Свойства физические и химические целлюлозы. Строение и свойства целлюлозы и ее спутников Физ свойства целлюлозы

Целлюлоза – один из самых распространенных природных полисахаридов, главная составляющая часть и основной структурный материал клеточных стенок растений. Содержание целлюлозы в волокнах хлопковых семян 95-99.5%, в лубяных волокнах (лен, джут, рами) 60-85%, в тканях древесины (в зависимости от породы дерева, его возраста, условий произрастания) 30-55%, в зеленых листьях, траве, низших растениях 10-25%. Почти в индивидуальном состоянии целлюлоза находится в бактериях рода Acetobacter . Спутниками целлюлозы в клеточных стенках большинства растений являются другие структурные полисахариды, отличающиеся по строению и называемые гемицеллюлозами – ксилан, маннан, галактан, арабан и др. (см. раздел «Гемицеллюлозы»), а также вещества неуглеводного характера (лигнин – пространственный полимер ароматического строения, диоксид кремния, смолистые вещества и др.).

Целлюлоза определяет механическую прочность клеточной оболочки и растительной ткани в целом. Распределение и ориентация целлюлозных волокон по отношению к оси растительной клетки на примере древесины показаны на рис.1. Там же представлена субмикронная организация клеточной стенки.

Стенка зрелой клетки древесины, как правило, включает в себя первичную и вторичную оболочки (рис.1). Последняя содержит три слоя - внешний, средний и внутренний.

В первичной оболочке природные волокна целлюлозы расположены беспорядочно и образуют сетчатую структуру (дисперсную текстуру ). Целлюлозные волокна во вторичной оболочке ориентированы в основном параллельно друг другу, что обуславливает высокую прочность растительного материала на разрыв. Степень полимеризации и кристалличности целлюлозы во вторичной оболочке выше, чем в первичной.

В слое S 1 вторичной оболочки (рис.1, 3 ) направление волокон целлюлозы почти перпендикулярно оси клетки, в слое S 2 (рис.1, 4 ) они образуют с осью клетки острый (5-30) угол. Ориентация волокон в слое S 3 сильно варьирует и может различаться даже в рядом расположенных трахеидах. Так, у трахеид ели угол между преимущественной ориентацией целлюлозных волокон и осью клетки колеблется в пределах 30-60, а у волокон большинства лиственных пород – 50-80. Между слоями Р и S 1 , S 1 и S 2 , S 2 и S 3 наблюдаются переходные области (ламеллы) с иной микроориентацией волокон, чем в основных слоях вторичной оболочки.

Техническая целлюлоза – волокнистый полуфабрикат, получается очисткой растительных волокон от нецеллюлозных компонентов. Целлюлозу принято называть по виду исходного сырья (древесная, хлопковая ), методу выделения из древесины (сульфитная, сульфатная ), а также по назначению (вискозная, ацетатная и др. ).

Получение

1. Технология получения древесной целлюлозы включает следующие операции: удаление коры с древесины (окорка); получение древесной щепы; варка щепы (в промышленности варку ведут по сульфатному или сульфитному способу); сортирование; отбелка; сушка; резка.

Сульфитный способ. Еловую древесину обрабатывают водным раствором бисульфита кальция, магния, натрия или аммония, затем в течение 1,5-4 часов повышают температуру до 105-110С, варят при этой температуре в течение 1-2 часов. Далее повышают температуру до 135-150С и варят в течение 1-4 часов. При этом все нецеллюлозные компоненты древесины (главным образом лигнин и гемицеллюлозы) переходят в растворимое состояние, и остается обезлигниненная целлюлоза.

Сульфатный способ. Щепу любых пород древесины (а также тростник) обрабатывают варочным щелоком, представляющим собой водный раствор едкого натра и сульфида натрия (NaOH + Na 2 S). В течение 2-3 часов повышают температуру до 165-180С и варят при этой температуре в течение 1-4 часов. Переведенные в растворимое состояние нецеллюлозные компоненты удаляются из реакционной смеси, и остается очищенная от примесей целлюлоза.

2. Хлопковая целлюлоза получается из хлопкового линта. Технология получения включает механическую очистку, щелочную варку (в 1-4%-ном водном растворе NaOH при температуре 130-170С) и отбелку. Электронные микрофотографии волокон хлопковой целлюлозы приведены на рис.2.

3. Бактериальная целлюлоза синтезируется бактериями рода Acetobacter . Образующаяся бактериальная целлюлоза имеет высокую молекулярную массу и узкое молекулярно-массовое распределение.

Узкое молекулярно-массовое распределение объясняется следующим. Поскольку в бактериальную клетку углевод поступает равномерно, средняя длина образующихся целлюлозных волокон увеличивается во времени пропорционально. При этом заметного увеличения поперечных размеров микроволокон (микрофибрилл) не происходит. Средняя скорость роста волокон бактериальной целлюлозы составляет ~0.1 мкм/мин, что соответствует полимеризации 10 7 -10 8 глюкозных остатков в час на одну бактериальную клетку. Следовательно, в среднем в каждой бактериальной клетке к растущим концам нерастворимых целлюлозных волокон в секунду присоединяется 10 3 глюкопиранозных звеньев.

