имеют удушливый сладковатый запах;

высшие спирты запаха не имеют.

Относительная плотность меньше 1, т.е. легче воды.

Низшие спирты (до С 3) с водой смешиваются в любых соотношениях.

С увеличением углеводородного радикала растворимость в воде уменьшается, возрастает гидрофобность молекулы.

Спирты способны к межмолекулярной ассоциации:

В связи с этим температуры кипения и плавления у спиртов выше, чем у соответствующих углеводородов и галогенпроизводных.

Способность этилового спирта к образованию водородных связей лежит в основе его антисептических свойств.

§5. Химические свойства одноатомных спиртов .

Характерные реакции спиртов определяются наличием в их молекуле гидроксильной группы, которая обуславливает их значительную реакционную способность.

1. Взаимодействие с щелочными металлами:

Алкоголяты металлов R-ОМе – бесцветные твердые вещества, легко гидролизуются водой. Являются сильными основаниями.

2.Основные свойства

3.Образование простых эфиров:

4.Образование сложных эфиров

с неорганическими кислотами:

с органическими кислотами:

5.Реакция спиртов с галогенводородами:

Использование галогенидов фосфора:

6. Реакции дегидратации спиртов.

Отщепление воды от спиртов происходит в присутствии кислот или над катализаторами при повышенной температуре.

Дегидратация спиртов протекает согласно эмпирическому правилу Зайцева: предпочтительно водород отщепляется от наименее гидрогенизированного β-углеродного атома.

1) Дегидратация первичных спиртов протекает в жестких условиях:

2) Дегидратация вторичных спиртов:

3) Дегидратация третичных спиртов:

7.Окисление (окислители – КМnО 4 , К 2 Сr 2 О 7 в кислой среде)

8.Дегидрирование спиртов:

Двухатомные спирты (диолы)

Способы получения.

1. Окисление этилена

2. Гидролиз дигалогенпроизводного

Физические свойства:

Этиленгликоль – вязкая бесцветная жидкость сладкая на вкус, растворяется в воде; безводный этиленгликоль гигроскопичен.

Химические свойства

Реакции в основном аналогичны реакциям одноатомных спиртов, причем реакции могут протекать по одной или по двум гидроксильным группам.

1. Кислотные свойства; этиленгликоль более сильная кислота, чем этанол

(рК а = 14,8). Образование гликолятов

2. Реакции замещения на галогены

3. Образование простых эфиров

4. Дегидратация

5. Окисление

Трехатомные спирты (триолы)

Способы получения.

1. Гидролиз жиров

2. Из аллилхлорида

Физические свойства:

Глицерин – вязкая жидкость со сладким вкусом. Не ограничено растворим в воде, этаноле; не растворяется в эфире, безводный глицерин гигроскопичен (поглощает до 40% влаги из воздуха).

Химические свойства

Реакции в основном аналогичны реакциям одноатомных спиртов, причем реакции могут протекать по одной, по двум или сразу по трем гидроксильным группам.

1. Кислотные свойства; глицерин более сильная кислота, чем этанол и этиленгликоль. рК а = 13, 5.

С гидроксидом меди образует хелатный комплекс:

2. Реакции замещения

3. Дегидратация

Применение спиртов

Метанол и этанол используются в качестве растворителей, а так же как исходные вещества в синтезе органических веществ. Этанол применяют в фармации для приготовления настоек, экстрактов; в медицине – как антисептик.

Этиленгликоль применяют для получение синтетических полиэфирных волокон (например, лавсан), а так же в качестве антифриза (50%-ный р-р) – незамерзающая жидкость для охлаждения двигателей внутреннего сгорания.

Глицерин используется как компонент косметических препаратов и мазей. Тринитрат глицерина – лекарственный препарат при лечении стенокардии.

Тринитрат глицерина применяют в производстве взрывчатых веществ (динамит).

Использование глицерина в пищевой и текстильной промышленности.

Данный урок предназначен для самостоятельного изучения темы «Спирты. Классификация спиртов. Предельные одноатомные спирты: строение и номенклатура». Вы узнаете о том, что спиртами называют углеводороды, в которых один атом углеводорода (или несколько) замещен на гидроксил, о разновидностях спиртов, об их строении.

На этом уроке вы изучили тему «Спирты. Классификация спиртов. Предельные одноатомные спирты: строение и номенклатура». Вы узнали о том, что спиртами называют углеводороды, в которых один атом углеводорода (или несколько) замещен на гидроксил, о разновидностях спиртов, об их строении.

Список литературы

1. Рудзитис Г.Е. Химия. Основы общей химии. 10 класс: учебник для общеобразовательных учреждений: базовый уровень / Г. Е. Рудзитис, Ф.Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012.

2. Химия. 10 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В.В. Еремин, Н.Е. Кузьменко, В.В. Лунин и др. - М.: Дрофа, 2008. - 463 с.

3. Химия. 11 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В.В. Еремин, Н.Е. Кузьменко, В.В. Лунин и др. - М.: Дрофа, 2010. - 462 с.

