В чем измеряется авогадро. Число Авогадро: интересные сведения

Физическая величина, равная количеству структурных элементов (которыми являются молекулы, атомы и т.п.) на один моль вещества, называется числом Авогадро. Официально принятое на сегодняшний день его значение составляет NA = 6,02214084(18)×1023 моль−1, оно было утверждено в 2010 году. В 2011 были опубликованы результаты новых исследований, они считаются более точными, но на данный момент официально не утверждены.

Закон Авогадро имеет огромное значение в развитии химии, он позволил вычислять вес тел, которые могут менять состояние, становясь газообразными или парообразными. Именно на основе закона Авогадро начала свое развитие атомно-молекулярная теория, следующая из кинетической теории газов.

Более того, с помощью закона Авогадро разработан способ получения молекулярной массы растворенных веществ. Для этого законы идеальных газов были распространены и на разбавленные растворы, взяв за основу мысль, что растворенное вещество распределится по объему растворителя, как газ распределяется в сосуде. Также закон Авогадро дал возможность определить истинные атомные массы целого ряда химических элементов.

Практическое использование числа Авогадро

Константа используется при расчетах химических формул и в процессе составления уравнений химических реакций. С помощью нее определяют относительные молекулярные массы газов и число молекул в одном моле любого вещества.

Через число Авогадро вычисляется универсальная газовая постоянная, она получается путем умножения этой константы на постоянную Больцмана. Кроме того, умножив число Авогадро и элементарный электрический заряд, можно получить постоянную Фарадея.

Использование следствий закона Авогадро

Первое следствие закона гласит: «Один моль газа (любого) при равных условиях будет занимать один объем». Таким образом, в нормальных условиях объем одного моля любого газа равен 22,4 литра (эта величина называется молярным объемом газа), а используя уравнение Менделеева-Клапейрона можно определить объем газа при любом давлении и температуре.

Второе следствие закона: «Молярная масса первого газа равна произведению молярной массы второго газа на относительную плотность первого газа ко второму». Иными словами, при одинаковых условиях, зная отношение плотности двух газов, можно определить их молярные массы.

Во времена Авогадро его гипотеза была недоказуема теоретически, однако позволяла легко устанавливать экспериментальным путем состав молекул газа и определять их массу. Со временем под его эксперименты была подведена теоретическая база, и теперь число Авогадро находит применение

> Число Авогадро

Узнайте, чему равно число Авогадро в молях. Изучите соотношение количества вещества молекул и число Авогадро, броуновское движение, постоянная газа и Фарадея.

Количество молекул в моле именуют числом Авогадро, которое составляет 6.02 х 10 23 моль -1 .

Задача обучения

  • Разобраться в связи числа Авогадро и молях.

Основные пункты

  • Авогадро выдвинул предположение, что в случае единых давления и температуры равные газовые объемы вмещают одинаковое количество молекул.
  • Постоянная Авогадро выступает важным фактором, так как связывает другие физические постоянные и свойства.
  • Альберт Эйнштейн считал, что это число можно вывести из величин броуновского движения. Впервые измерить его удалось в 1908 году Жану Перрину.

Термины

  • Постоянная газа – универсальная постоянная (R), вытекающая из закона об идеальном газе. Ее добывают из постоянной Больцмана и числа Авогадро.
  • Постоянная Фарадея – величина электрического заряда на моль электронов.
  • Броуновское движение – случайное смещение элементов, формирующихся из-за ударов с отдельными молекулами в жидкости.

Если столкнулись с изменением количества вещества, то проще использовать единицу, отличную от количества молекул. Моль выступает базовой единицей в международной системе и передает вещество, вмещающее столько же атомов, сколько хранится в 12 г углерода-12. Это количество вещества именуют числом Авогадро.

Ему удалось установить связь между массами одного объема разных газов (в условиях одинаковой температуры и давления). Это способствует взаимосвязи их молекулярных масс

Число Авогадро передает количество молекул в одном грамме кислорода. Не забывайте, что это указание на количественную характеристику вещества, а не на независимый размер измерения. В 1811 году Авогадро догадался, что объем газа может выступать пропорциональным количеству атомов или молекул и на это не будет влиять природа газа (число – универсальное).