Микроволокна бактериальной целлюлозы растут с двух концов фибриллы в обе с одинаковой скоростью. Макромолекулярные цепи внутри микрофибрилл расположены антипараллельно. Для других видов целлюлоз такие данные не получены. Электронная микрофотография волокон бактериальной целлюлозы приведена на рис.3. Видно, что волокна имеют приблизительно одинаковую длину и площадь поперечного сечения.

В настоящее время промышленное значение имеют лишь два источника целлюлозы – хлопок и древесная масса. Хлопок представляет собой почти чистую целлюлозу и не требует сложной обработки, чтобы стать исходным материалом для изготовления искусственного волокна и неволокнистых пластиков. После того как от хлопкового семени отделены длинные волокна, используемые для изготовления хлопчатобумажных тканей, остаются короткие волоски, или «линт» (хлопковый пух), длиной 10–15 мм. Линт отделяют от семени, в течение 2–6 ч нагревают под давлением с 2,5–3%-м раствором гидроксида натрия, затем промывают, отбеливают хлором, снова промывают и сушат. Полученный продукт представляет собой целлюлозу чистоты 99%. Выход равен 80% (масс.) линта, а остальное приходится на лигнин, жиры, воски, пектаты и шелуху семян. Древесную массу делают обычно из древесины деревьев хвойных пород. Она содержит 50–60% целлюлозы, 25–35% лигнина и 10–15% гемицеллюлоз и нецеллюлозных углеводородов. В сульфитном процессе древесную щепу варят под давлением (около 0,5 МПа) при 140° C с диоксидом серы и бисульфитом кальция. При этом лигнины и углеводороды переходят в раствор и остается целлюлоза. После промывки и отбеливания очищенная масса отливается в рыхлую бумагу, похожую на промокательную, и сушится. Такая масса на 88–97% состоит из целлюлозы и вполне пригодна для химической переработки в вискозное волокно и целлофан, а также в производные целлюлозы – сложные и простые эфиры.

Процесс регенерации целлюлозы из раствора при добавлении кислоты в ее концентрированный медноаммиачный (т.е. содержащий сульфат меди и гидроксид аммония) водный раствор был описан англичанином Дж.Мерсером около 1844. Но первое промышленное применение этого метода, положившее начало промышленности медно-аммиачного волокна, приписывается Е.Швейцеру (1857), а дальнейшее его развитие – заслуга М.Крамера и И.Шлоссбергера (1858). И только в 1892 Кросс, Бевин и Бидл в Англии изобрели процесс получения вискозного волокна: вязкий (откуда название вискоза) водный раствор целлюлозы получался после обработки целлюлозы сначала крепким раствором едкого натра, что давало «натронную целлюлозу», а затем – дисульфидом углерода (CS 2), в результате чего получался растворимый ксантогенат целлюлозы. При выдавливании струйки этого «прядильного» раствора через фильеру с малым круглым отверстием в кислотную ванну целлюлоза регенерировалась в форме вискозного волокна. При выдавливании раствора в такую же ванну через фильеру с узкой щелью получалась пленка, названная целлофаном. Ж.Бранденбергер, занимавшийся во Франции этой технологией с 1908 по 1912, первым запатентовал непрерывный процесс изготовления целлофана.

Химическая структура.

Несмотря на широкое промышленное применение целлюлозы и ее производных, принятая в настоящее время химическая структурная формула целлюлозы была предложена (У.Хоуорсом) лишь в 1934. Правда, с 1913 была известна ее эмпирическая формула C 6 H 10 O 5 , определенная по данным количественного анализа хорошо промытых и высушенных образцов: 44,4% C, 6,2% H и 49,4% O. Благодаря работам Г.Штаудингера и К.Фройденберга было известно также, что это длинноцепная полимерная молекула, состоящая из показанных на рис. 1 повторяющихся глюкозидных остатков. Каждое звено имеет три гидроксильные группы – одну первичную (– CH 2 Ч OH) и две вторичные (> CH Ч OH). К 1920 Э.Фишер установил структуру простых сахаров, и в том же самом году рентгенографические исследования целлюлозы впервые показали четкую дифракционную картину ее волокон. Рентгенограмма волокна хлопка указывает на четко выраженную кристаллическую ориентацию, но волокно льна еще более упорядочено. При регенерации целлюлозы в форме волокна кристалличность в значительной мере теряется. Как нетрудно видеть в свете достижений современной науки, структурная химия целлюлозы практически стояла на месте с 1860 по 1920 по той причине, что все это время оставались в зачаточном состоянии вспомогательные научные дисциплины, необходимые для решения проблемы.