4. Хомченко Г.П., Хомченко И.Г. Сборник задач по химии для поступающих в вузы. - 4-е изд. - М.: РИА «Новая волна»: Издатель Умеренков, 2012. - 278 с.

Домашнее задание

1. №№ 3, 4 (с. 85) Рудзитис Г.Е., Фельдман Ф.Г. Химия: Органическая химия. 10 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман. - 14-е издание. М.: Просвещение, 2012.

2. Напишите структурную формулу глицерина. Назовите его по номенклатуре ИЮПАК.

3. Напишите уравнения реакций сгорания этанола.

(алкоголи) – класс органических соединений, содержащих одну или несколько группировок С–ОН, при этом гидроксильная группа ОН связана с алифатическим атомом углерода (соединения, у которых атом углерода в группировке С–ОН входит в состав ароматического ядра, называются фенолами )

Классификация спиртов разнообразна и зависит от того, какой признак строения взят за основу.

1. В зависимости от количества гидроксильных групп в молекуле спирты делят на:

а) одноатомные (содержат одну гидроксильную ОН-группу), например, метанол СН 3 ОН, этанол С 2 Н 5 ОН, пропанол С 3 Н 7 ОН

б) многоатомные (две и более гидроксильных групп), например, этиленгликоль

HO –С H 2 – CH 2 – OH , глицерин HO–СH 2 –СН(ОН)–CH 2 –OH, пентаэритрит С(СН 2 ОН) 4 .

Соединения, в которых у одного атома углерода

есть две гидроксильных группы, в большинстве случаев нестабильны и легко превращаются в альдегиды, отщепляя при этом воду: RCH (OH ) 2 ® RCH = O + H 2 O , не существуют.

2. По типу атома углерода, с которым связана группа ОН, спирты делят на:

а) первичные, у которых ОН-группа связана с первичным атомом углерода. Первичным называют атом углерода (выделен красным цветом), связанный всего с одним углеродным атомом. Примеры первичных спиртов – этанол С

H 3 – CH 2 – OH , пропанол С H 3 – CH 2 – CH 2 – OH. б) вторичные, у которых ОН-группа связана с вторичным атомом углерода. Вторичный атом углерода (выделен синим цветом) связан одновременно с двумя атомами углерода, например, вторичный пропанол, вторичный бутанол (рис. 1).

Рис. 1. СТРОЕНИЕ ВТОРИЧНЫХ СПИРТОВ

в) третичные, у которых ОН-группа связана с третичным атомом углерода. Третичный углеродный атом (выделен зеленым цветом) связан одновременно с тремя соседними атомами углерода, например, третичный бутанол и пентанол (рис. 2).

Рис. 2. СТРОЕНИЕ ТРЕТИЧНЫХ СПИРТОВ

В соответствии с типом углеродного атома присоединенную к нему спиртовую группу также называют первичной, вторичной или третичной.

У многоатомных спиртов, содержащих две или более ОН-групп, могут присутствовать одновременно как первичные, так и вторичные НО-группы, например, в глицерине или ксилите (рис. 3).

Рис. 3. СОЧЕТАНИЕ В СТРУКТУРЕ МНОГОАТОМНЫХ СПИРТОВ ПЕРВИЧНЫХ И ВТОРИЧНЫХ ОН-ГРУПП .

3. По строению органических групп, связанных ОН-группой, спирты подразделяют на предельные (метанол, этанол, пропанол), непредельные, например, аллиловый спирт СН 2 =СН–СН 2 –ОН, ароматические (например, бензиловый спирт С 6 Н 5 СН 2 ОН), содержащие в составе группы

R ароматическую группу.

Непредельные спирты, у которых ОН-группа «примыкает» к двойной связи, т.е. связана с атомом углерода, участвующим одновременно в образовании двойной связи (например, виниловый спирт СН 2 =СН–ОН), крайне нестабильны и сразу же изомеризуются (см .ИЗОМЕРИЗАЦИЯ) в альдегиды или кетоны:

CH 2 =CH–OH ® CH 3 –CH=O Номенклатура спиртов. Для распространенных спиртов, имеющих простое строение, используют упрощенную номенклатуру: название органической группы преобразуют в прилагательное (с помощью суффикса и окончания «овый ») и добавляют слово «спирт»: В том случае, когда строение органической группы более сложное, используют общие для всей органической химии правила. Названия, составленные по таким правилам, называют систематическими. В соответствии с этими правилами, углеводородную цепь нумеруют с того конца, к которому ближе расположена ОН-группа. Далее используют эту нумерацию, чтобы указать положение различных заместителей вдоль основной цепи, в конце названия добавляют суффикс «ол» и цифру, указывающую положение ОН-группы (рис. 4): 4. СИСТЕМАТИЧЕСКИЕ НАЗВАНИЯ СПИРТОВ . Функциональные (ОН) и замещающие (СН 3) группы, а также соответствующие им цифровые индексы выделены различающимися цветами. Систематические названия простейших спиртов составляют по тем же правилам: метанол, этанол, бутанол. Для некоторых спиртов сохранились тривиальные (упрощенные) названия, сложившиеся исторически: пропаргиловый спирт НС є С–СН 2 –ОН, глицерин HO–СH 2 –СН(ОН)–CH 2 –OH, пентаэритрит С(СН 2 ОН) 4 , фенетиловый спирт С 6 Н 5 –CH 2 –CH 2 –OH. Физические свойства спиртов. Спирты растворимы в большинстве органических растворителей, первые три простейших представителя – метанол, этанол и пропанол, а также третичный бутанол (Н 3 С) 3 СОН – смешиваются с водой в любых соотношениях. При увеличении количества атомов С в органической группе начинает сказываться гидрофобный (водоотталкивающий) эффект, растворимость в воде становится ограниченной, а при R , содержащем свыше 9 атомов углерода, практически исчезает.