Нобелевскую премию по физике в 1926 году получил Жан Перинн, который смог вывести постоянную Авогадро. Так что число Авогадро равно 6.02 х 10 23 моль -1 .

Научное значение

Постоянная Авогадро играет роль важного связующего звена в макро- и микроскопических природных наблюдениях. Она как бы прокладывает мост для других физических постоянных и свойств. Например, налаживает связь между газовой постоянной (R) и Больцмана (k):

R = kN A = 8.314472 (15) Дж моль -1 K -1 .

А также между постоянной Фарадея (F) и элементарным зарядом (e):

F = N A e = 96485.3383 (83) C моль -1 .

Вычисление постоянной

Определение числа влияет на вычисление массы атома, которую добывают через деление массы моля газа на число Авогадро. В 1905 году Альберт Эйнштейн предлагал вывести ее, основываясь на величинах броуновского движения. Именно эту идею и протестировал в 1908 году Жан Перрин.

Замечательные работы Перрена, сыгравшие исключительную роль в деле утверждения молекулярных представлений, связаны с использованием полученной выше барометрической формулы. Основная идея опытов Перрена сводилась к предположению, что законы молекулярно-кинетической теории определяют поведение не только атомов и молекул, но и гораздо более крупных частиц, состоящих из многих тысяч молекул. Исходя из весьма общих соображений, которые здесь не будут рассматриваться, можно предполагать, что средние кинетические энергии очень мелких частиц, совершающих броуновское движение в жидкости, совпадают со средними кинетическими энергиями молекул газа, если только температура жидкости и температура газа одинаковы. Точно так же распределение по высоте частиц, взвешенных в жидкости, подчиняется тому же закону, что и распределение по высоте молекул газа. Подобный вывод очень важен, поскольку на основании его возможна количественная проверка закона распределения. Проверку можно осуществить путем непосредственного подсчета с помощью микроскопа количества взвешенных частиц, находящихся в жидкости на разной высоте.

Уравнение (36) распределения частиц по высоте

удобно в этом случае переписать, разделив числитель и знаменатель дроби, стоящей в правой части уравнения, на число Авогадро

При этом следует заметить, что отношение - соответствует массе частицы а отношение равно средней кинетическои энергии частицы [сравните уравнение (28)]. Вводя эти обозначения, получим:

Если теперь опытным путем определить количества частиц и соответствующие двум различным значениям то можно будет написать:

Вычитая из первого уравнения второе, найдем:

Из этого соотношения можно определить если только знать массу частицы

При всей простоте и ясности основной идеи опыты Перрена были связаны с преодолением больших трудностей. В качестве объекта исследования им были выбраны водные эмульсии мастики и гуммигута, которые подвергались центрифугированию для получения эмульсий, состоящих из зернышек одинакового размера. Размер зернышек, которые считались шариками, определялся по скорости их оседания. За движением отдельного зернышка следить было невозможно и потому наблюдалась скорость оседания верхней границы эмульсии, т. е. средняя скорость оседания многих тысяч зернышек. Зная плотность эмульгированного вещества и определяя размеры зернышек эмульсии, можно было вычислить их массы. Далее необходимо было определить числа С этой целью к предметному стеклышку для микроскопических наблюдений Перрен приклеил второе стекло с просверленным в нем круглым отверстием, так что образовалась цилиндрическая прозрачная кювета. Поместив в кювету каплю эмульсии и закрыв для предотвращения испарения кювету покровным стеклышком, можно было с помощью микроскопа наблюдать зернышки эмульсии. Если воспользоваться объективом с небольшой глубиной поля зрения, то в микроскопе будут видны только зернышки, расположенные в очень тонком слое жидкости. Практически в этих опытах можно сосчитать лишь небольшое количество зернышек, поскольку их число непрерывно меняется. Для преодоления этого затруднения в фокальной

плоскости окуляра помещался непрозрачный экран с маленьким круглым отверстием. Благодаря этому поле зрения микроскопа сильно уменьшалось, и наблюдатель мог сразу определить, сколько зернышек в данный момент находится в поле зрения (рис. 12).

