Ионная связь na и s. Особенности ионной связи

Электроны от одного атома могут полностью перейти к другому. Такое перераспределение зарядов ведет к образованию положительно и отрицательно заряженных ионов (катионов и анионов). Между ними возникает особый тип взаимодействия — ионная связь. Рассмотрим подробнее способ ее образования, строение и свойства веществ.

Электроотрицательность

Атомы отличаются по электрооотрицательности (ЭО) — способности притягивать к себе электроны с валентных оболочек других частиц. Для количественного определения используется предложенная Л. Поллингом шкала относительной электроотрицательности (безразмерная величина). Сильнее, чем у других элементов, выражена способность притягивать к себе электроны у атомов фтора, его ЭО — 4. В шкале Поллинга сразу же за фтором следуют кислород, азот, хлор. Значения ЭО водорода и других типичных неметаллов равны или близки к 2. Из металлов большинство обладает электроотрицательностью от 0,7 (Fr) до 1,7. Существует зависимость ионности связи от разности ЭО химических элементов. Чем она больше, тем выше вероятность того, что возникнет ионная связь. Этот тип взаимодействия чаще встречается при разности ЭО=1,7 и выше. Если значение меньше, то соединения относятся к полярным ковалентным.

Энергия ионизации

Для отрыва слабо связанных с ядром внешних электронов необходима энергия ионизации (ЭИ). Единица изменения этой физической величины — 1 электрон-вольт. Существуют закономерности изменения ЭИ в рядах и столбцах периодической системы, зависящие от возрастания заряда ядра. В периодах слева направо энергия ионизации увеличивается и приобретает наибольшие значения у неметаллов. В группах она уменьшается сверху вниз. Основная причина — увеличение радиуса атома и расстояния от ядра до внешних электронов, которые легко отрываются. Возникает положительно заряженная частица — соответствующий катион. По величине ЭИ можно судить о том, возникает ли ионная связь. Свойства также зависят от энергии ионизации. Например, металлы щелочные и щелочноземельные обладают небольшими значениями ЭИ. У них ярко выражены восстановительные (металлические) свойства. Инертные газы в химическом отношении малоактивны, что обусловлено их высокой энергией ионизации.

Сродство к электрону

В химических взаимодействиях атомы могут присоединять электроны с образованием отрицательной частицы — аниона, процесс сопровождается выделением энергии. Соответствующая физическая величина — это сродство к электрону. Единица измерения такая же, как энергии ионизации (1 электрон-вольт). Но ее точные значения известны не для всех элементов. Галогены обладают наибольшим сродством к электрону. На внешнем уровне атомов элементов — 7 электронов, не хватает только одного до октета. Сродство к электрону у галогенов высокое, они обладают сильными окислительными (неметаллическими) свойствами.

Взаимодействия атомов при образовании ионной связи

Атомы, имеющие незавершенный внешний уровень, находятся в неустойчивом энергетическом состоянии. Стремление к достижению стабильной электронной конфигурации — основная причина, которая приводит к образованию химических соединений. Процесс обычно сопровождается выделением энергии и может привести к молекулам и кристаллам, отличающимся по строению и свойствам. Сильные металлы и неметаллы значительно различаются между собой по ряду показателей (ЭО, ЭИ и сродству к электрону). Для них больше подходит такой тип взаимодействия, как ионная химическая связь, при которой перемещается объединяющая молекулярная орбиталь (общая электронная пара). Считается, что при образовании ионов металлы полностью передают электроны неметаллам. Прочность возникшей связи зависит от работы, необходимой для разрушения молекул, составляющих 1 моль исследуемого вещества. Эта физическая величина известна как энергия связи. Для ионных соединений ее значения составляют от нескольких десятков до сотен кДж/моль.

Образование ионов

Атом, отдающий свои электроны при химических взаимодействиях, превращается в катион (+). Принимающая частица — это анион (-). Чтобы выяснить, как будут вести себя атомы, возникнут ли ионы, нужно установить разность их ЭО. Проще всего провести такие расчеты для соединения из двух элементов, например, хлорида натрия.

Натрий имеет всего 11 электронов, конфигурация внешнего слоя — 3s 1 . Для его завершения атому легче отдать 1 электрон, чем присоединить 7. Строение валентного слоя хлора описывает формула 3s 2 3p 5 . Всего у атома 17 электронов, 7 — внешних. Не хватает одного для достижения октета и стабильной структуры. Химические свойства подтверждают предположения о том, что атом натрия отдает, а хлор принимает электроны. Возникают ионы: положительный (катион натрия) и отрицательный (анион хлора).

