Ферменты, которые ускоряют химические реакции без повышения температуры и получения энергии извне. Ферменты Почему ферменты ускоряют химические реакции

В клетке любого живого организма протекают миллионы химических реакций. Каждая из них имеет большое значение, поэтому важно поддерживать скорость биологических процессов на высоком уровне. Почти каждая реакция катализируется своим ферментом. Что такое ферменты? Какова их роль в клетке?

Ферменты. Определение

Термин "фермент" происходит от латинского fermentum - закваска. Также они могут называться энзимами от греческого en zyme - "в дрожжах".

Ферменты - биологически активные вещества, поэтому любая реакция, протекающая в клетке, не обходится без их участия. Эти вещества выполняют роль катализаторов. Соответственно, любой фермент обладает двумя основными свойствами:

1) Энзим ускоряет биохимическую реакцию, но при этом не расходуется.

2) Величина константы равновесия не меняется, а лишь ускоряется достижение этого значения.

Ферменты ускоряют биохимические реакции в тысячу, а в некоторых случаях в миллион раз. Это значит, что при отсутствии ферментативного аппарата все внутриклеточные процессы практически остановятся, а сама клетка погибнет. Поэтому роль ферментов как биологически активных веществ велика.

Разнообразие энзимов позволяет разносторонне регулировать метаболизм клетки. В любом каскаде реакций принимает участие множество ферментов различных классов. Биологические катализаторы обладают большой избирательностью благодаря определенной конформации молекулы. Т. к. энзимы в большинстве случаев имеют белковую природу, они находятся в третичной или четвертичной структуре. Объясняется это опять же специфичностью молекулы.

Функции энзимов в клетке

Главная задача фермента - ускорение соответствующей реакции. Любой каскад процессов, начиная с разложения пероксида водорода и заканчивая гликолизом, требует присутствия биологического катализатора.

Правильная работа ферментов достигается высокой специфичностью к определенному субстрату. Это значит, что катализатор может ускорять только определенную реакцию и никакую больше, даже очень похожую. По степени специфичности выделяют следующие группы энзимов:

1) Ферменты с абсолютной специфичностью, когда катализируется только одна-единственная реакция. Например, коллагеназа расщепляет коллаген, а мальтаза расщепляет мальтозу.

2) Ферменты с относительной специфичностью. Сюда входят такие вещества, которые могут катализировать определенный класс реакций, к примеру, гидролитическое расщепление.

Работа биокатализатора начинается с момента присоединения его активного центра к субстрату. При этом говорят о комплементарном взаимодействии наподобие замка и ключа. Здесь имеется в виду полное совпадение формы активного центра с субстратом, что дает возможность ускорять реакцию.

Следующий этап заключается в протекании самой реакции. Ее скорость возрастает благодаря действию ферментативного комплекса. В конечном итоге мы получаем энзим, который связан с продуктами реакции.

Заключительный этап - отсоединение продуктов реакции от фермента, после чего активный центр вновь становится свободным для очередной работы.

Схематично работу фермента на каждом этапе можно записать так:

1) S + E ——> SE

2) SE ——> SP

3) SP ——> S + P , где S - это субстрат, E - фермент, а P - продукт.

Классификация ферментов

В организме человека можно найти огромное количество ферментов. Все знания об их функциях и работе были систематизированы, и в итоге появилась единая классификация, благодаря которой можно легко определить, для чего предназначен тот или иной катализатор. Здесь представлены 6 основных классов энзимов, а также примеры некоторых подгрупп.

  1. Оксидоредуктазы.

Ферменты этого класса катализируют окислительно-восстановительные реакции. Всего выделяют 17 подгрупп. Оксидоредуктазы обычно имеют небелковую часть, представленную витамином или гемом.

Среди оксидоредуктаз часто встречаются следующие подгруппы:

а) Дегидрогеназы. Биохимия ферментов-дегидрогеназ заключается в отщеплении атомов водорода и переносе их на другой субстрат. Эта подгруппа чаще всего встречается в реакциях дыхания, фотосинтеза. В составе дегидрогеназ обязательно присутствует кофермент в виде НАД/НАДФ или флавопротеидов ФАД/ФМН. Нередко встречаются ионы металлов. Примерами могут служить такие энзимы, как цитохромредуктазы, пируватдегидрогеназа, изоцитратдегидрогеназа, а также многие ферменты печени (лактатдегидрогеназа, глутаматдегидрогеназа и т. д.).

б) Оксидазы. Ряд ферментов катализирует присоединение кислорода к водороду, в результате чего продуктами реакции могут быть вода или пероксид водорода (H 2 0, H 2 0 2). Примеры ферментов: цитохромоксидаза, тирозиназа.

в) Пероксидазы и каталазы - энзимы, катализирующие распад H 2 O 2 на кислород и воду.

г) Оксигеназы. Эти биокатализаторы ускоряют присоединение кислорода к субстрату. Дофамингидроксилаза - один из примеров таких энзимов.

2. Трансферазы.

Задача ферментов этой группы состоит в переносе радикалов от вещества-донора к веществу-реципиенту.

а) Метилтрансферазы. ДНК-метилтрансферазы - основные ферменты, контролирующие процесс репликации нуклеотидов играет большую роль в регуляции работы нуклеиновой кислоты.

б) Ацилтрансферазы. Энзимы этой подгруппы транспортируют ацильную группу с одной молекулы на другую. Примеры ацилтрансфераз: лецитинхолестеринацилтрансфераза (переносит функциональную группу с жирной кислоты на холестерин), лизофосфатидилхолинацилтрансфераза (ацильная группа переносится на лизофосфатидилхолин).