РЕГЕНЕРИРОВАННАЯ ЦЕЛЛЮЛОЗА

Вискозное волокно и целлофан.

И вискозное волокно, и целлофан – это регенерированная (из раствора) целлюлоза. Очищенная природная целлюлоза обрабатывается избытком концентрированного гидроксида натрия; после удаления избытка ее комки растирают и полученную массу выдерживают в тщательно контролируемых условиях. При таком «старении» уменьшается длина полимерных цепей, что способствует последующему растворению. Затем измельченную целлюлозу смешивают с дисульфидом углерода и образовавшийся ксантогенат растворяют в растворе едкого натра для получения «вискозы» – вязкого раствора. Когда вискоза попадает в водный раствор кислоты, из нее регенерируется целлюлоза. Упрощенные суммарные реакции таковы:

Вискозное волокно, получаемое выдавливанием вискозы через малые отверстия фильеры в раствор кислоты, широко применяется для изготовления одежды, драпировочных и обивочных тканей, а также в технике. Значительные количества вискозного волокна идут на технические ремни, ленты, фильтры и шинный корд.

Целлофан.

Целлофан, получаемый выдавливанием вискозы в кислую ванну через фильеру с узкой щелью, проходит затем через ванны промывки, отбеливания и пластификации, пропускается через сушильные барабаны и сматывается в рулон. Поверхность целлофановой пленки почти всегда покрывают нитроцеллюлозой, смолой, каким-либо воском или лаком, чтобы уменьшить пропускание паров воды и обеспечить возможность термической герметизации, так как целлофан без покрытия не обладает свойством термопластичности. На современных производствах для этого используются полимерные покрытия поливинилиденхлоридного типа, поскольку они в меньшей степени влагопроницаемы и дают более прочное соединение при термогерметизации.

Целлофан широко применяется главным образом в тароупаковочном производстве как оберточный материал для галантерейных товаров, пищевых продуктов, табачных изделий, а также в качестве основы для самоклеющейся упаковочной ленты.

Вискозная губка.

Наряду с получением волокна или пленки, вискозу можно смешать с подходящими волокнистыми и мелкокристаллическими материалами; после кислотной обработки и водного выщелачивания такая смесь преобразуется в вискозный губчатый материал (рис. 2), который применяется для упаковки и теплоизоляции.

Медноаммиачное волокно.

Волокно из регенерированной целлюлозы производится в промышленных масштабах также путем растворения целлюлозы в концентрированном медноаммиачном растворе (CuSO 4 в NH 4 OH) и формования из полученного раствора волокна в кислотной осадительной ванне. Такое волокно называется медноаммиачным.

СВОЙСТВА ЦЕЛЛЮЛОЗЫ

Химические свойства.

Как показано на рис. 1, целлюлоза представляет собой высокополимерный углевод, состоящий из глюкозидных остатков C 6 H 10 O 5 , соединенных эфирными мостиками в положении 1,4. Три гидроксильные группы в каждом глюкопиранозном звене могут быть этерифицированы такими органическими агентами, как смесь кислот и ангидридов кислот с соответствующим катализатором, например серной кислотой. Простые эфиры могут образовываться в результате действия концентрированного гидроксида натрия, приводящего к образованию натронной целлюлозы, и последующей реакции с алкилгалогенидом:

Реакция с оксидом этилена или пропилена дает гидроксилированные простые эфиры:

Наличием этих гидроксильных групп и геометрией макромолекулы обусловлено сильное полярное взаимное притяжение соседних звеньев. Силы притяжения столь велики, что обычные растворители не в состоянии разорвать цепь и растворить целлюлозу. Эти свободные гидроксильные группы ответственны также за большую гигроскопичность целлюлозы (рис. 3). Этерификация и эфиризация понижают гигроскопичность и повышают растворимость в обычных растворителях.

Под действием водного раствора кислоты разрываются кислородные мостики в положении 1,4-. Полный разрыв цепи дает глюкозу – моносахарид. Первоначальная длина цепи зависит от происхождения целлюлозы. Она максимальна в природном состоянии и уменьшается в процессе выделения, очистки и преобразования в производные соединения (см . таблицу).

Даже механический сдвиг, например при абразивном размельчении, приводит к уменьшению длины цепей. При уменьшении длины полимерной цепи ниже определенного минимального значения изменяются макроскопические физические свойства целлюлозы.

Окислительные агенты оказывают на целлюлозу воздействие, не вызывая расщепления глюкопиранозного кольца (рис. 4). Последующее действие (в присутствии влаги, например, при климатических испытаниях), как правило, приводит к разрыву цепи и увеличению числа альдегидоподобных концевых групп. Поскольку альдегидные группы легко окисляются до карбоксильных, содержание карбоксила, практически отсутствующего в природной целлюлозе, резко возрастает в условиях атмосферных воздействий и окисления.