Ионная связь

Теряя электрон, натрий приобретает положительный заряд и устойчивую оболочку атома инертного газа неона (1s 2 2s 2 2p 6). Хлор в результате взаимодействия с натрием получает дополнительный отрицательный заряд, а ион повторяет строение атомной оболочки благородного газа аргона (1s 2 2s 2 2p 6 3s 2 3p 6). Приобретенный электрический заряд называется зарядом иона. Например, Na + , Ca 2+ , Cl - , F - . В составе ионов могут находиться атомы нескольких элементов: NH 4 + , SO 4 2- . Внутри таких сложных ионов частицы связаны по донорно-акцепторному или ковалентному механизму. Между разноименно заряженными частицами возникает электростатическое притяжение. Его величина в случае ионной связи пропорциональна зарядам, а с увеличением расстояния между атомами оно слабеет. Характерные признаки ионной связи:

  • сильные металлы реагируют с активными неметаллическими элементами;
  • электроны переходят от одного атома к другому;
  • возникшие ионы обладают стабильной конфигурацией внешних оболочек;
  • между противоположно заряженными частицами возникает электростатическое притяжение.

Кристаллические решетки ионных соединений

В химических реакциях металлы 1-й, 2-й и 3-й групп периодической системы обычно теряют электроны. Образуются одно-, двух- и трехзарядные положительные ионы. Неметаллы 6-й и 7-й групп обычно присоединяют электроны (исключение — реакции с фтором). Возникают одно- и двухзарядные отрицательные ионы. Затраты энергии на эти процессы, как правило, компенсируются, при создании кристалла вещества. Ионные соединения обычно находятся в твердом состоянии, образуют структуры, состоящие из противоположно заряженных катионов и анионов. Эти частицы притягиваются и образуют гигантские кристаллические решетки, в которых положительные ионы окружены отрицательными частицами (и наоборот). Суммарный заряд вещества равен нулю, ведь общее число протонов уравновешивается количеством электронов всех атомов.

Свойства веществ с ионной связью

Для ионных кристаллических веществ характерны высокие температуры кипения и плавления. Обычно эти соединения являются термостойкими. Следующую особенность можно обнаружить при растворении таких веществ в полярном растворителе (воде). Кристаллы легко разрушаются, а ионы переходят в раствор, который обладает электрической проводимостью. Ионные соединения также разрушаются при расплавлении. Появляются свободные заряженные частицы, значит, расплав проводит электрический ток. Вещества с ионной связью являются электролитами — проводниками второго рода.

Относятся к группе ионных соединений оксиды и галогениды щелочных и щелочноземельных металлов. Практически все они находят широкое применение в науке, технике, химическом производстве, металлургии.

Крайне редко химические вещества состоят из отдельных, не связанных между собой атомов химических элементов. Таким строением в обычных условиях обладает лишь небольшой ряд газов называемых благородными: гелий, неон, аргон, криптон, ксенон и радон. Чаще же всего химические вещества состоят не из разрозненных атомов, а из их объединений в различные группировки. Такие объединения атомов могут насчитывать несколько единиц, сотен, тысяч или даже больше атомов. Сила, которая удерживает эти атомы в составе таких группировок, называется химическая связь .

Другими словами, можно сказать, что химической связью называют взаимодействие, которое обеспечивает связь отдельных атомов в более сложные структуры (молекулы, ионы, радикалы, кристаллы и др.).

Причиной образования химической связи является то, что энергия более сложных структур меньше суммарной энергии отдельных, образующих ее атомов.

Так, в частности, если при взаимодействии атомов X и Y образуется молекула XY, это означает, что внутренняя энергия молекул этого вещества ниже, чем внутренняя энергия отдельных атомов, из которых оно образовалось:

E(XY) < E(X) + E(Y)

По этой причине при образовании химических связей между отдельными атомами выделятся энергия.