в) Аминотрансферазы - ферменты, которые участвуют в превращении аминокислот. Примеры ферментов: аланинаминотрансфераза, которая катализирует синтез аланина из пирувата и глутамата путем переноса аминогруппы.

г) Фосфотрансферазы. Ферменты этой подгруппы катализируют присоединение фосфатной группы. Другое название фосфотрансфераз, киназы, встречается намного чаще. Примерами могут служить такие энзимы, как гексокиназы и аспартаткиназы, которые присоединяют фосфорные остатки к гексозам (чаще всего к глюкозе) и к аспарагиновой кислоте соответственно.

3. Гидролазы - класс энзимов, которые катализируют расщепление связей в молекуле с последующим присоединением воды. Вещества, которые относятся к этой группе, - основные ферменты пищеварения.

а) Эстеразы - разрывают эфирные связи. Пример - липазы, которые расщепляют жиры.

б) Гликозидазы. Биохимия ферментов этого ряда заключается в разрушении гликозидных связей полимеров (полисахаридов и олигосахаридов). Примеры: амилаза, сахараза, мальтаза.

в) Пептидазы - энзимы, катализирующие разрушение белков до аминокислот. К пептидазам относятся такие ферменты, как пепсины, трипсин, химотрипсин, карбоиксипептидаза.

г) Амидазы - расщепляют амидные связи. Примеры: аргиназа, уреаза, глутаминаза и т. д. Многие ферменты-амидазы встречаются в

4. Лиазы - ферменты, по функции схожие с гидролазами, однако при расщеплении связей в молекулах не затрачивается вода. Энзимы этого класса всегда имеют в составе небелковую часть, например, в виде витаминов В1 или В6.

а) Декарбоксилазы. Эти ферменты действуют на С-С связь. Примерами могут служить глутаматдекарбоксилаза или пируватдекарбоксилаза.

б) Гидратазы и дегидратазы - ферменты, которые катализируют реакцию расщепления связей С-О.

в) Амидин-лиазы - разрушают С-N связи. Пример: аргининсукцинатлиаза.

г) Р-О лиазы. Такие ферменты, как правило, отщепляют фосфатную группу от вещества-субстрата. Пример: аденилатциклаза.

Биохимия ферментов основана на их строении

Способности каждого энзима определяются индивидуальным, только ему свойственным строением. Любой фермент - это, прежде всего, белок, и его структура и степень сворачивания играют решающую роль в определении его функции.

Для каждого биокатализатора характерно наличие активного центра, который, в свою очередь, делится на несколько самостоятельных функциональных областей:

1) Каталитический центр - это специальная область белка, по которой происходит присоединение фермента к субстрату. В зависимости от конформации белковой молекулы каталитический центр может принимать разнообразную форму, которая должна соответствовать субстрату так же, как замок ключу. Такая сложная структура объясняет то, что находится в третичном или четвертичном состоянии.

2) Адсорбционный центр - выполняет роль «держателя». Здесь в первую очередь происходит связь между молекулой фермента и молекулой-субстратом. Однако связи, которые образует адсорбционный центр, очень слабые, а значит, каталитическая реакция на этом этапе обратима.

3) Аллостерические центры могут располагаться как в активном центре, так и по всей поверхности фермента в целом. Их функция - регулирование работы энзима. Регулирование происходит с помощью молекул-ингибиторов и молекул-активаторов.

Активаторные белки, связываясь с молекулой фермента, ускоряют его работу. Ингибиторы же, напротив, затормаживают каталитическую активность, причем это может происходить двумя способами: либо молекула связывается с аллостерическим центром в области активного центра фермента (конкурентное ингибирование), либо она присоединяется к другой области белка (неконкурентное ингибирование). считается более действенным. Ведь при этом закрывается место для связывания субстрата с ферментом, причем этот процесс возможен только в случае практически полного совпадения формы молекулы ингибитора и активного центра.

Энзим зачастую состоит не только из аминокислот, но и из других органических и неорганических веществ. Соответственно, выделяют апофермент - белковую часть, кофермент - органическую часть, и кофактор - неорганическую часть. Кофермент может быть представлен улгеводами, жирами, нуклеиновыми кислотами, витаминами. В свою очередь, кофактор - это чаще всего вспомогательные ионы металлов. Активность ферментов определяется его строением: дополнительные вещества, входящие в состав, меняют каталитические свойства. Разнообразные виды ферментов - это результат комбинирования всех перечисленных факторов образования комплекса.

Регуляция работы ферментов

Энзимы как биологически активные вещества не всегда необходимы организму. Биохимия ферментов такова, что они могут в случае чрезмерного катализа навредить живой клетке. Для предотвращения пагубного влияния энзимов на организм необходимо каким-то образом регулировать их работу.

Т. к. ферменты имеют белковую природу, они легко разрушаются при высоких температурах. Процесс денатурации обратим, однако он может существенно повлиять на работу веществ.

pH также играет большую роль в регуляции. Наибольшая активность ферментов, как правило, наблюдается при нейтральных значениях pH (7,0-7,2). Также есть энзимы, которые работают только в кислой среде или только в щелочной. Так, в клеточных лизосомах поддерживается низкий pH, при котором активность гидролитических ферментов максимальна. В случае их случайного попадания в цитоплазму, где среда уже ближе к нейтральной, их активность снизится. Такая защита от «самопоедания» основана на особенностях работы гидролаз.

Стоит упомянуть о значении кофермента и кофактора в составе ферментов. Наличие витаминов или ионов металла существенно влияет на функционирование некоторых специфических энзимов.

Номенклатура ферментов

Все ферменты организма принято называть в зависимости от их принадлежности к какому-либо из классов, а также по субстрату, с которым они вступают в реакцию. Иногда по используют в названии не один, а два субстрата.