Как и все полимеры, целлюлоза разрушается под воздействием атмосферных факторов в результате совместного действия кислорода, влаги, кислотных компонентов воздуха и солнечного света. Важное значение имеет ультрафиолетовая составляющая солнечного света, и многие хорошо защищающие от УФ-излучения агенты увеличивают срок службы изделий из производных целлюлозы. Кислотные компоненты воздуха, такие, как оксиды азота и серы (а они всегда присутствуют в атмосферном воздухе промышленных районов), ускоряют разложение, зачастую оказывая более сильное воздействие, чем солнечный свет. Так, в Англии было отмечено, что образцы хлопка, испытывавшиеся на воздействие атмосферных условий, зимой, когда практически не было яркого солнечного света, деградировали быстрее, чем летом. Дело в том, что сжигание зимой больших количеств угля и газа приводило к повышению в воздухе концентрации оксидов азота и серы. Кислотные поглотители, антиоксиданты и агенты, поглощающие УФ-излучение, снижают чувствительность целлюлозы к атмосферным воздействиям. Замещение свободных гидроксильных групп приводит к изменению такой чувствительности: нитрат целлюлозы деградирует быстрее, а ацетат и пропионат – медленнее.

Физические свойства.

Полимерные цепи целлюлозы упакованы в длинные пучки, или волокна, в которых наряду с упорядоченными, кристаллическими имеются и менее упорядоченные, аморфные участки (рис. 5). Измеренный процент кристалличности зависит от типа целлюлозы, а также от способа измерения. По рентгеновским данным, он составляет от 70% (хлопок) до 38–40% (вискозное волокно). Рентгенографический структурный анализ дает информацию не только о количественном соотношении между кристаллическим и аморфным материалом в полимере, но и о степени ориентации волокна, вызываемой растяжением или нормальными процессами роста. Резкость дифракционных колец характеризует степень кристалличности, а дифракционные пятна и их резкость – наличие и степень предпочтительной ориентации кристаллитов. В образце вторичного ацетата целлюлозы, полученного процессом «сухого» формования, и степень кристалличности, и ориентация весьма незначительны. В образце триацетата степень кристалличности больше, но предпочтительная ориентация отсутствует. Термообработка триацетата при температуре 180–240°

Целлюлоза (клетчатка) - растительный полисахарид, являющийся самым распространенным органическим веществом на Земле. целлюлоза представляет собой природный полимер-полисахарид. Это вещество белого цвета, без вкуса и запаха, нерастворимое в воде, имеющее волокнистое строение.

Целлюлоза используется для изготовления различных полусинтетических волокон. Они называются вискозным волокном. Целлюлозу, необходимую для получения вискозного волокна, обычно получают из древесины.

Древесина состоит приблизительно на 50% из целлюлозы и на 30% из лигнина. Лигнин тоже представляет собой природный полимер, однако он не относится к углеводам. Скелетная структура мономерного звена лигнина такова:

Для получения целлюлозы используют мягкую древесину, например, сосну либо пихту. Лигнин удаляют, нагревая древесные стружки в растворе гидросульфита кальция, содержащем избыток диоксида серы. В этом растворе происходит растворение лигнина, после чего целлюлозное волокно отделяют фильтрацией. Продукт подвергают размалыванию с целью получения древесной целлюлозы. Чистую целлюлозу получают путем обработки древесной целлюлозы реактивом Швейцера, который представляет собой аммиачный раствор гидроксида меди (II). После добавления разбавленной минеральной кислоты происходит осаждение чистой целлюлозы.

Физические свойства: это вещество белого цвета, без вкуса и запаха, нерастворимое в воде, имеющее волокнистое строение. Растворяется в аммиачном растворе гидроксида меди (II) - реактиве Швейцера.

Этот биополимер обладает большой механической прочностью и выполняет роль опорного материала растений, образуя стенку растительных клеток. В большом количестве целлюлоза содержится в тканях древесины (40-55%), в волокнах льна (60-85%) и хлопка (95-98%). Основная составная часть оболочки растительных клеток. Образуется в растениях в процессе фотосинтеза.

Древесина состоит на 50% из целлюлозы, а хлопок и лён, конопля практически чистая целлюлоза. Хитин (аналог целлюлозы) - основной компонент наружного скелета членистоногих и других беспозвоночных, а также в составе клеточных стенок грибов и бактерий.

Строение: состоит из остатков в - глюкозы

Получают из древесины.

Применение: целлюлоза используется в производстве бумаги, искусственных волокон, пленок, пластмасс, лакокрасочных материалов, бездымного пороха, взрывчатки, твердого ракетного топлива, для получения гидролизного спирта и др. Получение ацетатного шёлка - искусственное волокно, оргстекла, негорючей плёнки из ацетилцеллюлозы. Получение бездымного пороха из триацетилцеллюлозы (пироксилин). Получение коллодия (плотная плёнка для медицины) и целлулоида (изготовление киноленты, игрушек) из диацетилцеллюлозы. Изготовление нитей, канатов, бумаги. Получение глюкозы, этилового спирта (для получения каучука)

К важнейшим производным целлюлозы относятся:

метилцеллюлоза (простые метиловые эфиры целлюлозы) общей формулы

n (х = 1, 2 или 3);

ацетилцеллюлоза (триацетат целлюлозы) - сложный эфир целлюлозы и уксусной кислоты n

нитроцеллюлоза (нитраты целлюлозы) - сложные азотнокислые эфиры целлюлозы:

n (х = 1, 2 или 3).