В образовании химических связей принимают участие электроны внешнего электронного слоя с наименьшей энергией связи с ядром, называемые валентными . Например, у бора таковыми являются электроны 2 энергетического уровня – 2 электрона на 2s- орбитали и 1 на 2p -орбитали:

При образовании химической связи каждый атом стремится получить электронную конфигурацию атомов благородных газов, т.е. чтобы в его внешнем электронном слое было 8 электронов (2 для элементов первого периода). Это явление получило название правила октета.

Достижение атомами электронной конфигурации благородного газа возможно, если изначально одиночные атомы сделают часть своих валентных электронов общими для других атомов. При этом образуются общие электронные пары.

В зависимости от степени обобществления электронов можно выделить ковалентную, ионную и металлическую связи.

Ковалентная связь

Ковалентная связь возникает чаще всего между атомами элементов неметаллов. Если атомы неметаллов, образующие ковалентную связь, относятся к разным химическим элементам, такую связь называют ковалентной полярной. Причина такого названия кроется в том, что атомы разных элементов имеют и различную способность притягивать к себе общую электронную пару. Очевидно, что это приводит к смещению общей электронной пары в сторону одного из атомов, в результате чего на нем формируется частичный отрицательный заряд. В свою очередь, на другом атоме формируется частичный положительный заряд. Например, в молекуле хлороводорода электронная пара смещена от атома водорода к атому хлора:

Примеры веществ с ковалентной полярной связью:

СCl 4 , H 2 S, CO 2 , NH 3 , SiO 2 и т.д.

Ковалентная неполярная связь образуется между атомами неметаллов одного химического элемента. Поскольку атомы идентичны, одинакова и их способность оттягивать на себя общие электроны. В связи с этим смещения электронной пары не наблюдается:

Вышеописанный механизм образования ковалентной связи, когда оба атома предоставляют электроны для образования общих электронных пар, называется обменным.

Также существует и донорно-акцепторный механизм.

При образовании ковалентной связи по донорно-акцепторному механизму общая электронная пара образуется за счет заполненной орбитали одного атома (с двумя электронами) и пустой орбитали другого атома. Атом, предоставляющий неподеленную электронную пару, называют донором, а атом со свободной орбиталью – акцептором. В качестве доноров электронных пар выступают атомы, имеющие спаренные электроны, например N, O, P, S.

Например, по донорно-акцепторному механизму происходит образование четвертой ковалентной связи N-H в катионе аммония NH 4 + :

Помимо полярности ковалентные связи также характеризуются энергией. Энергией связи называют минимальную энергию, необходимую для разрыва связи между атомами.

Энергия связи уменьшается с ростом радиусов связываемых атомов. Так, как мы знаем, атомные радиусы увеличиваются вниз по подгруппам, можно, например, сделать вывод о том, что прочность связи галоген-водород увеличивается в ряду:

HI < HBr < HCl < HF

Также энергия связи зависит от ее кратности – чем больше кратность связи, тем больше ее энергия. Под кратностью связи понимается количество общих электронных пар между двумя атомами.

Ионная связь

Ионную связь можно рассматривать как предельный случай ковалентной полярной связи. Если в ковалентной-полярной связи общая электронная пара смещена частично к одному из пары атомов, то в ионной она практически полностью «отдана» одному из атомов. Атом, отдавший электрон(ы), приобретает положительный заряд и становится катионом , а атом, забравший у него электроны, приобретает отрицательный заряд и становится анионом .

Таким образом, ионная связь — это связь, образованная за счет электростатического притяжения катионов к анионам.

Образование такого типа связи характерно при взаимодействии атомов типичных металлов и типичных неметаллов.

Например, фторид калия. Катион калия получается в результате отрыва от нейтрального атома одного электрона, а ион фтора образуется при присоединении к атому фтора одного электрона:

Между получившимися ионами возникает сила электростатического притяжения, в результате чего образуется ионное соединение.

При образовании химической связи электроны от атома натрия перешли к атому хлора и образовались противоположно заряженные ионы, которые имеют завершенный внешний энергетический уровень.

Установлено, что электроны от атома металла не отрываются полностью, а лишь смещаются в сторону атома хлора, как в ковалентной связи.

Большинство бинарных соединений, которые содержат атомы металлов, являются ионными. Например, оксиды, галогениды, сульфиды, нитриды.

Ионная связь возникает также между простыми катионами и простыми анионами (F − , Cl − , S 2-), а также между простыми катионами и сложными анионами (NO 3 − , SO 4 2- , PO 4 3- , OH −). Поэтому к ионным соединениям относят соли и основания (Na 2 SO 4 , Cu(NO 3) 2 , (NH 4) 2 SO 4), Ca(OH) 2 , NaOH).