Примеры названия некоторых энзимов:

  1. Ферменты печени: лактат-дегидроген-аза, глутамат-дегидроген-аза.
  2. Полное систематическое название фермента: лактат-НАД+-оксидоредукт-аза.

Сохранились и тривиальные названия, которые не придерживаются правил номенклатуры. Примерами являются пищеварительные ферменты: трипсин, химотрипсин, пепсин.

Процесс синтеза ферментов

Функции ферментов определяются еще на генетическом уровне. Т. к. молекула по большому счету - белок, то и ее синтез в точности повторяет процессы транскрипции и трансляции.

Синтез ферментов происходит по следующей схеме. Вначале с ДНК считывается информация о нужном энзиме, в результате чего образуется мРНК. Матричная РНК кодирует все аминокислоты, которые входят в состав энзима. Регуляция ферментов может происходить и на уровне ДНК: если продукта катализируемой реакции достаточно, транскрипция гена прекращается и наоборот, если возникла потребность в продукте, активизируется процесс транскрипции.

После того как мРНК вышла в цитоплазму клетки, начинается следующий этап - трансляция. На рибосомах эндоплазматической сети синтезируется первичная цепочка, состоящая из аминокислот, соединенных пептидными связями. Однако молекула белка в первичной структуре еще не может выполнять свои ферментативные функции.

Активность ферментов зависит от структуры белка. На той же ЭПС происходит скручивание протеина, в результате чего образуются сначала вторичная, а потом третичная структуры. Синтез некоторых ферментов останавливается уже на этом этапе, однако для активизации каталитической активности зачастую необходимо присоединение кофермента и кофактора.

В определенных областях эндоплазматической сети происходит присоединение органических составляющих энзима: моносахаридов, нуклеиновых кислот, жиров, витаминов. Некоторые ферменты не могут работать без наличия кофермента.

Кофактор играет решающую роль в образовании Некоторые функции ферментов доступны только при достижении белком доменной организации. Поэтому для них очень важно наличие четвертичной структуры, в которой соединяющим звеном между несколькими глобулами белка является ион металла.

Множественные формы ферментов

Встречаются ситуации, когда необходимо наличие нескольких энзимов, катализирующих одну и ту же реакцию, но отличающихся друг от друга по каким-либо параметрам. Например, фермент может работать при 20 градусах, однако при 0 градусов он уже не сможет выполнять свои функции. Что делать в подобной ситуации живому организму при низких температурах среды?

Эта проблема легко решается наличием сразу нескольких ферментов, катализирующих одну и ту же реакцию, но работающих в разных условиях. Существуют два типа множественных форм энзимов:

  1. Изоферменты. Такие белки кодируются разными генами, состоят из разных аминокислот, однако катализируют одну и ту же реакцию.
  2. Истинные множественные формы. Эти белки транскрибируются с одного и того же гена, однако на рибосомах происходит модификация пептидов. На выходе получают несколько форм одного и того же фермента.

В результате первый тип множественных форм сформирован на генетическом уровне, когда второй - на посттрансляционном.

Значение ферментов

В медицине сводится к выпуску новых лекарственных средств, в составе которых вещества уже находятся в нужных количествах. Ученые еще не нашли способ стимулирования синтеза недостающих энзимов в организме, однако сегодня широко распространены препараты, которые могут на время восполнить их недостаток.

Различные ферменты в клетке катализируют большое количество реакций, связанных с поддержанием жизнедеятельности. Одними из таких энизмов являются представители группы нуклеаз: эндонуклеазы и экзонуклеазы. Их работа заключается в поддержании постоянного уровня нуклеиновых кислот в клетке, удалении поврежденных ДНК и РНК.

Не стоит забывать о таком явлении, как свертывание крови. Являясь эффективной мерой защиты, данный процесс находится под контролем ряда ферментов. Главным из них является тромбин, который переводит неактивный белок фибриноген в активный фибрин. Его нити создают своеобразную сеть, которая закупоривает место повреждения сосуда, тем самым препятствуя излишней кровопотере.

Ферменты используются в виноделии, пивоварении, получении многих кисломолочных продуктов. Для получения спирта из глюкозы могут использоваться дрожжи, однако для удачного протекания этого процесса достаточно и экстракта из них.

Интересные факты, о которых вы не знали

Все ферменты организма имеют огромную массу - от 5000 до 1000000 Да. Это связано с наличием белка в составе молекулы. Для сравнения: молекулярная масса глюкозы - 180 Да, а углекислого газа - всего 44 Да.

На сегодняшний день открыто более чем 2000 ферментов, которые были обнаружены в клетках различных организмов. Однако большинство из этих веществ до конца еще не изучено.

Активность ферментов используется для получения эффективных стиральных порошков. Здесь энзимы выполняют ту же роль, что и в организме: они разрушают органические вещества, и это свойство помогает в борьбе с пятнами. Рекомендуется использовать подобный стиральный порошок при температуре не выше 50 градусов, иначе может пойти процесс денатурации.

По статистике, 20% людей по всему миру страдает от недостатка какого-либо из ферментов.

О свойствах энзимов знали очень давно, однако только в 1897 году люди поняли, что для сбраживания сахара в спирт можно использовать не сами дрожжи, а экстракт из их клеток.

Ферменты представляют собой высокоспециализи­рованные катализаторы белковой природы, которые уско­ряют химические реакции в животных и растительных организмах. Практически все химические преобразования в живом веществе осуществляются с помощью ферментов. Можно сказать, что ферменты являются движущей силой биохимических процессов в живых организмах.

В зависимости от природы и назначения ферменты мо­гут выделяться в окружающую среду или удерживаться внутри клетки. Они не утрачивают каталитической спо­собности и после выделения из организма (но вне клеток ферменты только расщепляют вещества). На этом осно­вано их использование в пищевой, легкой и медицинской промышленности, сельском хозяйстве и других отраслях народного хозяйства.