Повторяя подобные наблюдения через правильные промежутки времени, записывая наблюдаемые числа зерен и усредняя полученные данные, Перрен показал, что среднее число зерен на данном уровне стремится к некоторому определенному пределу, соответствующему плотности эмульсии на этом уровне. Для того чтобы проиллюстрировать трудоемкость этих опытов, можно указать, что для получения точного результата необходимо было производить несколько тысяч измерений.

Рис. 12. Распределение зерен эмульсии.

Определив с желаемой степенью точности плотность эмульсии на некотором уровне Перрен перемещал микроскоп в вертикальном направлении и измерял плотность эмульсии на втором уровне Тщательно выполненные измерения показали, что распределение зернышек эмульсии по высоте подчиняется барометрической формуле (уравнение 37).

Моль – количество вещества, которое содержит столько же структурных элементов, сколько атомов содержится в 12 г 12 С, причем структурными элементами обычно являются атомы, молекулы, ионы и др. Масса 1 моль вещества, выраженная в граммах, численно равна его мол. массе. Так, 1 моль натрия имеет массу 22,9898 г и содержит 6,02·10 23 атомов; 1 моль фторида кальция CaF 2 имеет массу (40,08 + 2·18,998) = 78,076 г и содержит 6,02·10 23 молекул, как и 1 моль тетрахлорида углерода CCl 4 , масса которого равна (12,011 + 4·35,453) = 153,823 г и т.п.

Закон Авогадро.

На заре развития атомной теории (1811) А.Авогадро выдвинул гипотезу, согласно которой при одинаковых температуре и давлении в равных объемах идеальных газов содержится одинаковое число молекул. Позже было показано, что эта гипотеза есть необходимое следствие кинетической теории, и сейчас она известна как закон Авогадро. Его можно сформулировать так: один моль любого газа при одинаковых температуре и давлении занимает один и тот же объем, при стандартных температуре и давлении (0° С, 1,01Ч10 5 Па) равный 22,41383 л. Эта величина известна как молярный объем газа.

Сам Авогадро не делал оценок числа молекул в заданном объеме, но понимал, что это очень большая величина. Первую попытку найти число молекул, занимающих данный объем, предпринял в 1865 Й.Лошмидт; было установлено, что в 1 см 3 идеального газа при нормальных (стандартных) условиях содержится 2,68675Ч10 19 молекул. По имени этого ученого указанная величина была названа числом (или постоянной) Лошмидта. С тех пор было разработано большое число независимых методов определения числа Авогадро. Превосходное совпадение полученных значений является убедительным свидетельством реального существования молекул.

Метод Лошмидта

представляет только исторический интерес. Он основан на предположении, что сжиженный газ состоит из плотноупакованных сферических молекул. Измеряя объем жидкости, которая образовалась из данного объема газа, и зная приблизительно объем молекул газа (этот объем можно было представить исходя из некоторых свойств газа, например вязкости), Лошмидт получил оценку числа Авогадро ~10 22 .

Определение, основанное на измерении заряда электрона.

Единица количества электричества, известная как число Фарадея F , – это заряд, переносимый одним молем электронов, т.е. F = Ne , где е – заряд электрона, N – число электронов в 1 моль электронов (т.е. число Авогадро). Число Фарадея можно определить, измеряя количество электричества, необходимое для растворения или осаждения 1 моль серебра. Тщательные измерения, выполненные Национальным бюро стандартов США, дали значение F = 96490,0 Кл, а заряд электрона, измеренный разными методами (в частности, в опытах Р.Милликена), равен 1,602Ч10 –19 Кл. Отсюда можно найти N . Этот метод определения числа Авогадро, по-видимому, является одним из самых точных.

Эксперименты Перрена.