Благодаря наличию ОН-групп между молекулами спиртов возникают водородные связи.

Рис. 5. ВОДОРОДНЫЕ СВЯЗИ В СПИРТАХ (показаны пунктиром)

В результате у всех спиртов более высокая температура кипения, чем у соответствующих углеводородов, например, Т. кип. этанола +78° С, а Т. кип. этана –88,63° С; Т. кип. бутанола и бутана соответственно +117,4° С и –0,5° С.

Химические свойства спиртов. Спирты отличаются разнообразными превращениями. Реакции спиртов имеют некоторые общие закономерности: реакционная способность первичных одноатомных спиртов выше, чем вторичных, в свою очередь, вторичные спирты химически более активны, чем третичные. Для двухатомных спиртов, в том случае, когда ОН-группы находятся у соседних атомов углерода, наблюдается повышенная (в сравнении с одноатомными спиртами) реакционная способность из-за взаимного влияния этих групп. Для спиртов возможны реакции, проходящие с разрывом как С–О, так и О–Н – связей.

1. Реакции, протекающие по связи О–Н.

При взаимодействии с активными металлами (Na, K, Mg, Al) спирты проявляют свойства слабых кислот и образуют соли, называемые алкоголятами или алкоксидами:

CH 3 OH + 2 Na ® 2 CH 3 OK + H 2

Алкоголяты химически не стабильны и при действии воды гидролизуются с образованием спирта и гидроксида металла:

C 2 H 5 OК + H 2 O

® C 2 H 5 OH + КOH

Эта реакция показывает, что спирты в сравнении с водой представляют собой более слабые кислоты (сильная кислота вытесняет слабую), кроме того, при взаимодействии с растворами щелочей спирты не образуют алкоголяты. Тем не менее, в многоатомных спиртах (в том случае, когда ОН-группы присоединены к соседним атомам С) кислотность спиртовых групп намного выше, и они могут образовывать алкоголяты не только при взаимодействии с металлами, но и со щелочами:

HO–CH 2 –CH 2 –OH + 2NaOH ® NaO–CH 2 –CH 2 –ONa + 2H 2 O Когда в многоатомных спиртах НО-группы присоединены к не соседствующим атомам С, свойства спиртов близки к одноатомным, поскольку взаимовлияние НО-групп не проявляется.

При взаимодействии с минеральными или органическими кислотами спирты образуют сложные эфиры – соединения, содержащие фрагмент

R – O – A (А – остаток кислоты). Образование сложных эфиров происходит и при взаимодействии спиртов с ангидридами и хлорангидридами карбоновых кислот (рис. 6).

При действии окислителей (К 2 Cr 2 O 7 , KMnO 4) первичные спирты образуют альдегиды, а вторичные – кетоны (рис.7)

Рис. 7. ОБРАЗОВАНИЕ АЛЬДЕГИДОВ И КЕТОНОВ ПРИ ОКИСЛЕНИИ СПИРТОВ

Восстановление спиртов приводит к образованию углеводородов, содержащих то же количество атомов С, что молекула исходного спирта (рис.8).

8. ВОССТАНОВЛЕНИЕ БУТАНОЛА

2. Реакции, протекающие по связи С–О.

В присутствии катализаторов или сильных минеральных кислот происходит дегидратация спиртов (отщепление воды), при этом реакция может идти в двух направлениях:

а) межмолекулярная дегидратация с участием двух молекул спирта, при этом связи С–О у одной из молекул разраваются, в результате образуются простые эфиры – соединения, содержащие фрагмент

R –О– R (рис. 9А).

б) при внутримолекулярной дегидратации образуются алкены - углеводороды с двойной связью. Часто оба процесса – образование простого эфира и алкена – протекают параллельно (рис. 9Б).

В случае вторичных спиртов при образовании алкена возможны два направления реакции (рис. 9В), преимущественное направление то, при котором в процессе конденсации отщепляется водород от наименее гидрогенизированного атома углерода (отмечен цифрой 3), т.е. окруженного меньшим количеством атомов водорода (в сравнении с атомом 1). Показанные на рис. 10 реакции используют для получения алкенов и простых эфиров.

Разрыв связи С–О в спиртах происходит также при замещении ОН-группы галогеном, или аминогруппой (рис. 10).


Рис. 10. ЗАМЕНА ОН-ГРУППЫ В СПИРТАХ ГАЛОГЕНОМ ИЛИ АМИНОГРУППОЙ

Реакции, показанные на рис. 10, используют для получения галогенуглеводородов и аминов.