Академик И. П. Павлов писал: «Ферменты есть, так сказать, первый акт жизненной деятельности. Все хими­ческие процессы направляются в теле именно этими ве­ществами, они есть возбудители всех химических превра­щений. Все эти вещества играют огромную роль, они обусловливают собою те процессы, благодаря которым проявляется жизнь, они и есть в полном смысле возбуди­тели жизни».

Все ферментативные реакции протекают легко и бы­стро. Катализируемые в организме ферментативные реак­ции не сопровождаются образованием побочных продук­тов, в то время как в органических реакциях, проводимых с помощью искусственных катализаторов, всегда обра­зуется хотя бы один или несколько таких продуктов.

В живых организмах ферменты находятся в упорядо­ченном состоянии. В отдельных структурных образова­ниях клетки ферментативные реакции протекают в строго определенном порядке. Будучи точно скоординированными друг с другом, отдельные циклы реакций обеспечивают жизнедеятельность клеток, органов, тканей и организма в целом. В отдельных частях клетки осуществляются строго определенные биохимические процессы.

Наряду с тем, что ферменты играют решающую роль в живых организмах, им принадлежит видное место в про­изводстве пищевых продуктов и многих изделий других отраслей промышленности, а также в сельском хозяйстве. Производство этилового спирта, пива, вина, чая, хлеба, кисломолочных и многих других продуктов основано на действии ферментов . Ферменты участвуют в созревании и перезревании плодов и овощей, созревании и порче мяса и рыбы, сохраняемости зерна, муки, крупы и других продуктов .

В некоторых случаях присутствие ферментов в про­цессе переработки продуктов бывает нежелательным. При­мером этого может служить реакция ферментативного потемнения плодов и овощей в результате воздействия фермента полифенолоксидазы или прогоркание жиров муки в результате действия присутствующих в зародыше зерна ферментов липазы и липооксидазы.

В настоящее время из биологических объектов выде­лено около 3500 и изучено несколько сотен ферментов. Полагают, что живая клетка может содержать более 1000 различных ферментов. Каждый фермент, как пра­вило, катализирует только один тип химической реакции. Поскольку фермент способен ускорять только одну реак­цию или редко группу реакций одного типа, не влияя при этом на другие, в живых организмах может одновре­менно происходить много различных реакций. Хотя реакции отдельных ферментов протекают независимо друг от друга, тем не менее чаще всего они связаны между собой сложной последовательностью образования промежуточ­ных продуктов. При этом продукт одной реакции может служить субстратом или реагентом другой. Поэтому в одной и той же клетке одновременно происходят сотни и тысячи ферментативных реакций, протекающих в опре­деленной последовательности и в таких количествах, ко­торые обеспечивают нормальное состояние клетки.

Каждый живой организм непрерывно синтезирует фер­менты. В процессе роста организма увеличивается и ко­личество необходимых ферментов. Непропорциональное увеличение или уменьшение количества ферментов могло бы привести к нарушению сложившегося в орга­низме характера обмена веществ.

В живой клетке ферменты могут синтезироваться в раз­ных структурных образованиях – ядре, цитоплазме, хлоропластах, митохондриях, цитоплазматической мембра­не и др.

Как биологические катализаторы ферменты, находясь в ничтожных количествах, способны превращать огром­ные количества субстрата, на который они действуют. Так, фермент слюны амилаза обнаруживает заметную каталитическую активность в разведении 1: 1 000 000, а фермент пероксидаза оказывается активным при разве­дении 1: 5 000 000. Одна молекула каталазы расщепляет в одну минуту 5 миллионов молекул перекиси водо­рода.

Каталитическая активность ферментов во много раз превосходит активность неорганических катализаторов . Так, гидролиз белка до аминокислот в присутствии не­органических катализаторов при температуре 100 °С и выше осуществляется за несколько десятков часов. Та­кой же гидролиз при участии специфических ферментов заканчивается за время меньше часа и протекает при тем­пературе 30 – 40 °С. Полный гидролиз крахмала с помощью кислоты происходит за несколько часов, тогда как на фер­ментативный гидролиз при комнатной температуре за­трачивается несколько минут. Известно, что ионы железа каталитически ускоряют расщепление перекиси водорода на водород и кислород. Но атомы железа, входящие в со­став фермента каталазы, действуют на перекись водорода в 10 миллиардов раз энергичнее обычного железа: 1 мг железа в ферменте способен заменить 10 т неорганиче­ского железа при каталитическом расщеплении перекиси водорода.

Важной характерной особенностью ферментов является специфичность их действия . Специфичность ферментов намного выше, чем у катализаторов неорганической при­роды. Незначительные иногда изменения в химической структуре вещества исключают проявление действия на это вещество специфического фермента. Специфичность действия ферментов проявляется и в тех случаях, когда вещество различается по химической структуре. Так, фер­менты, ускоряющие гидролиз белков, не оказывают ни­какого влияния на гидролиз крахмала, и наоборот.

По степени специфичности ферменты различаются ме­жду собой. Одни ферменты катализируют только един­ственную реакцию, а другие большое число реакций. Так, фермент гликооксидаза катализирует окисление глюкозы, а трипсин гидролизует специфические пептидные связи в белках и простые эфиры аминокислот.

Специфичность действия ферментов иногда приводит к тому, что на органическое соединение оказывает влия­ние не один, а два фермента.

Групповуюспецифичность представляют все ферменты, т. е. они катализируют только особый тип реакции, на­пример окисление моносахаридов или гидролиз олигосахаридов.