Металлическая связь

Данный тип связи образуется в металлах.

У атомов всех металлов на внешнем электронном слое присутствуют электроны, имеющие низкую энергию связи с ядром атома. Для большинства металлов, энергетически выгодным является процесс потери внешних электронов.

Ввиду такого слабого взаимодействия с ядром эти электроны в металлах весьма подвижны и в каждом кристалле металла непрерывно происходит следующий процесс:

М 0 — ne − = M n + , где М 0 – нейтральный атом металла, а M n + катион этого же металла. На рисунке ниже представлена иллюстрация происходящих процессов.

То есть по кристаллу металла «носятся» электроны, отсоединяясь от одного атома металла, образуя из него катион, присоединяясь к другому катиону, образуя нейтральный атом. Такое явление получило название “электронный ветер”, а совокупность свободных электронов в кристалле атома неметалла назвали “электронный газ”. Подобный тип взаимодействия между атомами металлов назвали металлической связью.

Водородная связь

Если атом водорода в каком-либо веществе связан с элементом с высокой электроотрицательностью (азотом, кислородом или фтором), для такого вещества характерно такое явление, как водородная связь.

Поскольку атом водорода связан с электроотрицательным атомом, на атоме водорода образуется частичный положительный заряд, а на атоме электроотрицательного элемента — частичный отрицательный. В связи с этим становится возможным электростатическое притяжения между частично положительно заряженным атомом водорода одной молекулы и электроотрицательным атомом другой. Например водородная связь наблюдается для молекул воды:

Именно водородной связью объясняется аномально высокая температура плавления воды. Кроме воды, также прочные водородные связи образуются в таких веществах, как фтороводород, аммиак, кислородсодержащие кислоты, фенолы, спирты, амины.

Длина связи - межъядерное расстояние. Чем это расстояние короче, чем прочнее химическая связь . Длина связи зависит от радиусов атомов , образующих ее: чем меньше по размеру атомы, тем более короткая между ними связь. Например, длина связи Н-О меньше, чем длина связи H-N (из-за меньшего размена атома кислорода).

Ионная связь является крайним случаем полярной ковалентной связи.

Металлическая связь.

Предпосылкой образования данного вида связи является:

1) наличие на внешних уровнях атомов относительного небольшого числа электронов ;

2) наличие на внешних уровнях атомов металлов пустых (вакантных орбиталей)

3) относительно низкая энергия ионизации.

Рассмотрим образование металлической связи на примере натрия. Валентный электрон натрия, который находится на 3s-подуровне может относительно легко перемещаться по пустым орбиталям внешнего слоя: по 3р и 3d. При сближении атомов в результате образовании кристаллической решетки валентные орбитали соседних атомов перекрываются, благодаря чему электроны свободно перемещаются с одной орбитали на другую, осуществляя связь между ВСЕМИ атомами кристалла металла.

В узлах кристаллической решетки находятся положительно заряженные ионы и атомы металлов, а между ними - электроны, которые могут свободно перемещаться по всей кристаллической решетке. Эти электроны становятся общими для всех атомов и ионов металла и называются «электронным газом». Связь между всеми положительно заряженными ионами металлов и свободными электронами в кристаллической решетке металлов называется металлической связью .

Наличием металлической связи обусловлены физические свойства металлов и сплавов: твердость, электропроводность, теплопроводность, ковкость, пластичность, металлический блеск. Свободные электроны могут переносить теплоту и электричество, поэтому они являются причиной главных физических свойств, отличающих металлы от неметаллов, - высокой электро- и теплопроводности.

Водородная связь.

Водородная связь возникает между молекулами, в состав которых входит водород и атомы с высокой ЭО (кислород, фтор, азот). Ковалентные связи H-O, H-F, H-N являются сильно полярными, за счет чего на атоме водорода скапливается избыточный положительный заряд, а на противоположных полюсах - избыточный отрицательный заряд. Между разноименно заряженными полюсами возникают силы электростатического притяжения - водородные связи.