Химические свойства

Гидролиз (C6H10O5)n + nH2O t,H2SO4 > nC6H12O6

Гидролиз протекает ступенчато:

(C6H10O5)n > (C6H10O5)m > xC12H22O11 > n C6H12O6 (Примечание, m

крахмал декстрины мальтоза глюкоза

Реакции этерификации: целлюлоза - многоатомный спирт, на элементную ячейку полимера приходятся три гидроксильных группы. В связи с этим, для целлюлозы характерны реакции этерификации (образование сложных эфиров). Наибольшее практическое значение имеют реакции с азотной кислотой и уксусным ангидридом. Целлюлоза не дает реакции "серебряного зеркала". производный экспериментальный промышленный

Нитрование:

(C6H7O2(OH)3)n + 3nHNO3 H2SO4(конц.)> (C6H7O2(ONO2)3)n + 3nH2O

пироксилин

целлюлоза

тринитрат целлюлозы

Полностью этерифицированная клетчатка известна под названием пироксилин, который после соответствующей обработки превращается в бездымный порох. В зависимости от условий нитрования можно получить динитрат целлюлозы, который в технике называется коллоксилином. Он так же используется при изготовлении пороха и твердых ракетных топлив. Кроме того, на основе коллоксилина изготавливают целлулоид.

Взаимодействие с уксусной кислотой:

(C6H7O2(OH)3)n + 3nCH3COOH H2SO4(конц.)> (C6H7O2(OCOCH3)3)n + 3nH2O

При взаимодействии целлюлозы с уксусным ангидридом в присутствии уксусной и серной кислот образуется триацетилцеллюлоза.

Триацетилцеллюлоза

Триацетилцеллюлоза (или ацетилцеллюлоза) является ценным продуктом для изготовления негорючей кинопленки и ацетатного шелка. Растворитель испаряется и струйки раствора превращаются в тончайшие нити ацетатного шелка.

Целлулоид, который ранее использовался для изготовления фото- и кинопленки, получают путем обработки целлюлозы разбавленной азотной кислотой и перемешивания полученного продукта с камфорой. Целлулоид чрезвычайно огнеопасен, так как его горение происходит очень бурно. Это послужило причиной серьезных пожаров в кинотеатрах и больничных рентгенологических кабинетах. В настоящее время для изготовления фото- и кинопленки целлулоид заменили ацетатом целлюлозы.

Целлюлоза — это производные двух природных веществ: дерева и хлопка. В растениях она осуществляет важную функцию, придает им гибкость и прочность.

Где встречается вещество?

Целлюлоза — это вещество натуральное. Растения способны вырабатывать её самостоятельно. В составе присутствуют: водород, кислород, углерод.

Растения вырабатывают сахар под действием солнечных лучей, он перерабатывается клетками и даёт возможность волокнам выдерживать высокие нагрузки от ветра. Целлюлоза — это вещество-участник процесса фотосинтеза. Если сахарную воду брызнуть на срез свежего дерева, то жидкость быстро впитается.

Начинается выработка целлюлозы. Этот естественный способ её получения взят за основу для производства хлопчатобумажной ткани в промышленных масштабах. Существует несколько методов, благодаря которым получают целлюлозу различного качества.

Метод изготовления №1

Получение целлюлозы происходит естественным методом — из семян хлопчатника. Волоски собираются автоматизированными механизмами, но требуется длительный период выращивания растения. Ткань, произведённая таким образом, считается наиболее чистой.

Более быстро целлюлозу можно получить из волокон дерева. Однако при этом методе качество намного хуже. Этот материал пригоден только для изготовления неволокнистого пластика, целлофана. Также из такого материала могут производить искусственные волокна.

Естественное получение

Производить целлюлозу из семян хлопка начинают с отделения длинных волокон. Этот материал идёт на изготовление хлопчатобумажной ткани. Мелкие части, менее 1,5 см, называют

Они пригодны для получения целлюлозы. Собранные части подвергают нагреву под высоким давлением. Длительность процесса может достигать 6 часов. Перед тем как начать греть материал, к нему добавляют гидроксид натрия.

Полученное вещество требуется промыть. Для этого применяется хлор, который к тому же и отбеливает. Состав целлюлозы при таком методе наиболее чистый (99%).

Метод изготовления №2 из древесины

Для получения 80-97% целлюлозы используют щепу хвойных деревьев, химические вещества. Всю массу смешивают и подвергают обработке температурой. В результате варки выделяется требуемое вещество.