Ферменты, будучи специфическими катализаторами, ускоряют как прямую, так и обратную реакцию , т. е. гидролиз и синтез вещества, на которое они действуют. Направленность этого процесса зависит от концентрации исходных и конечных продуктов и условий, в которых протекает реакция. В то же время доказано, что в живой клетке большинство синтезов происходит под действием не тех ферментов, которые катализируют расщепление того или иного соединения.

Химическая природа ферментов

Ферменты делят на два больших класса –одно­компонентные , состоящие только из белка, идвухкомпо­нентные , состоящие из белка и небелковой части, назы­ваемой простетической группой. Белки ферментов могут быть простыми (протеинами) и сложными (протеидами). Активную простетическую группу (активный центр) фермента называют агоном , а белковый носитель фероном . Простетическая группа в составе фермента занимает примерно до 1 % его массы.

Прочность связи простетической группы (агона) с фе­роном у разных ферментов неодинакова. При слабой связи происходит диссоциация фермента на белковую и просте­тическую часть, которую называют коферментом . Каждая из образовавшихся групп проявляет каталитическую ак­тивность. Роль коферментов играют большинство витами­нов – С, В 1 , В 2 , В 6 , В 12 , Н, Е, К и др., а также нуклеотиды, РНК, сульфгидрильные группы, глютатион, атомы железа, меди, магния и т. д. Многие ферменты обладают высокой каталитической спо­собностью только в том случае, если фермент не распа­дается на ферон и агон.

К однокомпонентным относятся многие ферменты, расщепляющие белки или углеводы (пепсин, трипсин, папин, амилаза).

Типичным двухкомпонентным ферментом является α-карбоксилаза, катализирующая расщепление пировиноградной кислоты на углекислый газ и уксусный альдегид:

α-карбоксилаза

СНзСОСООН ----→СНзСНО + СО 2 .

Химическая природа α-карбоксилазы полностью установ­лена, активная группа этого фермента содержит вита­мин В 1 .

Часто коферменты действуют как промежуточные про­дукты ферментативных реакций, участвующих в переносе водорода. К ним относят никотинамидадениндинуклеотид (НАД), глютатион, L-аскорбиновую кислоту, хиноны и цитохромы. Другие коферменты действуют как носители или передатчики фосфатных, аминных и метильных групп.

Молекулярный вес ферментов колеблется в широких пределах – от нескольких тысяч до миллиона , но боль­шинство ферментов имеют большой молекулярный вес .

Многиеферменты содержат металлы , которые прини­мают участие в каталитическом действии. Так, железо входит в состав простетической группы ферментов каталазы и пероксидазы, а также цитохромоксидазы, уча­ствующей в процессах дыхания. Медь входит в состав окислительных ферментов полифенолоксидазы и аскорбинатоксидазы, играющих важную роль в обмене растений.

В чистом виде все ферменты являются кристаллами .

Каталитические реакции осуществляются на поверх­ности молекул ферментов. Фермент-белок образует дис­пергированную фазу, на поверхности которой происходят реакции между веществами, растворенными в дисперсион­ной среде. Поверхность молекулы фермента-белка неодно­родна; на поверхности молекулы имеются разнообразные химически активные группировки, легко связывающие другие соединения.

Свойства ферментов обусловлены в первую очередь наличием особо активных центров на поверхности белко­вой молекулы – радикалов аминокислот или прочно при­соединенных к белку особых химических группировок. Активным центром называют ту часть фермента, которая соединяется с веществом (субстратом) в процессе каталитического действия .

Глава IV. ФЕРМЕНТЫ

§ 11. Общие представления о ферментах

Ферменты, или энзимы, – это биологические катализаторы, ускоряющие химические реакции. Общее число известных ферментов составляет несколько тысяч. Практически все химические реакции, протекающие в живых организмах, осуществляются при их участии. Ферменты ускоряют химические реакции в 10 8 – 10 20 раз. Они играют решающую роль в важнейших биологических процессах: в обмене веществ, в мышечном сокращении, в обезвреживании чужеродных веществ, попавших в организм, в передаче сигнала, в транспорте веществ, свертывании крови и многих других. Для клетки ферменты абсолютно необходимы, без них клетка, а следовательно, и жизнь, не могли бы существовать.

Слово фермент произошло от латинского fermentum – закваска, энзим в переводе с греческого означает «в дрожжах». Первые сведения о ферментах были получены еще в XIX веке, но только в начале XX века были сформулированы теории действия ферментов, и лишь в 1926 году Джеймс Самнер впервые получил очищенный фермент в кристаллическом виде – уреазу Уреаза катализирует гидролитическое расщепление мочевины:

Самнер обнаружил, что кристаллы уреазы состоят из белка. В 30-е гг. прошлого столетия Джон Нортон с коллегами получили в кристаллическом виде пищеварительные ферменты трипсин и пепсин, а также установили, что они, как и уреаза, по своей природе являются белками. В результате этих исследований сформировалась точка зрения о белковой природе ферментов, которая многократно впоследствии подтверждалась. И только значительно позже у некоторых РНК была обнаружена способность осуществлять катализ; такие РНК получили название рибозимов, или РНК-ферментов. Рибозимы составляют незначительную часть от всех ферментов, поэтому мы далее будем говорить о ферментах белках.

Интересно знать! Рибонуклеаза Р – фермент, расщепляющий РНК, - состоит из двух компонентов РНК и полипептида. При высокой концентрации ионов магния наличие белкового компонента становится не нужным. Катализировать реакцию может и одна РНК.

Сходства и различия ферментов с небелковыми катализаторами

Ферменты имеют ряд общих свойств с химическими небелковыми катализаторами:

а) не расходуются в процессе катализа и не претерпевают необратимых изменений;

b) ускоряют как прямую, так и обратную реакции, не смещая при этом химического равновесия;

c) катализируют только те реакции, которые могут протекать и без них;

d) повышают скорость химической реакции за счет снижения энергии активации (рис. 26).