Водородные связи могут быть как межмолекулярными, так и внутримолекулярными. Энергия водородной связи примерно в десять раз меньше энергии обычной ковалентной связи, но тем не менее водородные связи играют большую роль во многих физико-химических и биологических процессах. В частности, молекулы ДНК представляют собой двойные спирали, в которых две цепи нуклеотидов связаны между собой водородными связями. Межмолекулярные водородные связи между молекулами воды и фтороводорода можно изобразить (точками) следующим образом:

Вещества с водородной связью имеют молекулярные кристаллические решетки. Наличие водородной связи приводит к образованию ассоциатов молекул и, как следствие, к повышению температур плавления и кипения.

Кроме перечисленных основных видов химической связи существуют также универсальные силы взаимодействия между любыми молекулами, которые не приводят к разрыву или образованию новых химических связей. Эти взаимодействия называются вандерваальсовыми силами. Они обусловливают притяжение молекул данного вещества (или различных веществ) друг к другу в жидком и твердом агрегатном состояниях.

Различные виды химической связи обусловливают существование различных типов кристаллических решеток (табл.).

Вещества, состоящие из молекул, имеют молекулярное строение . К таким веществам относятся все газы, жидкости, а также твердые вещества с молекулярной кристаллической решеткой, например йод. Твердые вещества с атомной, ионной или металлической решеткой имеют немолекулярное строение , в них нет молекул.

Таблица

Особенность кристаллической решетки Тип кристаллической решетки
Молекулярная Ионная Атомная Металлическая
Частицы в узлах решетки Молекулы Kатионы и анионы Атомы Kатионы и атомы металлов
Характер связи между частицами Силы межмолекулярного взаимодействия (в том числе водородные связи) Ионные связи Kовалентные связи Металлическая связь
Прочность связи Слабая Прочная Очень прочная Разной прочности
Отличительные физические свойства веществ Легкоплавкие или возгоняющиеся, небольшой твердости, многие растворимы в воде Тугоплавкие, твердые, хрупкие, многие растворимы в воде. Растворы и расплавы проводят электрический ток Очень тугоплавкие, очень твердые, практически нерастворимы в воде Высокая электро- и теплопроводность, металлический блеск, пластичность.
Примеры веществ Простые вещества - неметаллы (в твердом состоянии): Cl 2 , F 2 , Br 2 , О 2 , О 3 , Р 4 , сера, йод, (кроме кремния, алмаза, графита); сложные вещества, состоящие из атомов неметаллов (кроме солей аммония): вода, сухой лед, кислоты, галогениды неметаллов: PCl 3 , SiF 4 , CBr 4 , SF 6 , органические вещества: углеводороды, спирты, фенолы , альдегиды и т.д. Соли: хлорид натрия, нитрат бария и т.д.; щелочи: гидроксид калия, гидроксид кальция, соли аммония: NH 4 Cl, NH 4 NO 3 и т.д., оксиды металлов, нитриды, гидриды и т.д. (соединения металлов с неметаллами) Алмаз, графит, кремний, бор, германий, оксид кремния (IV) - кремнезем, SiC (карборунд), черный фосфор (Р). Медь, калий, цинк, железо и др. металлы
Сравнение веществ по температурам плавления и кипения.
Из-за слабых сил межмолекулярного взаимодействия такие вещества имеют самые низкие температуры плавления и кипения. Причем, чем больше молекулярная масса вещества, тем более высокую t 0 пл. оно имеет. Исключения составляют вещества, между молекулами которых могут образовываться водородные связи. Например, HF имеет более высокую t 0 пл., чем HCl. Вещества имеют высокие t 0 пл., но ниже, чем вещества с атомной решеткой. Чем выше заряды ионов, которые находятся в узлах решетки и чем короче расстояние между ними, тем более высокую температуру плавления имеет вещество. Например, t 0 пл. CaF 2 выше, чем t 0 пл. KF. Имеют самые высокие t 0 пл. Чем прочнее связь между атомами в решетке, тем более высокую t 0 пл. имеет вещество. Например, Si имеет менее высокую t 0 пл., чем С. Металлы имеют различные t0 пл.: от -37 0 С у ртути до 3360 0 С у вольфрама.

Ионная связь проявляется тогда, когда электроотрицательность резко отличаются между собой (по шкале Полинга Δχ > 1,7), а это происходит при взаимодействии ионов, образованных из элементов, характеризующихся существенно отличными химическими свойствами.

Ионная связь — это электростатическое притяжение между разноименно заряженными ионами, которые образованы в результате полного смещения общей электронной пары от атома одного элемента к атому другого элемента.

В зависимости от индивидуальных свойств у атомов одних элементов преобладает тенденция к потере электронов с преобразованием в положительно заряженные ионы (катионы), а атомы других элементов, наоборот, стремятся приобрести электроны, превращаясь при этом в отрицательно заряженные ионы (анионы), как это происходит с атомами обычного натрия и типичного неметалла хлора.

Условная модель образования ионов Na + и Cl — путем полной передачи валентного электрона от атома натрия к атому хлора

Способность элементов образовывать простые ионы (то есть исходящие от одного атома) обусловлена ​​электронной конфигурацией их изолированных атомов, а также величинами электроотрицательности, энергий ионизации и сродства к электрону (минимальная , необходимая для удаления электрона из соответствующего отрицательного иона на бесконечное расстояние). Понятно, что катионы легче образуются атомами элементов с малыми энергиями ионизации — щелочных и щелочно-земельных металлов (Na, К, Cs, Rb, Ca, Ba, Sr и т.д.). Образование же простых катионов других элементов менее вероятно, поскольку это связано с расходом большой энергии на ионизацию атома.

Простые анионы легче образуются р-элементами седьмой группы (Cl, Br, I) вследствие их высокого сродства к электрону. Присоединение по одному электрону к атомам О, S, N сопровождается выделением энергии. А присоединение других электронов с образованием многозарядных простых анионов энергетически невыгодно.

Поэтому соединения, состоящие из простых ионов, немногочисленны. Они легче образуются при взаимодействии щелочных и щелочно-земельных металлов с галогенами.

Характеристики ионной связи

1. Ненаправленность . Электрические заряды ионов обусловливают их притяжение и отталкивание и в целом определяют стехиометрический состав соединения. Ионы можно представить как заряженные шарики, силовые поля которых равномерно распределяются во всех направлениях в пространстве. Поэтому, например, в соединении NaCl ионы натрия Na+ могут взаимодействовать с ионами хлора Cl- в любом направлении, привлекая определенное их число.

Ненаправленность — это свойство ионной связи, обусловленной способностью каждого иона притягивать к себе ионы противоположного знака в любом направлении.

Итак, ненаправленность объясняется тем, что электрическое поле иона имеет сферическую симметрию и уменьшается с расстоянием по всем направлениям, поэтому взаимодействие между ионами осуществляется независимо от направления.

2. Ненасыщенность. Понятно, что взаимодействие двух ионов противоположного знака не может привести к полной взаимной компенсации их силовых полей. Поэтому ион с определенным зарядом сохраняет способность притягивать другие ионы противоположного знака по всем направлениям. Количество таких «привлеченных» ионов ограничивается только их геометрическими размерами и силами взаимного отталкивания.

Ненасыщенность — это свойство ионной связи, которое проявляется в способности иона, который имеет определенный заряд, присоединять любое количество ионов противоположного знака.

3. Поляризация ионов. При ионной связи каждый ион, будучи носителем электрического заряда, является источником силового электрического поля, поэтому при близком расстоянии между ионами они взаимно влияют друг на друга.

Поляризация иона — это деформация его электронной оболочки под воздействием электрического силового поля другого иона.

4. Поляризуемость и поляризующая способность ионов. При поляризации самому сильному смещению подвергаются электроны внешнего слоя. Но при действии одного и того же электрического поля различные ионы деформируются в неодинаковой степени. Чем слабее связаны внешние электроны с ядром, тем легче происходит поляризация.

Поляризуемость — это относительное смещение ядра и электронной оболочки в йоне при воздействии силового электрического поля другого иона. Поляризующая способность ионов — это их свойство оказывать деформирующее действие на другие ионы.

Поляризующая способность зависит от заряда и размера иона. Чем больше заряд иона, тем сильнее его поле, то есть наибольшую поляризующей способностью обладают многозарядные ионы.

Свойства ионных соединений

При обычных условиях ионные соединения существуют в виде твердых кристаллических веществ, которые имеют высокие температуры плавления и кипения, поэтому считаются нелетучими. Например, температуры плавления и кипения NaCl составляют соответственно 801 0 С и 1413 0 С, CaF 2 — 1418 0 С и 2533 0 C. В твердом состоянии ионные соединения не проводят электрический ток. Они хорошо растворяются в и слабо или совсем не растворяются в неполярных растворителях (керосин, бензин). В полярных растворителях ионные соединения диссоциируют (распадаются) на ионы. Это объясняется тем, что ионы имеют более высокие энергии сольватации, которые способны компенсировать энергию диссоциации на ионы в газовой фазе.


Теория химической связи занимает важнейшее место в современной химии. Она объясняет, почему атомы объединяются в химические частицы, и позволяет сравнивать устойчивость этих частиц. Используя теорию химической связи, можно предсказать состав и строение различных соединений. Понятие о разрыве одних химических связей и образовании других лежит в основе современных представлений о превращениях веществ в ходе химических реакций.

Химическая связь - это взаимодействие атомов, обусловливающее устойчивость химической частицы или кристалла как целого. Химическая связь образуется за счет электростатического взаимодействия между заряженными частицами: катионами и анионами, ядрами и электронами. При сближении атомов начинают действовать силы притяжения между ядром одного атома и электронами другого, а также силы отталкивания между ядрами и между электронами. На некотором расстоянии эти силы уравновешивают друг друга, и образуется устойчивая химическая частица.

При образовании химической связи может произойти существенное перераспределение электронной плотности атомов в соединении по сравнению со свободными атомами. В предельном случае это приводит к образованию заряженных частиц - ионов (от греческого "ион" - идущий).

Взаимодействие ионов

Если атом теряет один или несколько электронов, то он превращается в положительный ион - катион (в переводе с греческого - "идущий вниз). Так образуются катионы водорода Н + , лития Li + , бария Ва 2+ . Приобретая электроны, атомы превращаются в отрицательные ионы - анионы (от греческого "анион" - идущий вверх). Примерами анионов являются фторид ион F − , сульфид-ион S 2− .

Катионы и анионы способны притягиваться друг к другу. При этом возникает химическая связь, и образуются химические соединения. Такой тип химической связи называется ионной связью:

Ионная связь - это химическая связь, образованная за счет электростатического притяжения между катионами и анионами.

Механизм образования ионной связи можно рассмотреть на примере реакции между натрием и хлором. Атом щелочного металла легко теряет электрон, а атом галогена - приобретает. В результате этого возникает катион натрия и хлорид-ион. Они образуют соединение за счет электростатического притяжения между ними.

Взаимодействие между катионами и анионами не зависит от направления, поэтому о ионной связи говорят как о ненаправленной. Каждый катион может притягивать любое число анионов, и наоборот. Вот почему ионная связь является ненасыщенной. Число взаимодействий между ионами в твердом состоянии ограничивается лишь размерами кристалла. Поэтому "молекулой" ионного соединения следует считать весь кристалл.

Для возникновения ионной связи необходимо, чтобы сумма значений энергии ионизации E i (для образования катиона) и сродства к электрону A e (для образования аниона) должна быть энергетически выгодной. Это ограничивает образование ионной связи атомами активных металлов (элементы IA- и IIA-групп, некоторые элементы IIIA-группы и некоторые переходные элементы) и активных неметаллов (галогены, халькогены, азот).

Идеальной ионной связи практически не существует. Даже в тех соединениях, которые обычно относят к ионным, не происходит полного перехода электронов от одного атома к другому; электроны частично остаются в общем пользовании. Так, связь во фториде лития на 80% ионная, а на 20% - ковалентная. Поэтому правильнее говорить о степени ионности (полярности) ковалентной химической связи. Считают, что при разности электроотрицательностей элементов 2,1 связь является на 50% ионной. При большей разности соединение можно считать ионным.

Ионной моделью химической связи широко пользуются для описания свойств многих веществ, в первую очередь, соединений щелочных и щелочноземельных металлов с неметаллами. Это обусловлено простотой описания таких соединений: считают, что они построены из несжимаемых заряженных сфер, отвечающих катионам и анионам. При этом ионы стремятся расположиться таким образом, чтобы силы притяжения между ними были максимальными, а силы отталкивания - минимальными.

Ионные радиусы

В простой электростатической модели ионной связи используется понятие ионных радиусов. Сумма радиусов соседних катиона и аниона должна равняться соответстующему межъядерному расстоянию:

r 0 = r + + r

При этом остается неясным, где следует провести границу между катионом и анионом. Сегодня известно, что чисто ионной связи не существует, так как всегда имеется некоторое перекрывание электронных облаков. Для вычисления радиусов ионов используют методы исследования, которые позволяют определять электронную плотность между двумя атомами. Межъядерное расстояние делят в точке, где электронная плотность минимальна.