Получение спиртов. Некоторые из показанных выше реакций (рис. 6,9,10) обратимы и при изменении условий могут протекать в противоположном направлении, приводя к получению спиртов, например при гидролизе сложных эфиров и галогенуглеводородов (рис.11А и Б, соответственно), а также гидратацией алкенов – присоединением воды (рис.11В).

Рис. 11. ПОЛУЧЕНИЕ СПИРТОВ ГИДРОЛИЗОМ И ГИДРАТАЦИЕЙ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Реакция гидролиза алкенов (рис. 11, схема В) лежит в основе промышленного производства низших спиртов, содержащих до 4 атомов С.

Этанол образуется и при так называемом спиртовом брожении сахаров, например, глюкозы С 6 Н 12 О 6 . Процесс протекает в присутствии дрожжевых грибков и приводит к образованию этанола и СО 2:

® 2С 2 Н 5 ОН + 2СО 2

Брожением можно получить не более чем 15%-ный водный раствор спирта, поскольку при более высокой концентрации спирта дрожжевые грибки погибают. Растворы спирта более высокой концентрации получают перегонкой.

Метанол получают в промышленности восстановлением монооксида углерода при 400

° С под давлением 20–30 МПа в присутствии катализатора, состоящего из оксидов меди, хрома, и алюминия: ® Н 3 СОН Если вместо гидролиза алкенов (рис. 11) проводить окисление, то образуются двухатомные спирты (рис. 12) 12. ПОЛУЧЕНИЕ ДВУХАТОМНЫХ СПИРТОВ Применение спиртов. Способность спиртов участвовать в разнообразных химических реакциях позволяет их использовать для получения всевозможных органических соединений: альдегидов, кетонов, карбоновых кислот простых и сложных эфиров, применяемых в качестве органических растворителей, при производстве полимеров, красителей и лекарственных препаратов.

Метанол СН 3 ОН используют как растворитель, а также в производстве формальдегида, применяемого для получения фенолформальдегидных смол, в последнее время метанол рассматривают как перспективное моторное топливо. Большие объемы метанола используют при добыче и транспорте природного газа. Метанол – наиболее токсичное соединение среди всех спиртов, смертельная доза при приеме внутрь – 100 мл.

Этанол С 2 Н 5 ОН – исходное соединение для получения ацетальдегида, уксусной кислоты, а также для производства сложных эфиров карбоновых кислот, используемых в качестве растворителей. Кроме того, этанол – основной компонент всех спиртных напитков, его широко применяют и в медицине как дезинфицирующее средство.

Бутанол используют как растворитель жиров и смол, кроме того, он служит сырьем для получения душистых веществ (бутилацетата, бутилсалицилата и др.). В шампунях он используется как компонент, повышающий прозрачность растворов.

Бензиловый спирт С 6 Н 5 –CH 2 –OH в свободном состоянии (и в виде сложных эфиров) содержится в эфирных маслах жасмина и гиацинта. Он обладает антисептическими (обеззараживающими) свойствами, в косметике он используется как консервант кремов, лосьонов, зубных эликсиров, а в парфюмерии - как душистое вещество.

Фенетиловый спирт С 6 Н 5 –CH 2 –CH 2 –OH обладает запахом розы, содержится в розовом масле, его используют в парфюмерии.

Этиленгликоль HOCH 2 –CH 2 OH используют в производстве пластмасс и как антифриз (добавка, снижающая температуру замерзания водных растворов), кроме того, при изготовлении текстильных и типографских красок.

Диэтиленгликоль HOCH 2 –CH 2 OCH 2 –CH 2 OH используют для заполнения тормозных гидравлических приспособлений, а также в текстильной промышленности при отделке и крашении тканей.

Глицерин

HOCH 2 – CH (OH )– CH 2 OH применяют для получения полиэфирных глифталевых смол, кроме того, он является компонентом многих косметических препаратов. Нитроглицерин (рис. 6) – основной компонент динамита, применяемого в горном деле и железнодорожном строительстве в качестве взрывчатого вещества.

Пентаэритрит (

HOCH 2) 4 С применяют для получения полиэфиров (пентафталевые смолы), в качестве отвердителя синтетических смол, как пластификатор поливинилхлорида, а также в производстве взрывчатого вещества тетранитропентаэритрита.

Многоатомные спирты ксилит НОСН 2 –(СНОH) 3 –CН 2 ОН и сорбит neНОСН 2 – (СНОН) 4 –СН 2 OН имеют сладкий вкус, их используют вместо сахара в производстве кондитерских изделий для больных диабетом и людей страдающих от ожирения. Сорбит содержится в ягодах рябины и вишни.

Михаил Левицкий

ЛИТЕРАТУРА Шабаров Ю.С. Органическая химия . Москва, «Химия», 1994

Физические свойства

МЕТАНОЛ (древесный спирт) – жидкость (t кип =64,5; t пл =-98; ρ = 0,793г/см 3), с запахом алкоголя, хорошо растворяется в воде. Ядовит – вызывает слепоту, смерть наступает от паралича верхних дыхательных путей.