Исходя из кинетической теории, было получено включающее число Авогадро выражение, описывающее уменьшение плотности газа (например, воздуха) с высотой столба этого газа. Если бы удалось подсчитать число молекул в 1 см 3 газа на двух разных высотах, то, воспользовавшись указанным выражением, мы могли бы найти N . К сожалению, сделать это невозможно, поскольку молекулы невидимы. Однако в 1910 Ж.Перрен показал, что упомянутое выражение справедливо и для суспензий коллоидных частиц, которые видны в микроскопе. Подсчет числа частиц, находящихся на разной высоте в столбе суспензии, дал число Авогадро 6,82Ч10 23 . Из другой серии экспериментов, в которых измерялось среднеквадратичное смещение коллоидных частиц в результате их броуновского движения, Перрен получил значение N = 6,86Ч10 23 . В дальнейшем другие исследователи повторили некоторые из экспериментов Перрена и получили значения, хорошо согласующиеся с ныне принятыми. Следует отметить, что эксперименты Перрена стали поворотным моментом в отношении ученых к атомной теории вещества – ранее некоторые ученые рассматривали ее как гипотезу. В.Оствальд, выдающийся химик того времени, так выразил это изменение во взглядах: «Соответствие броуновского движения требованиям кинетической гипотезы... заставило даже наиболее пессимистично настроенных ученых говорить об экспериментальном доказательстве атомной теории».

Расчеты с использованием числа Авогадро.

С помощью числа Авогадро были получены точные значения массы атомов и молекул многих веществ: натрия, 3,819Ч10 –23 г (22,9898 г/6,02Ч10 23), тетрахлорида углерода, 25,54Ч10 –23 г и т.д. Можно также показать, что в 1 г натрия должно содержаться примерно 3Ч10 22 атомов этого элемента.
См. также

Стал настоящим прорывом в теоретической химии и способствовал тому, что гипотетические догадки превратились в великие открытия в области газовой химии. Предположения химиков получили убедительные доказательства в виде математических формул и простых соотношений, а результаты экспериментов теперь позволили делать далеко идущие выводы. Кроме этого, итальянский исследователь вывел количественную характеристику числа структурных частиц химического элемента. Число Авогадро впоследствии стало одной из важнейших констант в современной физике и химии.

Закон объемных отношений

Честь быть первооткрывателем газовых реакций принадлежат Гей-Люссаку, французскому ученому конца XVIII века. Этот исследователь дал миру известный закон, которому подчиняются все реакции, связанные с расширением газов. Гей-Люссак измерял объемы газов перед реакцией и объемы, которые получались в результате химического взаимодействия. В результате эксперимента ученый сделал вывод, известный как закон простых объемных отношений. Суть его в том, что объемы газов до и после соотносятся между собой как целые небольшие числа.

Например, при взаимодействии газообразных веществ, соответствующих, например, одному объему кислорода и двум объемам водорода, получается два объема парообразной воды и так далее.

Закон Гей-Люссака справедлив, если все измерения объемов происходят при одинаковых показателях давления и температуры. Этот закон оказался весьма важен для итальянского физика Авогадро. Руководствуясь им, он вывел свое предположение, которое имело далеко идущие последствия в химии и физике газов, и вычислил число Авогадро.

Итальянский ученый

Закон Авогадро

В 1811 году Авогадро пришел к пониманию того, что в равных объемах произвольных газов при постоянных значениях температуры и давления содержится одно и то же число молекул.

Этот закон, позднее названный в честь итальянского ученого, вводил в науку представление о мельчайших частичках вещества - молекулах. Химия разделилась на эмпирическую науку, какой она была, и науку, оперирующую количественными категориями, которой она стала. Авогадро особенно подчеркивал тот момент, что атомы и молекулы не являются одним и тем же, и что атомы являются составляющими кирпичиками для всех молекул.

Закон итальянского исследователя позволил прийти к выводу о количестве атомов в молекулах различных газов. Например, после вывода закона Авогадро подтвердил предположение, что молекулы таких газов, как кислород, водород, хлор, азот, состоят из двух атомов. Также стало возможным установление атомных масс и молекулярных масс элементов, состоящих из разных атомов.