Смешивается бисульфит кальция, диоксид серы и древесная масса. Целлюлозы в полученной смеси не более 50%. В результате реакции в жидкости растворяются углеводороды, лигнины. Твёрдый материал проходит стадию очистки.

Получают массу, напоминающую некачественную бумагу. Этот материал служит основой изготовления веществ:

  • Эфиров.
  • Целлофана.
  • Вискозного волокна.

Что производят из ценного материала?

Волокнистое, что позволяет из неё изготавливать одежду. Хлопковый материл — это на 99,8% натуральный продукт, полученный естественным методом, приведенным выше. Из него же можно изготовить взрывчатку в результате химической реакции. Целлюлоза активна при нанесении на неё кислот.

Свойства целлюлозы применимы для производства тканей. Так, из неё изготавливают искусственные волокна, напоминающие внешне и на ощупь натуральные ткани:

  • вискозное и ;
  • искусственный мех;
  • медно-аммиачный шёлк.

Преимущественно из древесной целлюлозы изготавливают:

  • лаки;
  • фотопленку;
  • бумажные изделия;
  • пластмассы;
  • губки для мытья посуды;
  • бездымный порох.

В результате химической реакции из целлюлозы получают:

  • тринитроцеллюлозу;
  • динитроклетчатку;
  • глюкозу;
  • жидкое топливо.

В пищу целлюлоза также может применяться. В составе некоторых растений (сельдерея, салата, отрубей) присутствуют её волокна. Также она служит материалом для производства крахмала. Уже научились делать из неё тонкие нити — искусственная паутина очень прочная и не растягивается.

Химическая формула целлюлозы — C6H10O5. Является полисахаридом. Из неё изготавливают:

  • медицинскую вату;
  • бинты;
  • тампоны;
  • картон, ДСП;
  • пищевую добавку Е460.

Достоинства вещества

Целлюлоза способна выдерживать высокие температуры до 200 градусов. Молекулы не разрушаются, это позволяет изготавливать из неё пластиковую посуду многоразового использования. При этом сохраняется важное качество — эластичность.

Целлюлоза выдерживает длительное воздействие кислот. Абсолютно не растворяется в воде. Не переваривается человеческим организмом, используется в качестве сорбента.

Микрокристаллическая целлюлоза используется в нетрадиционной медицине в качестве препарата для очистки пищеварительной системы. Порошкообразное вещество выступает в роли пищевой добавки для снижения калорийности употребляемых блюд. Это способствует выводу токсинов, снижению сахара и холестерина в крови.

Метод изготовления №3 — промышленный

На производственных площадках целлюлозу готовят путём варки в различных средах. От вида реагента зависит используемый материал — тип дерева:

  • Смолистые породы.
  • Лиственные деревья.
  • Растения.

Различают несколько видов реагентов для варки:

  • Иначе метод именуется как сульфитный. В качестве раствора применяют соль сернистой кислоты либо её жидкую смесь. При этом варианте производства целлюлозу выделяют из пород хвойных. Хорошо перерабатывают пихты, ели.
  • Щелочная среда или натронный метод основан на использовании гидроксида натрия. Раствор хорошо отделяет целлюлозу из волокон растений (кукурузных стеблей) и деревьев (преимущественно лиственных).
  • Одновременное использование гидроксида и сульфида натрия применяется в сульфатном методе. Он широко внедрен в производства по выработке сульфида белого щелока. Технология является достаточно негативной для окружающей природы из-за образующихся сторонних химических реакций.

Последний метод наиболее распространен из-за его универсальности: практически из любого дерева можно получить целлюлозу. Однако чистота материала не совсем высокая после одной варки. От примесей избавляются дополнительными реакциями:

  • гемицеллюлозы удаляют щелочными растворами;
  • макромолекулы лигнина и продукты их разрушения убираются хлором с последующей обработкой щелочью.

Пищевая ценность

Крахмал и целлюлоза имеют схожую структуру. В результате экспериментов удалось получить из несъедобных волокон продукт. Он требуется человеку постоянно. Употребляемая пища состоит более чем из 20% крахмала.

Учёным удалось получить из целлюлозы вещество амилозу, положительно влияющую на состояние организма человека. Одновременно с этим в процессе реакции выделяется глюкоза. Получается безотходное производство — последнее вещество направляется для изготовления этанола. Амилоза же служит как средство профилактики ожирения.

В результате реакции целлюлоза остаётся в твердом состоянии, оседая на дно сосуда. Остальные составляющие удаляются при помощи магнитных наночастиц либо растворяются и отводятся с жидкостью.