Химическая реакция протекает потому, что некоторая доля молекул исходных веществ обладает большей энергией по сравнению с другими молекулами, и этой энергии достаточно для достижения переходного состояния. Ферменты, как и химические катализаторы, снижают энергию активации, взаимодействуя с исходными молекулами, в связи с этим число молекул, способных достичь переходного состояния, возрастает, вследствие этого увеличивается и скорость ферментативной реакции.

Рис.26. Влияние фермента на энергию активации

Ферменты, несмотря на определенное сходство с небелковыми химическими катализаторами, отличаются от них по ряду параметров:

a) ферменты обладают более высокой эффективностью действия, например, фермент каталаза, катализирующий реакцию: 2Н 2 О 2 = 2Н 2 О + О 2 , ускоряет ее приблизительно в 10 12 раз, эффективность же платины как катализатора этой реакции приблизительно в один миллион раз ниже;

b) ферменты обладают более высокой специфичностью в сравнении с небелковыми катализаторами, они ускоряют более узкий круг химических реакций, например, уже упомянутый фермент уреаза катализирует только одну реакцию – гидролиз мочевины, протеазы способны расщеплять только белки, но не действуют на углеводы, липиды, нуклеиновые кислоты и другие вещества. С другой стороны, платина способна катализировать различные реакции (гидрирования, дегидрирования, окисления), она катализирует как реакцию получения аммиака из азота и водорода, так и гидрирование непредельных жирных кислот (эту реакцию используют для получения маргарина);

c) ферменты эффективно действуют в мягких условиях: при температуре 0 – 40 о С, при атмосферном давлении, при значениях рН, близких к нейтральным, в более жестких условиях ферменты денатурируют и не проявляют своих каталитических качеств. Для эффективного химического катализа часто требуются жесткие условия – высокое давление, высокая температура и наличие кислот или щелочей. Например, синтез аммиака в присутствии катализаторов проводят при 500 – 550 о С и давлении 15 – 100 МПа;

d) активность ферментов в сравнении с химическими катализаторами может более тонко регулироваться различными факторами. В клетке существует множество веществ как увеличивающих, так и снижающих скорости ферментативных реакций.

Структура ферментов

Относительная молекулярная масса ферментов может колебаться от 10 4 до 10 6 и более. Ферменты – это, как правило, глобулярные белки. Одни ферменты являются простыми белками и состоят только из аминокислотных остатков (рибонуклеаза, пепсин, трипсин), активность других зависит от наличия в их составе дополнительных химических компонентов, так называемых кофакторов . В качестве кофакторов могут выступать ионы металлов Fe 2+ , Mn 2+ , Mg 2+ , Zn 2+ или сложные органические вещества, которые называют также коферментами . В состав многих коферментов входят витамины. В качестве примера на рис. 27 приведена структура кофермента А (КоА).

Рис. 27. Кофермент А

Если кофермент прочно связан с ферментом, то в этом случае он представляет простетическую группу сложного белка. Кофакторы могут выполнять следующие функции:

a) участие в катализе;

b) осуществление взаимодействия между субстратом и ферментом;

c) стабилизация фермента.

Каталитически активный комплекс фермент – кофактор называют холоферментом . Отделение кофактора от холофермента приводит к образованию неактивного апофермента :

Холофермент апофермент + кофактор.

В молекуле фермента присутствует активный центр . Активный центр – это область молекулы фермента, в которой происходит связывание субстрата и его превращение в продукт реакции. Размеры фермента, как правило, значительно превышают размеры их субстратов. Активный центр занимает лишь незначительную часть молекулы фермента (рис. 28).

Рис. 28. Относительные размеры молекулы фермента и субстрата

Активный центр образуют аминокислотные остатки полипептидной цепи. В двухкомпонентных ферментах в состав активного центра может входить и небелковый компонент. В молекуле фермента присутствуют аминокислотные остатки, которые не участвуют в катализе и во взаимодействии с субстратом. Однако они весьма существенны, так как формируют определенную пространственную структуру фермента. Наиболее часто в составе активного центра содержатся полярные (серин, треонин, цистеин) и заряженные (лизин, гистидин, глутаминовая и аспарагиновая кислоты) аминокислотные остатки. Аминокислотные остатки, образующие активный центр, в полипептидной цепи находятся на значительном расстоянии и оказываются сближенными при формировании третичной структуры (рис. 29).

Рис. 29. Активный центр

Например, в активный центр химотрипсина (пищеварительного фермента, расщепляющего белки) входят остатки гистидина – 57, аспарагиновой кислоты – 102, серина – 195 (цифрами указаны порядковые номера в полипептидной цепи). Несмотря на удаленность друг от друга этих аминокислотных остатков в полипептидной цепи, в пространстве они расположены рядом и формируют активный центр фермента.

Интересно знать! При иммунизации животных веществом, являющимся аналогом переходного состояния какого либо субстрата, могут быть получены антитела, способные катализировать преобразование субстрата, такие антитела получили название каталитических или абзимов. Используя такой подход, можно направленно получать катализаторы практически для любой реакции.

Некоторые ферменты синтезируются в неактивной форме в виде так называемых проферментов , которые затем под действием определенных факторов активируются. Например, пищеварительные ферменты химотрипсин и трипсин образуются в результате активации химотрипсиногена и трипсиногена.

Номенклатура и классификация ферментов

Часто названия ферментов образуются путем прибавления суффикса к названию субстрата, на который он воздействует. Например, названия фермента уреаза произошло от английского слова urea – мочевина, протеазы (ферменты, расщепляющие белки) – от слова протеин. Многие ферменты имеют тривиальные названия, не связанные с названием их субстратов, например, пепсин и трипсин. Существуют и систематические названия ферментов, включающие названия субстратов и отражающие характер катализируемой реакции.