ЭТАНОЛ (винный спирт) – б/цв жидкость, с запахом спирта, хорошо смешивается с водой.

Первые представители гомологического ряда спиртов - жидкости, высшие - твердые вещества. Метанол и этанол смешиваются с водой в любых соотношениях. С ростом молекулярной массы растворимость спиртов в воде падает. Высшие спирты практически нерастворимы в воде.

В химических реакциях гидроксисоединений возможно разрушение одной из двух связей:

· С–ОН с отщеплением ОН-группы

· О–Н с отщеплением водорода

Это могут быть реакции замещения , в которых происходит замена ОН или Н, или реакция отщепления (элиминирования), когда образуется двойная связь.

Полярный характер связей С–О и О–Н способствует гетеролитическому их разрыву и протеканию реакций по ионному механизму. При разрыве связи О–Н с отщеплением протона (Н +) проявляются кислотные свойства гидроксисоединения, а при разрыве связи С–О – свойства основания и нуклеофильного реагента.

С разрывом связи О–Н идут реакции окисления, а по связи С–О – восстановления.

Таким образом, гидроксисоединения могут вступать в многочисленные реакции, давая различные классы соединений. Вследствие доступности гидроксильных соединений, в особенности спиртов, каждая из этих реакций является одним из лучших способов получения определенных органических соединений.

I. Кислотно-основные

RO + H + ↔ ROH ↔ R + + OH —

алкоголят-ион

Кислотные свойства уменьшаются в ряду, а основные возрастают:

HOH → R-CH 2 -OH → R 2 CH-OH → R 3 C-OH

вода первичный вторичный третичный

Кислотные свойства

С активными щелочными металлами :

2C 2 H 5 OH + 2 Na → 2C 2 H 5 ONa + H 2

этилат натрия

Алкоголяты подвергаются гидролизу, это доказывает, что у воды более сильные кислотные свойства

C 2 H 5 ONa + H 2 O ↔ C 2 H 5 OH + NaOH

Основные свойства

С галогенводородными кислотами :

C 2 H 5 OH + HBr H2SO4( конц ) C 2 H 5 Br + H 2 O

бромэтан

Лёгкость протекания реакции зависит от природы галогенводорода и спирта – увеличение реакционной способности происходит в следующих рядах:

HF < HCl < HBr < HI
первичные < вторичные < третичные

II . Окисление

1). В присутствии окислителей [ O ] – K 2 Cr 2 O 7 или KMnO 4 спирты окисляются до карбонильных соединений:

Первичные спирты при окислении образуют альдегиды, которые затем легко окисляются до карбоновых кислот.

При окислении вторичных спиртов образуются кетоны.

Третичные спирты более устойчивы к действию окислителей. Они окисляются только в жестких условиях (кислая среда, повышенная температура), что приводит к разрушению углеродного скелета молекулы и образованию смеси продуктов (карбоновых кислот и кетонов с меньшей молекулярной массой).

В кислой среде:

Для первичных и вторичных одноатомных спиртов качественной реакцией является взаимодействие их с кислым раствором дихромата калия. Оранжевая окраска гидратированного иона Cr 2 O 7 2- исчезает и появляется зеленоватая окраска, характерная для иона Cr 3+ . Эта смена окраски позволяет определять даже следовые количества спиртов.

CH 3 — OH + K 2 Cr 2 O 7 + 4H 2 SO 4 → CO 2 + K 2 SO 4 + Cr 2 (SO 4) 3 + 6H 2 O

3CH 3 -CH 2 -OH + K 2 Cr 2 O 7 + 4H 2 SO 4 → 3CH 3 COH + K 2 SO 4 + Cr 2 (SO 4) 3 + 7H 2 O

В более жёстких условиях окисление первичных спиртов идёт сразу до карбоновых кислот:

3CH 3 -CH 2 -OH + 2K 2 Cr 2 O 7 + 8H 2 SO 4 t → 3CH 3 COOH + 2K 2 SO 4 + 2Cr 2 (SO 4) 3 + 11H 2 O

Третичные спирты устойчивы к окислению в щелочной и нейтральной среде. В жёстких условиях (при нагревании, в кислой среде) они окисляются с расщеплением связей С-С и образованием кетонов и карбоновых кислот.

В нейтральной среде:

CH 3 OH + 2 KMnO 4 K 2 CO 3 + 2 MnO 2 + 2 H 2 O , а остальные спирты до солей соответствующих карбоновых кислот.

2). Качественная реакция на первичные спирты!

3). Горение (с увеличением массы углеводородного радикала – пламя становится всё более коптящим)

C n H 2n+1 -OH + O 2 t → CO 2 + H 2 O + Q

III. Реакции отщепления

1) Внутримолекулярная дегидратация

CH 3 -CH 2 -CH(OH)-CH 3 t>140,H2SO4( к ) → CH 3 -CH=CH-CH 3 + H 2 O

бутанол-2 бутен-2

дегидратация идет преимущественно в направлении I, т.е. по правилу Зайцева – с образованием более замещенного алкена. Правило Зайцева : Водород отщепляется от наименее гидрированного атома углерода соседствующего с углеродом, несущим гидроксил.