Типы вещества в продаже

Поставщики предлагают целлюлозу разного качества по приемлемым ценам. Перечислим основные типы материала:

  • Целлюлоза сульфатная белого цвета, произведенная из двух видов дерева: хвойных и лиственных пород. Имеется небеленый материал, используемый в упаковочном материале, бумаге низкого качества для изоляционных материалов и других целей.
  • Имеется в продаже сульфитная также белого цвета, изготовленная из хвойных деревьев.
  • Порошковый материал белого цвета подходит для производства веществ медицинского назначения.
  • Целлюлоза премиум-сортов изготавливается методом отбеливания без участия хлора. В качестве сырья берутся хвойные породы. Древесная масса состоит из сочетания щепы ели и сосны в соотношении 20/80%. Чистота получаемого материала наивысшая. Он подходит для изготовления стерильных материалов, применяемых в медицине.

Для выбора подходящей целлюлозы используют стандартные критерии: чистота материала, прочность на разрыв, длина волокон, индекс сопротивления раздиранию. Также количественно указывается химическое состояние или агрессивность среды водной вытяжки и влажность. Для целлюлозы, поставляемой в виде беленой массы, применимы другие показатели: удельный объем, яркость, величина помола, прочность на растяжение, степень чистоты.

Немаловажным для массы целлюлозы является показатель — индекс сопротивления раздиранию. От него зависит назначение производимых материалов. Учитывают используемой в качестве сырья, и влажность. Также важен уровень смол и жиров. Однородность порошка важна для определенных технологических процессов. Для аналогичных целей оценивают вязкость и сопротивление продавливанию материала в виде листов.

Нахождение в природе. Физические свойства.

  • 1. Целлюлоза, или клетчатка, входит в состав растений, образуя в них оболочки клеток.
  • 2. Отсюда происходит и ее название (от лат. «целлула» - клетка).
  • 3. Целлюлоза придает растениям необходимую прочность и эластичность и является как бы их скелетом.
  • 4. Волокна хлопка содержат до 98 % целлюлозы.
  • 5. Волокна льна и конопли также в основном состоят из целлюлозы; в древесине она составляет около 50 %.
  • 6. Бумага, хлопчатобумажные ткани - это изделия из целлюлозы.
  • 7. Особенно чистыми образцами целлюлозы являются вата, полученная из очищенного хлопка, и фильтровальная (непроклеенная) бумага.
  • 8. Выделенная из природных материалов целлюлоза представляет собой твердое волокнистое вещество, не растворяющееся ни в воде, ни в обычных органических растворителях.

Строение целлюлозы:

  • 1) целлюлоза, как и крахмал, является природным полимером;
  • 2) эти вещества имеют даже одинаковые по составу структурные звенья - остатки молекул глюкозы, одну и ту же молекулярную формулу (С 6 H 10 O 5) n ;
  • 3) значение n у целлюлозы обычно выше, чем у крахмала: средняя молекулярная масса ее достигает нескольких миллионов;
  • 4) основное различие между крахмалом и целлюлозой - в структуре их молекул.

Нахождение целлюлозы в природе.

  • 1. В природных волоконцах макромолекулы целлюлозы располагаются в одном направлении: они ориентированы вдоль оси волокна.
  • 2. Возникающие при этом многочисленные водородные связи между гидроксильными группами макромолекул обусловливают высокую прочность этих волокон.
  • 3. В процессе прядения хлопка, льна и т. д. эти элементарные волокна сплетаются в более длинные нити.
  • 4. Это объясняется тем, что макромолекулы в ней хотя и имеют линейную структуру, но расположены более беспорядочно, не ориентированы в одном направлении.

Построение макромолекул крахмала и целлюлозы из разных циклических форм глюкозы существенно сказывается на их свойствах:

  • 1) крахмал является важным продуктом питания человека, целлюлоза для этой цели использоваться не может;
  • 2) причина состоит в том, что ферменты, способствующие гидролизу крахмала, не действуют на связи между остатками целлюлозы.

Химические свойства целлюлозы.

  • 1. Из повседневной жизни известно, что целлюлоза хорошо горит.
  • 2. При нагревании древесины без доступа воздуха происходит термическое разложение целлюлозы. При этом образуются летучие органические вещества, вода и древесный уголь.
  • 3. В числе органических продуктов разложения древесины - метиловый спирт, уксусная кислота, ацетон.
  • 4. Макромолекулы целлюлозы состоят из звеньев, аналогичных тем, которые образуют крахмал, она подвергается гидролизу, и продуктом ее гидролиза, как и у крахмала, будет глюкоза.
  • 5. Если растереть в фарфоровой ступке кусочки фильтровальной бумаги (целлюлозы), смоченной концентрированной серной кислотой, и разбавить полученную кашицу водой, а также нейтрализовать кислоту щелочью и, как в случае с крахмалом, испытать раствор на реакцию с гидроксидом меди (II), то будет видно появление оксида меди (I). То есть в опыте произошел гидролиз целлюлозы. Процесс гидролиза, как и у крахмала, идет ступенчато, пока не образуется глюкоза.
  • 6. Суммарно гидролиз целлюлозы может быть выражен тем же уравнением, что и гидролиз крахмала: (С 6 H 10 O 5) n + nН 2 О = nС 6 H 12 O 6 .
  • 7. Структурные звенья целлюлозы (С 6 H 10 O 5) n содержат гидроксильные группы.
  • 8. За счет этих групп целлюлоза может давать простые и сложные эфиры.
  • 9. Большое значение имеют азотно-кислые эфиры целлюлозы.

Особенности азотно-кислых эфиров целлюлозы.

  • 1. Они получаются при действии на целлюлозу азотной кислотой в присутствии серной кислоты.
  • 2. В зависимости от концентрации азотной кислоты и от других условий в реакцию этерификации вступают одна, две или все три гидроксильные группы каждого звена молекулы целлюлозы, например:

N + 3nHNO 3 > n + 3n H 2 O.

Общее свойство нитратов целлюлозы - их чрезвычайная горючесть.

Тринитрат целлюлозы, называемый пироксилином, - сильновзрывчатое вещество. Он применяется для производства бездымного пороха.

Очень важными являются также уксусно-кислые эфиры целлюлозы - диацетат и триацетат целлюлозы. Диацетат и триацетат целлюлозы по внешнему виду сходны с целлюлозой.

Применение целлюлозы.

  • 1. Благодаря своей механической прочности в составе древесины используется в строительстве.
  • 2. Из нее изготавливают разного рода столярные изделия.
  • 3. В виде волокнистых материалов (хлопка, льна) используется для изготовления нитей, тканей, канатов.
  • 4. Выделенная из древесины (освобожденная от сопутствующих веществ) целлюлоза идет на изготовление бумаги.
  • 27. Липиды. Классификация

Жиры в природе, их физические свойства.

  • 1. Наряду с углеводами и белками жиры входят в состав всех растительных и животных организмов и составляют одну из основных частей пищи.
  • 2. Животные жиры, как правило, твердые вещества.
  • 3. Растительные жиры чаще бывают жидкими и называются еще маслами.
  • 4. Известны также жидкие жиры животного происхождения (например, рыбий жир) и твердые растительные масла (например, кокосовое масло).
  • 5. Все жиры легче воды.
  • 6. В воде они не растворимы, но хорошо растворяются во многих органических растворителях (дихлорэтане, бензине).

Особенности строения жиров.

Строение жиров было установлено М. Шеврелем и М. Бертло. Нагревая жиры с водой (в присутствии щелочи), М. Шеврель еще в начале XIX в. установил, что, присоединяя воду, они разлагаются на глицерин и карбоновые кислоты - стеариновую, олеиновую и др. М. Бертло (1854 г.) осуществил обратную реакцию. Он нагревал смесь глицерина с кислотами и получил при этом вещества, аналогичные жирам; М. Шеврель провел реакцию гидролиза сложного эфира, а М. Бертло осуществил реакцию этерификации, т. е. синтез сложного эфира. На основании этих данных легко прийти к выводу о строении жиров.

Характерные особенности жиров.

  • 1. Жиры - это сложные эфиры трехатомного спирта глицерина и карбоновых кислот.
  • 2. В большинстве случаев жиры образованы высшими предельными и непредельными карбоновыми кислотами, главным образом:
    • а) пальмитиновой C 15 H 31 -СООН;
    • б) стеариновой С 17 Н 35 -СООН;
    • в) олеиновой С 17 Н 33 -СООН;
    • г) линолевой С 17 Н 31 -СООН и некоторыми другими.
  • 3. В меньшей степени в образовании жиров участвуют низшие кислоты, например, масляная кислота С 3 Н 7 -СООН (в сливочном масле), капроновая кислота С 5 Н 11 -СООН и др.
  • 4. Жиры, которые образуются преимущественно предельными кислотами, твердые (говяжий жир, бараний жир).
  • 5. С повышением содержания непредельных кислот температура плавления жиров понижается, они становятся более легкоплавкими (свиное сало, сливочное масло).

Химические свойства жиров определяются принадлежностью их к классу сложных эфиров. Поэтому наиболее характерная для них реакция - гидролиз.

Жиры как питательные вещества.

1. Жиры являются важной составной частью нашей пищи.

При их окислении в организме выделяется в два раза больше теплоты, чем при окислении таких же количеств белков и углеводов.

  • 2. Как вещества, не растворимые в воде, жиры не могут непосредственно всасываться в организм из органов пищеварения.
  • 28. Ацилглицерины. Строение, химические свойства

Ацилглицерины

Наиболее важная и распространенная группа простых нейтральных липидов -- ацилглицерины. Ацилглицерины (или глицериды) -- это сложные эфиры глицерина и высших карбоновых кислот (табл. 1). Они составляют основную массу липидов (иногда до 95%) и, по существу, именно их называют жирами или маслами. В состав жиров входят, главным образом, триацилглицерины (I), а также диацилглицерины (II) и моноацилглицерины (III) (рис.1).

Рисунок 1 - триацилглицерины (I), диацилглицерины (II) и моноацилглицерины (III); R, R", R"" - углеводородные радикалы.