Атомные и молекулярные массы

При вычислении атомного веса какого-либо элемента первоначально за единицу измерения была принята масса водорода как самого легкого химического вещества. Но атомные массы многих химических веществ вычисляются как соотношение их кислородных соединений, то есть отношение кислорода и водорода принималось как 16:1. Эта формула была несколько неудобной для измерений, поэтому эталоном атомной массы приняли массу изотопа углерода - самого распространенного вещества на земле.

На основе закона Авогадро основан принцип определения масс различных газообразных веществ в молекулярном эквиваленте. В 1961 году принимается единая система отсчета относительных атомных величин, в основу которой легла условная единица, равная 1/12 части массы одного изотопа углерода 12 С. Сокращенное название атомной единицы массы - а.е.м. Согласно данной шкале, атомная масса кислорода равна 15,999 а.е.м, а углерода - 1,0079 а.е.м. Так возникло новое определение: относительная атомная масса - это масса атома вещества, выраженная в а.е.м.

Масса молекулы вещества

Любое вещество состоит из молекул. Масса такой молекулы выражается в а.е.м, это значение равняется сумме всех атомов, входящих в ее состав. К примеру, молекула водорода имеет массу 2,0158 а.е.м, то есть 1,0079 х 2, а молекулярную массу воды можно вычислить по ее химической формуле H 2 O. Два атома водорода и единственный атом кислорода в сумме дают значение 18,0152 а.е.м.

Значение атомной массы для каждого вещества принято называть относительной молекулярной массой.

До недавнего времени вместо понятия "атомная масса" использовалось словосочетание «атомный вес». В настоящее время оно не используется, но до сих пор встречается в старых учебниках и научных трудах.

Единица количества вещества

Вместе с единицами объема и массы в химии используется особая мера количества вещества, называемая моль. Эта единица показывает то количество вещества, которое вмещает в себя столько молекул, атомов и других структурных частиц, сколько их содержится в 12 г углерода изотопа 12 С. При практическом применении моля вещества следует принимать во внимание, какие именно частицы элементов имеются в виду - ионы, атомы или молекулы. Например, моль ионов H + и молекул H 2 - это совершенно разные меры.

В настоящее время с большой точностью измерено количество вещества в моле вещества.

Практические расчеты показывают, что количество структурных единиц в моле составляет 6,02 х 10 23 . Эта константа имеет название «число Авогадро». Названная в честь итальянского ученого, эта химическая величина показывает число структурных единиц в моле любого вещества, независимо от его внутренней структуры, состава и происхождения.

Мольная масса

Масса одного моля вещества в химии имеет название "мольная масса", эта единица выражается соотношением г/моль. Применяя значение мольной массы на практике, можно видеть, что мольная масса водорода составляет 2,02158 г/моль, кислорода - 1,0079 г/моль и так далее.

Следствия закона Авогадро

Закон Авогадро вполне применим для определения количества вещества при вычислении объема газа. Одинаковое количество молекул любого газообразного вещества при неизменных условиях занимает равный объем. С другой стороны, 1 моль любого вещества содержит неизменное число молекул. Напрашивается вывод: при неизменных температуре и давлении один моль газообразного вещества занимает постоянный объем и содержит равное количество молекул. Число Авогадро утверждает, что в объеме 1 моля газа содержится 6,02 х 10 23 молекул.

Расчет объема газ для нормальных условий

Нормальные условия в химии - это атмосферное давление 760 мм рт. ст. и температура 0 о C. При этих параметрах экспериментально установлено, что масса одного литра кислорода равна 1,43 кг. Следовательно, объем одного моля кислорода равен 22,4 литра. При вычислении объема любого газа результаты показывали одно и то же значение. Так постоянная Авогадро сделала еще один вывод касательно объемов различных газообразных веществ: при нормальных условиях один моль любого газообразного элемента занимает 22,4 литра. Эта постоянная величина получила название мольного объема газа.