2) Межмолекулярная дегидратация

2C 2 H 5 OH t<140,H2SO4( к ) С 2 H 5 -O-C 2 H 5 + H 2 O

простой эфир

— при переходе от первичных спиртов к третичным увеличивается склонность к отщеплению воды и образованию алкенов; уменьшается способность образовывать простые эфиры.

3) Реакция дегидрирование и дегидратация предельных одноатомных спиртов реакция С.В. Лебедева

2C 2 H 5 OH 425,ZnO,Al2O3 → CH 2 =CH-CH=CH 2 + H 2 + 2H 2 O

IV. Реакции этерификации

Спирты вступают в реакции с минеральными и органическими кислотами, образуя сложные эфиры. Реакция обратима (обратный процесс – гидролиз сложных эфиров).

Прежде чем приступить к изучению спиртов необходимо разобраться с природой -OH группы и ее влияние на соседние атомы.

Функциональными груп­пами называются группы ато­мов, которые обуславливают характерные химические свой­ства данного класса веществ.

Строение молекул спир­тов R-OH . Атом кислорода, входящий в гидроксильную группу молекул спиртов, резко отличается от атомов водорода и углерода по способности притяги­вать и удерживать электронные пары. В молекулах спиртов имеются полярные связи C-O и O-H .

Учитывая полярность связи O-H и значительный положительный заряд на атоме водорода, говорят, что водород гидроксильной группы имеет «кислотный » характер. Этим он резко отли­чается от атомов водорода, вхо­дящих в углеводородный ради­кал. Атом кислорода гидро­ксильной группы имеет части­чный отрицательный заряд и две неподеленные электрон­ные пары, что дает возмож­ность молекулам спирта обра­зовывать водородные связи .

По химическим свойствам фенолы отличаются от спиртов, что вызвано взаимным влиянием в молекуле фенола гидроксильной группы и бензольного ядра (фенил - C 6 H 5). Это влияние сводится к тому, что π-электроны бензольного ядра частично вовлекают в свою сферу неподеленные электронные пары атома кислорода гидроксильной группы, в результате чего уменьшается электронная плотность у атома кислорода. Это сни­жение компенсируется за счет большей поляризации связи О-Н, что в свою очередь приводит к увеличе­нию положительного заряда на атоме водорода:

Следовательно, водород гидроксильной группы в молекуле фенола имеет кислотный характер .

Влияние атомов в молекулах фенола и его про­изводных взаимно. Гидроксильная группа оказы­вает влияние на плотность π-электронного облака в бензольном кольце. Она понижается у атома угле­рода, связанного с ОН-группой (т. е. у 1-го и 3-го атомов углерода, метаположение) и повышается у соседних атомов углерода - 2, 4, 6-го - орто — и пара- положения.

Водородные атомы бензола в орто- и парапо­ложениях становятся более подвижными и легко замещаются на другие атомы и радикалы.

Альдегиды имеют общую формулу , где карбонильная группа

Атом углерода в кар­бонильной группе sр 3 -гибридизорован. Атомы, не­посредственно с ним связанные, находятся в одной плоскости. Вследствие большой электроотрицательности атома кислорода по сравнению с угле­родным атомом связь C=O сильно поляризована за счет смещения электронной плотности π-связи к кислороду:

Под влиянием карбонильного атома углеро­да в альдегидах увеличивается полярность связи C-H, что повышает реакционноспособность этого атома H.

Карбоновые кислоты содержат функциональ­ноную группу

Называемую карбоксильной группой, или карбоксилом. Так она названа потому, что состоит из карбонильной группы

и гидроксильной -OH.

В карбоновых кислотах гидроксильная группа связана с углеводородным радикалом и карбониль­ной группой. Ослабление свя­зи между кислородом и водо­родом в гидроксильной группе объясняется разностью элек­троотрицательностей атомов углерода, кислорода и водоро­да. Атом углерода приобрета­ет некоторый положительный заряд. Этот атом углерода притягивает к себе электронное облако от атома кис­лорода гидроксильной группы. Компенсируя сме­щенную электронную плотность, атом кислорода гидроксильной группы оттягивает к себе электрон­ное облако соседнего атома водорода. Связь O-H в гидроксильной группе становится более полярной, и атом водорода приобретает большую подвижность.

Предельные одноатомные и многоатомные спирты

Спиртами (или алканолами) называются орга­нические вещества, молекулы которых содержат одну или несколько гидроксильных групп (групп -ОН), соединенных с углеводородным радикалом.