Интересно знать! Фермент, катализирующий реакцию

АТФ + D -глюкоза АДФ + D -глюкоза – 6 – фосфат,

носит систематическое название АТФ: гексоза 6-фосфотрансфераза.

В соответствии с катализируемой реакцией все ферменты делятся на 6 классов.

1. Оксидоредуктазы . Катализируют окислительно-восстановительные реакции

2. Трансферазы . Катализируют реакции межмолекулярного переноса групп:

АB + C = AC + B.

3. Гидролазы . Катализируют реакции гидролиза:

АВ + Н 2 О = АОН + ВН.

4. Лиазы . Катализируют реакции присоединения групп по двойным связям и обратные реакции.

5. Изомеразы . Катализируют реакции изомеризации (внутримолекулярный перенос групп).

6. Лигазы . Катализируют соединение двух молекул, сопряженное с гидролизом АТФ.

В свою очередь каждый класс подразделяют на подклассы, подклассы – на подподклассы. Ферментам, образующим подподклассы, присваивается порядковый номер. В итоге каждый фермент имеет свой четырехзначный номер.

Ферментами называются белковые вещества (см. Белки), ускоряющие жизненно важные химические реакции в клетках организмов. Являясь катализаторами, они образуют с исходными веществами неустойчивые промежуточные соединения: эти соединения, распадаясь, дают конечный продукт данной реакции и освобождают ферменты.

Действие некоторых ферментов легко наблюдать в опыте. Так, фермент каталаза значительно ускоряет разложение пероксида водорода Н2О2 на воду и кислород. Это жизненно важная реакция, так как пероксид водорода образуется в результате обмена веществ в клетке и сам по себе оказывает на клетку вредное действие. Каталаза содержится почти во всех клетках животных и растительных организмов.

Известно очень много ферментов, и каждый из них ускоряет только одну какую-либо реакцию или группы однотипных реакций. Эту особенность ферментов называют специфичностью или селективностью (избирательностью) действия. Направленность их действия позволяет организму быстро и точно выполнять сложную химическую работу по перестройке молекул пищевых веществ в нужные ему соединения.

Уже во рту во время пережевывания пищи под влиянием фермента амилазы сложные сахара, в частности крахмал, начинают разлагаться на менее сложные. Эта работа в дальнейшем будет продолжена в кишечнике ферментами карбогидразами. В желудке и кишечнике разложению с участием пепсина, трипсина, химотрипсина подвергаются белки пищи. Жиры разлагаются на глицерин и карбоновые кислоты (или их соли) под влиянием ферментов, называемых липазами. Все эти реакции разложения протекают по одному принципу: разрывается определенная химическая связь в молекуле белка, углевода или жира, и освободившиеся валентности используются для присоединения групп ОН- и иона Н+ из молекул воды. Происходит процесс гидролиза. Для молекулы белка эту реакцию можно представить так:

R 1 -CO-NH-R 2 - + НОН = -R 1 COOH + NH 2 -R 2 -

Известны ферменты, оказывающие иное действие на молекулы. Некоторые из них ускоряют окислительно-восстановительные реакции: они способствуют переносу электрона от одной молекулы (окисляемой) к другой (восстанавливаемой). Существуют ферменты, соединяющие молекулы друг с другом; ферменты, переносящие большие и сложные группы атомов от одной молекулы к другой, и т. д.

Располагая богатым набором ферментов-катализаторов, клетка разлагает молекулы пищевых белков, жиров и углеводов на небольшие фрагменты и из них заново строит белковые и иные молекулы, которые будут точно соответствовать потребностям данного организма. Вот почему великий русский физиолог И. П. Павлов назвал ферменты носителями жизни.

Активность большего числа ферментов определяется строением белковой молекулы. Определенное пространственное расположение остатков аминокислот, образующих цепеобразную молекулу белка (полипептидная цепь, см. Пептиды), создает условия для протекания катализируемой ферментом реакции. Длинная цепочка остатков аминокислот свернута в сложный клубок так, что аминокислоты, расположенные в цепи далеко друг от друга, могут оказаться соседями. Некоторые из возникших таким путем группировок остатков аминокислот проявляют каталитические свойства и образуют активный центр фермента.

Пепсин, химотрипсин, принимающие участие в пищеварении, могут служить примером ферментов, в которых активная группа является частью молекулы белка.

Другие ферменты для проявления активности нуждаются в веществах небелковой природы - так называемых кофакторах. Кофактором может быть ион металла (цинка, марганца, кальция и др.) или молекула органического соединения; в последнем случае ее часто называют коферментом. Иногда для действия фермента бывает необходимо присутствие как ионов металлов, так и коферментов. В отдельных случаях кофермент очень прочно соединен с белком; это наблюдается, например, у фермента каталазы, где кофермент представляет собой комплексное соединение железа (гем). В некоторых ферментах коферменты - это вещества, близкие по строению молекулы к витаминам. Витамины, таким образом, являются предшественниками коферментов. Так, из витамина В1 (тиамина) в клетках образуется тиамин-пирофосфат - кофермент важного фермента (его называют декарбоксилаза), превращающего пиро-виноградную кислоту в оксид углерода (IV) и ацетальдегид; из витамина В2 получаются коферменты флавиновых ферментов, осуществляющих в клетках перенос электронов - одну из стадий окисления пищевых веществ; из витамина В12 образуются коферменты, необходимые в процессе кроветворения, и т. д.

В последние годы широко используются так называемые иммобилизованные (неподвижные) ферменты. Для ускорения нужной реакции их закрепляют на поверхности инертного «носителя». В качестве его обычно используют силикагель - пористую белую массу, по составу - оксид кремния (IV) -или полимерные материалы. Через эту массу фильтруют исходные вещества. Фермент быстро и точно производит высокоспецифичную «химическую работу», в результате которой получаются продукты, почти не содержащие посторонних соединений.

Ферменты, Фермент-субстратный комплекс и Энергия активации

Важнейшей функцией белков является каталитическая, ее выполняет определенный класс белков – ферменты. В организме выявлено более 2000 ферментов. Ферменты – это биологические катализаторы белковой природы, которые значительно ускоряют биохимические реакции. Так, ферментативная реакция происходит в 100-1000 раз быстрее, чем без ферментов. Многими свойствами они отличаются от катализаторов, использующихся в химии. Ферменты ускоряют реакции при обычных условиях, в отличие от химических катализаторов.

В организме человека и животных за несколько секунд происходит сложная последовательность реакций, для проведения которой с применением обычных химических катализаторов требуется продолжительное время (дни, недели или даже месяцы). В отличие от реакций без ферментов, в ферментативных не образуются побочные продукты (выход конечного продукта – почти 100 %). В процессе преобразований ферменты не разрушаются, поэтому небольшое их количество способно катализировать химические реакции большого количества веществ. Все ферменты – белки и имеют характерные для них свойства (чувствительность к изменениям pH среды, денатурация при высоких температурах и т. п.).

Ферменты по химической природе разделяют на однокомпонентные (простые) и двухкомпонентные (сложные) .

Однокомпонентные (простые)

Однокомпонентные ферменты состоят только из белков. К простым принадлежат преимущественно ферменты, которые осуществляют реакции гидролиза (пепсин, трипсин, амилаза, папаин и т. п.).

Двухкомпонентные (сложные)

В отличие от простых, сложные ферменты содержат небелковую часть – низкомолекулярный компонент. Белковая часть называется апоферментом (носителем фермента), небелковая – коферментом (активной или простетичной группой). Небелковая часть ферментов может быть представлена или органическими веществами (например, производными витаминов, НАД, НАДФ, уридиновыми, цитидиловыми нуклеотидами, флавинами), или неорганическими (например, атомами металлов – железа, магния, кобальта, меди, цинка, молибдена и т. п.).

Не все необходимые коферменты могут синтезироваться организмами и потому должны поступать с пищей. Отсутствие витаминов в пище человека и животных служит причиной потери или снижения активности тех ферментов, в состав которых они входят. В отличие от белковой части органические и неорганические коферменты очень стойкие к неблагоприятным условиям (высокой или низкой температурам, излучению и т.п.) и могут отделяться от апофермента.

Характеризуются ферменты высокой специфичностью: могут превращать лишь соответствующие субстраты и катализировать лишь определенные реакции одного типа. Определяет ее белковый компонент, но не вся его молекула, а лишь ее небольшой участок – активный центр . Структура его отвечает химическому строению веществ, которые вступают в реакцию. Для ферментов характерно пространственное соответствие между субстратом и активным центром. Они подходят друг другу, как ключ замку. Активных центров может быть несколько в одной молекуле фермента. Активный центр, то есть место соединения с другими молекулами, есть не только у ферментов, а и у некоторых других белков (гем в активных центрах миоглобина и гемоглобина). Протекают ферментативные реакции в виде последовательных этапов – от нескольких до десятков.

Активность сложных ферментов проявляется лишь тогда, когда белковая часть соединяется с небелковой. Также их активность проявляется лишь при определенных условиях: температуры, давления, pH среды и т. п. Ферменты разных организмов наиболее активны при температуре, к которой приспособлены эти существа.

Фермент-субстратный комплекс

Связи субстрата с ферментом образуют фермент-субстратный комплекс.

При этом он изменяет не только собственную конформацию, а и конформацию субстрата. Ферментативные реакции могут тормозиться собственными продуктами реакции – при накоплении продуктов скорость реакции снижается. Если продуктов реакции мало, то фермент активируется.

Вещества, проникающие в область активного центра и блокирующие каталитические группы ферментов, называются ингибиторами (от лат. inhibere – сдерживать, останавливаться). Активность ферментов снижают ионы тяжелых металлов (свинец, ртуть и т.п.).

Ферменты уменьшают энергию активации, то есть уровень энергии, необходимый для придания реакционной способности молекулам.

Энергия активации

Энергия активации – это энергия, которая расходуется на разрыв определенной связи для химического взаимодействия двух соединений. Ферменты имеют определенное расположение в клетке и организме в целом. В клетке ферменты содержатся в определенных ее частях. Многие из них связаны с мембранами клеток или отдельных органелл: митохондрий, пластид и т. п.

Биосинтез ферментов организмы способны регулировать. Это позволяет поддерживать относительно постоянный их состав при значительных изменениях условий окружающей среды и частично видоизменять ферменты в ответ на такие изменения. Действие разных биологически активных веществ–гормонов, лекарственных препаратов, стимуляторов роста растений, ядов и т. п. – заключается в том, что они могут стимулировать или подавлять тот или иной ферментативный процесс.

Некоторые ферменты принимают участие в активном транспорте веществ через мембраны.

Для названий большинства ферментов характерен суффикс -аз- . Его прибавляют к названию субстрата, с которым взаимодействует фермент. Например, гидролазы – катализируют реакции расщепления сложных соединений на мономеры за счет присоединения молекулы воды в месте разрыва химической связи молекулах белков, полисахаридов, жиров; оксидредуктазы – ускоряют окислительно-восстановительные реакции (перенесение электронов или протонов); изомеразы – способствуют внутренней молекулярной перестройке (изомеризации), преобразованию изомеров и т. п.