Специальность механика и математическое моделирование. Механика и математическое моделирование Почему надо поступать на математику или механику

Студенты, обучающиеся по данному профилю, овладевают знаниями по теоретическим и прикладным разделам механики:

    теоретической механике,

    теории управления,

    теории устойчивости и стабилизации движения,

    механике деформируемого твердого тела,

    гидроаэромеханике,

    теории колебаний,

    прикладной механике,

    робототехнике и другим.

Наряду с теоретическими знаниями осваивают экспериментальные и вычислительные методы исследования движения и состояния материальных тел. Большое внимание уделяется изучению базовых математических дисциплин и компьютерных наук. Выпускники имеют возможность продолжить обучение в аспирантуре университета и институтов УрО РАН. В процессе обучения студенты активно участвуют в научно-исследовательской работе, во Всероссийских олимпиадах, научных конкурсах и конференциях.

Студенты специализируются в следующих областях: математическое моделирование, теория устойчивости и управления, механика деформируемого твердого тела, компьютерная механика, а также в решении с помощью высокопроизводительных технологий задач разработки современной техники, задач экономики и финансов, экологии и биотехнологий, управления.

Наличие универсальных знаний позволяет выпускникам работать не только в научно-исследовательских институтах, вузах и конструкторских бюро крупных промышленных организаций, но и в структурах экономики и бизнеса. Среди выпускников не только известные ученые, в том числе Президент Российской академии наук, руководители научно-исследовательских организаций, промышленных фирм и вузов, высококвалифицированные специалисты, в том числе в сфере компьютерных технологий, но и бизнесмены и топ-менеджеры коммерческих структур.
Популярный видеоклип о направлении "Механика и математическое моделирование" с картинками и музыкой.

Почему надо поступать на математику или механику?

За много лет существования факультета сформировалась одна из лучших в стране математических школ,

Здесь много крутых преподавателей: профессоров и учёных,

После второго курса на обоих направлений происходит разделение на специализации и можно выбрать наиболее интересную область для изучения

на математике:

Дискретная математика;

Математическая кибернетика;

Математическая биология и биоинформатика;

Математические методы в экономике;

Системное программирование;

И многое другое

на механике:

Математическое моделирование;

Теория устойчивости и управления;

Механика деформированного твердого тела;

Компьютерная механика;

На старших курсах можно вести научную деятельность: проводить собственные исследования, писать статьи в научные издания;

Каждый семестр читаются дополнительные курсы на разные темы, которые можно посещать вне зависимости от направления обучения и выбранной специальности.

Кому будет интересно в первую очередь?

Тем, кто хочет развить математическое мышление;

Тем, кто хочет заниматься наукой;

Тем, кто силён в точных науках, но еще не определился, что ему интереснее;

Направление механика подойдет тем, кто интересуется и математикой, и физикой.

Кем можно работать, окончив математические направления?

Кем угодно и в любой сфере!

Люди, умеющие думать, ценятся очень высоко, а навыки математического мышления позволят найти дело по душе в любой области. Выпускников математических направлений матмеха можно встретить:

На различных должностях в ИТ-сфере: от программистов до проектировщиков интерфейсов, от сисадминов до менеджеров проектов;

В финансовой сфере в качестве аналитиков, экономистов, финансистов, аудиторов;

Среди инженеров и технических специалистов в любой сфере от строительства до космической отрасли;

В школах, институтах и университетах, научных лабораториях и в академии наук, где они работают как учёные, преподаватели и руководители.

Различия математических направлений:
Математика:

Больше выбор спецкурсов и специализаций,

Сильная математика и серьезная программистская база
Механика:

Большую часть курсов читают преподаватели одной из старейших кафедр факультета -- кафедры механики и математического моделирования,

Основной упор на теоретические и прикладные разделы физики.

Преимущества обучения

  • Фундаментальная математическая подготовка, обеспечивающая возможность активной работы в самых сложных областях современной механики; глубокое знание программирования, позволяющее проводить компьютерное моделирование процессов и явлений в различных системах
  • Наличие действующих научных школ, которые позволяют студентам активно заниматься исследовательской работой непосредственно в Университет
  • Выдающийся коллектив преподавателей и научных сотрудников, который обеспечивает подготовку во всех направлениях современной механики
  • Работа на уникальных экспериментальных установках в собственных лабораториях, сочетание возможностей теоретического и экспериментального подходов, позволяющее выпускникам комплексно исследовать наиболее сложные проблемы механики
  • Освоение прикладных программ для решения задач теоретической механики, гидроаэромеханики и теории упругости (ANSYS, FLUENT и пр.) и создание собственных алгоритмов и программ для конкретных задач современной механики на самой современной вычислительной технике

Известные преподаватели

  • Н. Ф. Морозов - заведующий кафедрой теории упругости СПбГУ, академик РАН, профессор, доктор физико-математических наук. Специалист по нелинейной теории упругости, математическим методам механики разрушения. Автор более 200 публикаций в Scopus и Web of Science
  • П. Е. Товстик - заведующий кафедрой теоретической и прикладной механики СПбГУ, профессор, доктор физико-математических наук, лауреат государственной премии РФ, заслуженный деятель науки РФ, кавалер Ордена почета, почетный профессор СПбГУ. Специалист в области асимптотических и численных методов в теоретической механике, теории тонкостенных конструкций, механике твердого тела и наномеханике. Автор более 250 научных работ, из них десять монографий и учебников
  • Ю. В. Петров - профессор СПбГУ, заведующий отделом «Экстремальные состояния материалов и конструкций» ИПМаш РАН, член-корреспондент РАН, профессор, доктор физико-математических наук. Специалист по динамической теории упругости и пластичности, физике и механике ударно-волновых процессов, динамике деформирования и разрушения твердых тел, детонации и взрыву. Автор более 200 публикаций в Scopus и Web of Science
  • Е. В. Кустова - заведующая кафедрой гидроаэромеханики СПбГУ, доктор физико-математических наук, профессор РАН. Специалист в области кинетической теории процессов переноса и релаксации в неравновесных реагирующих газах, исследования тепломассопереноса на поверхности летательных аппаратов, входящих в атмосферу Земли и Марса. Автор более 200 научных работ, из них более 120 публикаций в Scopus и Web of Science, пять монографий и учебников

Будущая карьера

Места прохождения практик

Обучение предполагает прохождение учебной, научно-исследовательской и производственной практик на базе кафедр и научных лабораторий СПбГУ.

Перечень ключевых профессий

Выпускники программы готовы к успешной профессиональной деятельности в научно-исследовательских, конструкторских и проектных институтах, в строительной индустрии, машиностроении, в ракетно-космической промышленности, биомеханике, робототехнике и других областях техники и естествознания, связанных с разработкой и применением математических методов. Они могут работать специалистами по научно-исследовательским и опытно-конструкторским работам в сфере математического моделирования, научных и прикладных исследований для наукоемких высокотехнологичных производств, производственно-технологической деятельности. Возможна педагогическая работа в сфере среднего общего и профессионального образования.

Организации, в которых работают выпускники

Выпускники программы продолжают обучение в магистратуре СПбГУ и других вузов, работают в институтах Российской Академии наук, на предприятиях Госкорпорации «Роскосмос», в дочерних компаниях ПАО «Газпром нефть», предприятиях АО «Объединённая судостроительная корпорация», АО «Концерн ВКО «Алмаз-Антей», в Крыловском государственном научном центре, Центральном институте авиационного моторостроения имени П. И. Баранова (ЦИАМ), предприятиях Инвестиционной группы компаний «Мавис», на Ижорском заводе, в кораблестроительном НПО «Алмаз», на Обуховском заводе, в ФГУ «Рубин».

Основные вопросы механики

Кинематика

Механика изучает простейшие формы движения, встречающиеся в материальном мире, которые объединяются общим названием, механическое движение.

Под механическим движением мы будем понимать изменение взаимного расположения одного материального объекта по отношению к другому материальному объекту. В этом заключается одно из важнейших свойств механического движения: его относительность.

Главные вопросы, которые возникают при попытке характеризовать механическое движение данного материального объекта, следующие:

1. Как движется данный объект?, то есть каковы вид и характер его относительного движения?

2. Почему данный объект движется так, а не иначе?, то есть каковы причины, вызывающие именно данный вид и характер движения рассматриваемого объекта?

Поиском ответа на первый из этих вопросов занимается раздел механики - кинематика, на второй - динамика.

Выводы: Механическое движение относительно и является простейшей формой движения материи. Основные вопросы механики: Как и почему движется материальный объект?

В зависимости от свойств материального объекта, характера и вида его движения в механике используются самые простые физические модели:

материальная точка (частица) - объект (тело), размерами которого можно пренебречь по сравнению с характерным размером движения, в котором этот объект участвует.

Здесь следует обратить внимание на относительный характер понятия и его абстрактность. Любой реальный объект обладает конечными размерами, которыми в данной конкретной ситуации можно пренебречь или нельзя.

Например, рассматривая движение Земли вокруг Солнца, ее можно считать материальной точкой, так как радиус Земли R з =6400 км, значительно меньше радиуса ее орбиты вокруг Солнца R с =1.5×10 8 км. С другой стороны,

при рассмотрении суточного вращения Земли вокруг собственной оси применять для Земли модель “материальная точка” нельзя.

При изучении движения тела или системы тел, когда понятие материальной точки использовать нельзя, часто полезно применить другую физическую модель, которая называется система материальных точек.

Суть этой модели заключается в том, что любое тело или систему тел, движение которых необходимо изучить, мысленно разбивают на малые участки (материальные точки), размеры которых значительно меньше размеров тела или системы тел. В этом случае изучение движения тела или системы тел сводится к изучению движения отдельных участков системы, то есть материальных точек, из которых состоит эта система. При этом следует, конечно, учитывать, взаимодействуют ли материальные точки между собой или нет.



Частным случаем модели “система материальных точек” в механике является модель под названием твердое тело:

Твердое тело - это система материальных точек, взаимное расположение которых в процессе данного движения не изменяется.

Обратите внимание на относительность этой модели.

Предельным случаем модели твердого тела является абсолютно твердое тело. В абсолютно твердом теле расстояние между любыми произвольными частицами ни при каких условиях не изменяется. Абсолютно твердое тело - это абстрактная модель, так как никакое реальное тело не обладает этим свойством.

Для описания движения материальной точки используют модель -траектория движения .

Траекторией движения называется воображаемая линия, вдоль которой происходит движение данной материальной точки.

Если эта линия представляет собой прямую или ее отрезок, то говорят, что движение материальной точки прямолинейное, в противном случае движение криволинейное. Для описания видов движения твердого тела используют модели поступательного и вращательного движения.

Поступательным называется такое движение твердого тела, при котором любая прямая, скрепленная с этим телом, при его движении остается параллельной самой себе.

Характерной особенностью такого движения является то, что траектории всех материальных точек, составляющих твердое тело, имеют одинаковую форму и размеры и при параллельном смещении могут быть совмещены друг с другом.

Вращательным называется такое движение твердого тела, при котором все его материальные точки движутся по окружностям. При этом центры этих окружностей расположены на одной прямой, называемой осью вращения.

Произвольное движение твердого тела всегда можно представить в виде совокупности одновременных поступательного и вращательного движений.

Выводы: Основными физическими моделями механики являются материальная точка, система материальных точек и твердое тело. Движение материальной точки определяется понятием “траектория движения”. Траектории бывают прямолинейными и криволинейными. Движение твердого тела может быть сведено к двум формам: поступательной и вращательной.

    Бакалавриат
  • 01.03.01 Математика
  • 01.03.02 Прикладная математика и информатика
  • 01.03.03 Механика и математическое моделирование
  • 01.03.04 Прикладная математика
    Специалитет
  • 01.05.01 Фундаментальные математика и механика

Будущее отрасли

Какими технологиями должно обладать государство, чтобы в ХХI веке быть сильным и независимым? Космос, атомная энергетика, шифрование, проектирование, гуманитарные технологии - математика нужна для всех этих и многих других технологий, без которых немыслимо будущее.

Математика является основой, базисом для всех естественных и многих гуманитарных наук. Благодаря развитию этой науки, человечество сделало впечатляющий технологический рывок за последнее столетие. Без математики невозможно развитие физики, химии, инженерного дела, программирования, архитектуры и многих других дисциплин. Не зная математики нельзя построить дом, сконструировать двигатель внутреннего сгорания, создать компьютерную программу. Математика – это средство, инструмент для других научных дисциплин, при помощи которого можно переводить реальные свойства объекта или системы в абстрактные математические символы и строить модели будущей работы системы или объекта. Математика – универсальный язык, который поймут в любой стране.

Без знания математики жить в современном мире в период глобализации невозможно. Но если большинству людей достаточно элементарных основ этой науки, то для успешной работы в некоторых сферах человеческой деятельности требуются глубокие знания данной дисциплины.

Возможно, в будущем грань между математикой и другими науками сотрется, но сейчас специально обученные математики совершенно необходимы в наукоемких производствах любого профиля, в социологии, политике и образовании.

Профессия лежит на стыке математики, физики и информатики. Студенты учатся прогнозировать физические процессы, протекающих в твердых телах, жидкостях, газах и плазме с помощью методов математического моделирования. Для этого приходится использовать сложные компьютерные программы, а иногда – создавать их самостоятельно. При этом если компьютером воспользоваться невозможно, выпускники должны уметь решить задачу другими способами. В учебном плане большое внимание уделяется физическим дисциплинам, прежде всего механике. Также учащиеся знакомятся с информатикой, программированием и робототехникой. Специализация зависит от того, моделированием каких именно объектов решит заняться выпускник: твердых тел, жидкостей или газов. Популярным становится такой раздел науки, как инженерная биомеханика – изучение свойств живых тканей и конструирование искусственных частей тела. *

* Набор учебных дисциплин и уклон обучения