По числу гидроксильных групп (атомности) спир­ты делятся на:

· Одноатомные , например:

· Двухатомные (гликоли), например:

· Трехатомные , например:

По характеру углеводородного радикала выде­ляют следующие спирты:

· Предельные , содержащие в молекуле лишь пре­дельные углеводородные радикалы, например:

· Непредельные , содержащие в молекуле крат­ные (двойные и тройные) связи между атомами углерода, например:

· Ароматические , т. е. спирты, содержащие в мо­лекуле бензольное кольцо и гидроксильную группу, связанные друг с другом не непосред­ственно, а через атомы углерода, например:

Органические вещества, содержащие в моле­куле гидроксильные группы, связанные непосред­ственно с атомом углерода бензольного кольца, су­щественно отличаются по химическим свойствам от спиртов и поэтому выделяются в самостоятель­ный класс органических соединений - фенолы . Например:

Существуют и полиатомные (многоатомные) спирты, содержащие более трех гидроксильных групп в молекуле. Например, простейший шести­атомный спирт гексанол (сорбит):

Изомерия и номенклатура спиртов

При образовании названий спиртов к назва­нию углеводорода, соответствующего спирту, до­бавляют (родовой) суффикс -ол . Цифрами после суффикса указывают положение гидроксильной группы в главной цепи, а префиксами ди-, три-, тетра- и т. д. - их число:

В нумерации атомов углерода в главной цепи положение гидроксильной группы приоритетно перед положением кратных связей:

Начиная с третьего члена гомологического ря­да, у спиртов появляется изомерия положения функциональной группы (пропанол-1 и пропа­нол-2), а с четвертого - изомерия углеродного скелета (бутанол-1, 2-метилпропанол-1). Для них характерна и межклассовая изомерия - спирты изомерны простым эфирам:

Спирты могут образовывать водородные связи как между молекулами спирта, так и между моле­кулами спирта и воды.

Водородные связи возникают при взаимодей­ствии частично положительно заряженного атома водорода одной молекулы спирта и частично отри­цательно заряженного атома кислорода другой молекулы. Именно благодаря водородным связям между молекулами спирты имеют аномально высо­кие для своей молекулярной массы температуры кипения. Так, пропан с относительной молекуляр­ной массой 44 при обычных условиях является га­зом, а простейший из спир­тов - метанол, имея отно­сительную молекулярную мас­су 32, в обычных условиях - жидкость.

Свойства органических веществ определяются их составом и строением. Спирты подтверждают общее правило. Их молекулы включают в себя угле­водородные и гидроксильные радикалы, поэтому химические свойства спиртов определяются взаи­модействием и влиянием друг на друга этих групп.

Характерные для данного класса соединений свойства обусловлены наличием гидроксильной группы.

1. Взаимодействие спиртов со щелочными и щелочноземельными металлами . Для выявления влияния углеводородного радикала на гидроксиль­ную группу необходимо сравнить свойства веще­ства, содержащего гидроксильную группу и угле­водородный радикал, с одной стороны, и вещества, содержащего гидроксильную группу и не содержа­щего углеводородный радикал, - с другой. Таки­ми веществами могут быть, например, этанол (или другой спирт) и вода. Водород гидроксильной груп­пы молекул спиртов и молекул воды способен вос­станавливаться щелочными и щелочноземельными металлами (замещаться на них):

2. Взаимодействие спиртов с галогеноводоро­дами. Замещение гидроксильной группы на гало­ген приводит к образованию галогеналканов. На­пример:

Данная реакция обратима.

3. Межмолекулярная дегидратация спиртов - отщепление молекулы воды от двух молекул спир­та при нагревании в присутствии водоотнимающих средств:

В результате межмолекулярной дегидратации спиртов образуются простые эфиры. Так, при на­гревании этилового спирта с серной кислотой до температуры от 100 до 140 °С образуется диэтило­вый (серный) эфир.

4. Взаимодействие спиртов с органическими и неорганическими кислотами с образованием сложных эфиров (реакция этерификации ):

Реакция этерификации катализируется силь­ными неорганическими кислотами .

Например, при взаимодействии этилового спир­та и уксусной кислоты образуется уксусноэтило­вый эфир - этилацетат:

5. Внутримолекулярная дегидратация спир­тов происходит при нагревании спиртов в присут­ствии водоотнимающих средств до более высокой температуры, чем температура межмолекулярной дегидратации. В результате образуются алкены. Эта реакция обусловлена наличием атома водоро­да и гидроксильной группы при соседних атомах углерода. В качестве примера можно привести ре­акцию получения этена (этилена) при нагревании этанола выше 140 °С в присутствии концентриро­ванной серной кислоты:

6. Окисление спиртов обычно проводят силь­ными окислителями, например, дихроматом ка­лия или перманганатом калия в кислой среде. При этом действие окислителя направляется на тот атом углерода, который уже связан с гидро­ксильной группой. В зависимости от природы спирта и условий проведения реакции могут обра­зовываться различные продукты. Так, первичные спирты окисляются сначала в альдегиды, а затем в карбоновые кислоты:

При окислении вторичных спиртов образуются кетоны:

Третичные спирты достаточно устойчивы к окислению . Однако в жестких условиях (силь­ный окислитель, высокая температура) возможно окисление третичных спиртов, которое происходит с разрывом углерод-углеродных связей, ближай­ших к гидроксильной группе.