Размеры иона зависят от многих факторов. При постоянном заряде иона с ростом порядкового номера (а, следовательно, заряда ядра) ионный радиус уменьшается. Это особенно хорошо заметно в ряду лантаноидов, где ионные радиусы монотонно меняются от 117 пм для (La 3+) до 100 пм (Lu 3+) при координационном числе 6. Этот эффект носит название лантаноидного сжатия .

В группах элементов ионные радиусы в целом увеличиваются с ростом порядкового номера. Однако для d -элементов четвертого и пятого периодов вследствие лантаноидного сжатия может произойти даже уменьшение ионного радиуса (например, от 73 пм у Zr 4+ до 72 пм у Hf 4+ при координационном числе 4).

В периоде происходит заметно уменьшение ионного радиуса, связанное с усилением притяжения электронов к ядру при одновременном росте заряда ядра и заряда самого иона: 116 пм у Na + , 86 пм у Mg 2+ , 68 пм у Al 3+ (координационное число 6). По этой же причине увеличение заряда иона приводит к уменьшению ионного радиуса для одного элемента: Fe 2+ 77 пм, Fe 3+ 63 пм, Fe 6+ 39 пм (координационное число 4).

Сравнение ионных радиусов можно проводить только при одинаковом координационном числе, поскольку оно оказывает влияние на размер иона из-за сил отталкивания между противоионами. Это хорошо видно на примере иона Ag + ; его ионных радиус равен 81, 114 и 129 пм для координационных чисел 2, 4 и 6, соответственно.

Структура идеального ионного соединения, обусловленная максимальным притяжением между разноименными ионами и минимальным отталкиванием одноименных ионов, во многом определяется соотношением ионных радиусов катионов и анионов. Это можно показать простыми геометрическими построениями.

Отношение r + : r Координационное число катиона Окружение Пример
0,225−0,414 4 Тетраэдрическое ZnS
0,414−0,732 6 Октаэдрическое NaCl
0,732−1,000 8 Кубическое CsCl
>1,000 12 Додекаэдрическое В ионных кристаллах не обнаружено

Энергия ионной связи

Энергия связи для ионного соединения - это энергия, которая выделяется при его образовании из бесконечно удаленных друг от друга газообразных противоионов. Рассмотрение только электростатических сил соответствует около 90% от общей энергии взаимодействия, которая включает также вклад неэлектростатических сил (например, отталкивание электронных оболочек).

При возникновении ионной связи между двумя свободными ионами энергия их притяжения определяется законом Кулона :

E (прит.) = q + q − / (4π r ε),

где q + и q − - заряды взаимодействующих ионов, r - расстояние между ними, ε - диэлектрическая проницаемость среды.

Так как один из зарядов отрицателен, то значение энергии также будет отрицательным.

Согласно закону Кулона, на бесконечно малых расстояниях энергия притяжения должна стать бесконечно большой. Однако этого не происходит, так как ионы не являются точечными зарядами. При сближении ионов между ними возникают силы отталкивания, обусловленные взаимодействием электронных облаков. Энергия отталкивания ионов описывается уравнением Борна:

Е (отт.) = В / r n ,

где В - некоторая константа, n может принимать значения от 5 до 12 (зависит от размера ионов). Общая энергия определяется суммой энергий притяжения и отталкивания:

Е = Е (прит.) + Е (отт.)

Ее значение проходит через минимум. Координаты точки минимума отвечают равновесному расстоянию r 0 и равновесной энергии взаимодействия между ионами E 0:

E 0 = q + q − (1 - 1 / n ) / (4π r 0 ε)

В кристаллической решетке всегда имеет место большее число взаимодействий, чем между парой ионов. Это число определяется в первую очередь типом кристаллической решетки. Для учета всех взаимодействий (ослабевающих с увеличением расстояния) в выражение для энергии ионной кристаллической решетки вводят так называемую константу Маделунга А :

E (прит.) = A q + q − / (4π r ε)

Значение константы Маделунга определяется только геометрией решетки и не зависит от радиуса и заряда ионов. Например, для хлорида натрия она равна 1,74756.