7. Дегидрирование спиртов . При пропускании паров спирта при 200-300 °С над металлическим катализатором, например медью, серебром или платиной, первичные спирты превращаются в аль­дегиды, а вторичные - в кетоны:

8. Присутствием в молекуле спирта одновремен­но нескольких гидроксильных групп обусловлены специфические свойства многоатомных спиртов, которые способны образовывать растворимые в во­де ярко-синие комплексные соединения при взаимодействии со свежеполученным осадком гидроксида меди (II). Для этиленгликоля можно записать:

Одноатомные спирты не способны вступать в эту реакцию. Поэтому она является качествен­ной реакцией на многоатомные спирты .

Химические свойства спиртов - конспект

Отдельные представители спиртов и их значение

Метанол (метиловый спирт CH 3 OH) - бесцветная жид­кость с характерным запа­хом и температурой кипения 64,7 °С. Горит чуть голубова­тым пламенем. Историческое название метанола - дре­весный спирт объясняется одним из путей его полу­чения способом перегонки твердых пород дерева (греч. methy - вино, опьянеть; hule - вещество, древесина).

Метанол требует осторожного обращения при работе с ним. Под действием фермента алкогольдегидрогеназы он превращает­ся в организме в формальде­гид и муравьиную кислоту, которые повреждают сетчат­ку глаза, вызывают гибель зрительного нерва и полную потерю зрения. Попадание в организм более 50 мл метанола вызывает смерть.

Этанол (этиловый спирт C 2 H 5 OH) - бесцветная жидкость с характерным запахом и температу­рой кипения 78,3 °С. Горюч. Смешивается с водой в любых соотношениях. Концентрацию (крепость) спирта обычно выражают в объемных процентах. «Чистым» (медицинским) спиртом называют про­дукт, полученный из пищевого сырья и содержа­щий 96 % (по объему) этанола и 4 % (по объему) воды. Для получения безводного этанола - «аб­солютного спирта» этот продукт обрабатывают ве­ществами, химически связывающими воду (оксид кальция, безводный сульфат меди (II) и др.).

Для того чтобы сделать спирт, используемый в технических целях, непригодным для питья, в него добавляют небольшие количества трудноот­делимых ядовитых, плохо пахнущих и имеющих отвратительный вкус веществ и подкрашивают. Содержащий такие добавки спирт называют дена­турированным, или денатуратом.

Этанол широко используется в промышленности для производства синтетического каучука, лекар­ственных препаратов, применяется как раствори­тель, входит в состав лаков и красок, парфюмерных средств. В медицине этиловый спирт - важнейшее дезинфицирующее средство. Используется для при­готовления алкогольных напитков.

Небольшие количества этилового спирта при попадании в организм человека снижают болевую чувствительность и блокируют процессы торможе­ния в коре головного мозга, вызывая состояние опьянения. На этой стадии действия этанола увели­чивается водоотделение в клетках и, следователь­но, ускоряется мочеобразование, в результате чего происходит обезвоживание организма.

Кроме того, этанол вызывает расширение крове­носных сосудов. Усиление потока крови в кожных капиллярах приводит к покраснению кожи и ощу­щению теплоты.

В больших количествах этанол угнетает дея­тельность головного мозга (стадия торможения), вызывает нарушение координации движений. Про­межуточный продукт окисления этанола в организ­ме - ацетальдегид - крайне ядовит и вызывает тяжелое отравление.

Систематическое употребление этилового спир­та и содержащих его напитков приводит к стой­кому снижению продуктивности работы головного мозга, гибели клеток печени и замене их соедини­тельной тканью - циррозу печени.

Этандиол-1,2 (этиленгликоль) - бесцветная вязкая жидкость. Ядовит. Неограниченно раство­рим в воде. Водные растворы не кристаллизуются при температурах значительно ниже 0 °С, что по­зволяет применять его как компонент незамерзаю­щих охлаждающих жидкостей - антифризов для двигателей внутреннего сгорания.

Пролактриол-1,2,3 (глицерин) - вязкая сиропо­образная жидкость, сладкая на вкус. Неограниченно растворим в воде. Нелетуч. В качестве составной ча­сти сложных эфиров входит в состав жиров и масел.

Широко используется в косметике, фармацевтиче­ской и пищевой промышленностях. В косметических средствах глицерин играет роль смягчающего и успо­каивающего средства. Его до­бавляют к зубной пасте, чтобы предотвратить ее высыхание.

К кондитерским изделиям глицерин добавляют для пре­дотвращения их кристаллиза­ции. Им опрыскивают табак, в этом случае он действует как увлажнитель, предотвращаю­щий высыхание табачных листьев и их раскрошива- ние до переработки. Его добавляют к клеям, чтобы предохранить их от слишком быстрого высыхания, и к пластикам, особенно к целлофану. В последнем случае глицерин выполняет функции пластификато­ра, действуя наподобие смазки между полимерными молекулами и, таким образом, придавая пластмассам необходимую гибкость и эластичность.

Низшие и средние члены ряда предельных одноатом­ных спиртов, содержащих от 1 до 11 атомов углерода, - жидкости. Высшие спирты (начиная с С 12 Н 25 ОН) при комнатной температуре - твердые вещества. Низшие спирты имеют характерный алкогольный запах и жгучий вкус, они хорошо растворимы в во­де. По мере увеличения углеводородного радикала растворимость спиртов в воде понижается, а окта- нол уже не смешивается с водой.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости