Механизм влияния температуры на скорость ферментативной реакции. Ферментативных реакций кинетика

Основы кинетики ферментативных процессов были заложены в трудах Михаэлиса и Ментен, в частности в уравнении ферментосубстратного комплекса.

Во кинетикой ферментативных процессов понимают раздел науки о ферментах, изучающая зависимость скорости ферментативной реакции от химической природы субстрата, условий среды, а также посторонних факторов, которые влияют на ход реакции.
Когда концентрация субстрата достаточно велика, то она уже не влияет на скорость, ибо последняя стала максимальной (свидетельство того, что весь фермент связан с субстратом).
Исследование активности ферментов проводят при больших концентрациях субстратов (нулевой порядок реакции). В этих условиях все изменения скорости реакции будут зависеть только от количества фермента. Но в живых клетках концентрации субстрата, как правило, далеки от насыщения ферментов. Это означает, что ферменты в клетках используют не всю свою мощь.
Зависимость скорости ферментативной реакции от количества фермента
Если субстрат находится в избытке, что практически имеет место в экспериментальных условиях, то скорость реакции пропорциональна количеству фермента. Но, если количество фермента увеличить настолько, чтобы субстрат не является в избытке, то такая пропорциональность нарушится.
Скорость ферментативной реакции линейно возрастает с увеличением содержания фермента. Но чрезмерный рост концентрации фермента приводит к тому, что субстрата становится меньше, чем фермента и это проявляется уменьшением нарастания скорости реакции.
Воздействие на ферменты модуляторов
Активность ферментов может изменяться не только за изменением количества субстрата, фермента, рН среды, но и под влиянием различных химических веществ. Вещества, влияющие на ход ферментативных реакций, называются их модуляторами, или эффекторами. Они делятся на активаторы и ингибиторы, то есть под их влиянием реакция может ускоряться или замедляться. Изучение действия модуляторов ферментов имеет практическое значение, так как позволяет глубже понять природу действия ферментов. Некоторые из них играют роль естественных регуляторов метаболизма. Существует много типов модуляторов активности ферментов, отличающихся между собой по строению и механизму действия.
активаторы ферментов
Роль активаторов могут играть как органические (желчные кислоты, ферменты и др.), Так и неорганические вещества (ионы металлов, анионы). Нередко встречаются случаи, когда одна и та же вещество в отношении одного фермента является активатором, а в отношении другой – ингибитором. Ионы металлов бывают весьма специфическими активаторами для определенных ферментов. Они могут способствовать присоединению субстрата к ферменту, участвовать в формировании третичной структуры фермента или быть частью активного центра. Ионы многих металлов (натрия, калия, кальция, магния, железа, меди и др.) Являются обязательными компонентами, которые необходимы для нормального функционирования многих ферментов. Иногда для некоторых ферментов нужно несколько различных ионов. Например, для Na +, К + -АТФазы, осуществляющей транспорт ионов через плазматическую мембрану, необходимые для нормального функционирования ионы калия, натрия и магния.
Металлы могут входить в состав простетической группы ферментов. Например, железо в составе порфириновых соединений является необходимым компонентом ферментов цитохромной системы, каталазы и пероксидазы; кобальт входит в простетической группы гомоцистеинтрансметилазы и метилмалонилизомеразы ферментов; медь – до аскорбатоксидазы; марганец является активатором изоцитратдегидрогеназы.
Металлоферментов, содержащие в своем составе преимущественно двух- и трехвалентные ионы образуют с остатками функциональных групп аминокислот и соответствующими ионами клешневидные хелатные соединения. В таких соединениях ионы оказывают ферментам определенной пространственной структуры и способствуют образованию ферментосубстратних комплексов. Некоторые ферменты при отсутствии металлов просто не проявляют ферментативной действия. Например, карбоангидразы без цинка не имеет свойств фермента и действие цинка нельзя заменить никаким другим ионом.
Существует группа ферментов, активируются с помощью цАМФ. Такие ферменты называются протеинкиназы. Механизм их активации такой. Протеинкиназа состоит из двух субъединиц: каталитической, содержащий активный центр, и регуляторной, в которой расположен центр связывания цАМФ. Фермент неактивен, потому что его активный центр закрыт. Он освобождается только при взаимодействии ц-АМФ и регуляторного центра фермента.

Скорость ферментативных реакций зависит от концентрации суб-

страта. Эта зависимость носит сложный характер, который для определенных ферментов описывается параболической кривой (рис. 29).

Рисунок 29 – Зависимость скорости ферментативной реакции

от концентрации субстрата

Параболический характер зависимости объясняется тем, что при взаимодействии фермента с субстратом происходит образование фермент-субстратного комплекса. Первоначально при увеличении концентрации субстрата происходит возрастание концентрации фермент-субстратных комплексов в реакционной смеси, что проявляется в параллельном повышении скорости реакции. При определенной концентрации субстрата (насыщающей) возникает своеобразное “насышение” всех активных центров молекул ферментов в реакционной смеси. Скорость ферментативной реакции при насыщающей концентрации становится максимальной. При дальнейшем повышении содержания субстрата в реакционной смеси она не изменяется.

Из графика зависимости скорости ферментативной реакции от концентрации субстрата вычисляются два важных показателя:

1. Максимальная скорость реакции (V max). Она определяется как скорость реакции при насыщающей концентрации субстрата. Величина макси-мальной скорости отражает каталитическую мощность фермента. Ферменты, обладающие большей величиной V max , являются более мощными катализаторами. В единицу времени они катализируют превращение большего количества молекул субстрата. Величина максимальной скорос-ти выражается числом оборотов фермента. Число оборотов оценивается количеством молекул субстрата, превращаемых ферментом в единицу времени (с -1). Для большинства ферментов число оборотов находится в пределах 10 4 . В тоже время существуют ферменты, для которых число оборотов значительно больше (600000 – для карбангидразы) или меньше этой величины (100 – для химотрипсина).

2. Константа Михаэлиса (К м). Константа Михаэлиса представляет собой концентрацию субстрата, при которой скорость реакции составляет половину максимальной. Величина К м отражает сродство фермента к суб-страту. Чем больше эта величина, тем меньшее сродство к субстрату имеет фермент. К м выражается в молях субстрата. Так, величина К м по отношению к глюкозе у фермента глюкокиназы составляет 10 ммоль, а для гексокиназы – 0,01 ммоль. Гексокиназа проявляет большее сродство к глюкозе, чем глюкокиназа, при одинаковой концентрации субстрата она с большей скоростью катализирует фосфорилирование глюкозы.



На основании математического анализа кривой зависимости скорости ферментативной реакции от концентрации субстрата Л. Михаэлисом и М. Ментен (1913) была выведена формула, позволяющая оценить взаимоотношение между скоростью реакции, максимальной скоростью и константой Михаэлиса. В настоящее время она определяется как уравнение Михаэлиса – Ментен.

V o = V max [S ]/K м + [S ],

где V o – скорость реакции, S – концентрация субстрата.

Общие свойства ферментов

Несмотря на существование определенных различий в строении, функции и внутриклеточной локализации, для ферментов характерен целый ряд общих свойств. К таковым относятся зависимость проявления их каталитической активности от температуры (термолабильность) и рН среды, а также субстратная специфичность.

Характерным свойством ферментов является термолабильность . Это явление может быть проиллюстрировано графиком зависимости скорости ферментативной реакции от температуры реакционной смеси (рис. 30).

Рисунок 30 – Зависимость скорости ферментативной реакции от температуры

реакционной среды (t опт – оптимальная температура; V – скорость реакции)



Как видно из представленного графика при температуре, близкой к 4 о С ферментативные реакции практически не идут. По этой причине биологические объекты могут определенное время храниться перед проведением биохимических исследований на холоде. Именно холод позволяет сохранять пищевые продукты от аутолиза (самопереваривания).

Повышение температуры сопровождается повышением скорости ферментативной реакции. Причиной этого является повышение кинетичес-кой энергии молекул субстрата и фермента, способствующее повышению скорости взаимодействия между ними. Подобное явление наблюдается до температуры, которая соответствует температурному оптимуму фермента. Температурный оптимум фермента соответствует той температуре, при которой скорость ферментативной реакции максимальна. Для ферментов теплокровных животных оно обычно составляет 28 о С или 37 о С.

Дальнейшее повышение температуры реакционной смеси приводит к постепенному понижению скорости ферментативной реакции. Это явление обусловлено процессом термоденатурации полипептидной цепи белка. Денатурация сопровождается изменением структуры активного центра фермента, следствием чего и становится понижение сродства фермента к суб-страту. При температуре выше 55 о С большинство ферментов полностью утрачивает каталитические свойства (инактивируется). В этой связи прогревание до 55–56 о С широко используется для процедуры пастеризации, которая повышает срок хранения пищевых продуктов (молока и др.).

Большое влияние на скорость ферментативной реакции оказывает рН среды. Как видно из представленного на рис. 31 графика, он напоминает по форме график зависимости скорости ферментативной реакции от температуры.

Рисунок 31 – Зависимость скорости (V ) ферментативной реакции

от рН среды (рН опт – рН оптимум фермента)

Резкое снижение скорости ферментативной реакции при экстремальных значениях рН связано с явлением денатурации полипептидной цепи белковой молекулы под действием кислот и щелочей. Фермент проявляет максимальную каталитическую мощность при величине рН, которая определяется термином рН-оптимум фермента. Большинство известных ферментов имеет оптимум рН в области от 5,0 до 7,5. Вместе с тем существует немало примеров ферментов, у которых величина рН-оптимума смещена в область кислых или щелочных значений рН. К таким ферментам относятся:

Причина существования зависимости скорости ферментативных реакций от рН связана с тем, что величина рН среды оказывает выраженное влияние на степень ионизации функциональных групп субстрата. Особенности ионизации молекулы янтарной кислоты при различной кислотности среды (рН):

Одновременно рН среды оказывает влияние и на степень ионизации аминокислотных радикалов, входящих в состав активного центра фермента:

Если образование фермент-субстратного комплекса стабилизируется за счет электростатических взаимодействий, то становится понятной роль рН в обеспечении оптимальных условий для течения ферментативной реакции (рис. 24).

Скорость реакций катализируемых ферментами, во взаимодействии которых с субстратами не имеют существенного значения электростали-ческие взаимодействия, в меньшей мере зависит от рН среды. На рис. 32 представлена зависимость скорости гидролиза белков папаином. Во взаимодействии этого фермента с субстратом основное значение приобретают гидрофобные взаимодействия. Как видно из представленного графика, у папаина вообще отсутствует четко выраженный рН-оптимум.

Рисунок 32 – Влияние рН на скорость гидролиза белка папаином.

Ферменты обладают определенной специфичностью в отношении субстратов. Под специфичностью подразумевается свойство ферментов катализировать превращение одного или группы сходных по строению субстратов. Существует несколько видов специфичности ферментов.

· Абсолютная специфичность. Под ней подразумевается способность фермента катализировать превращение только одного субстрата. К ферментам, обладающим абсолютной специфичностью, относятся аргиназа, уриказа рестриктазы и др.

· Относительная специфичность . Под ней подразумевается способность фермента катализировать превращение группы сходных по строению субстратов (т.н. протеолитические ферменты гидролизуют различные белки, липаза сложные эфиры глицерина и высших жирных кис-лот, гексокиназа фосфорилирует разные моносахариды). При этом специфичность определяется тем, что фермент оказывает влияние только на определенный тип связи (протеолитические ферменты гидролизуют пептидную связь, липаза гидролизует сложную эфирную связь и т.д.).

· Стереоспецифичность. Под этим термином подразумевается свойство фермента катализировать превращение одного стереоизомера субстрата. Так, ферменты, участвующие в превращении моносахаридов, проявляют специфичность по отношению к их D -стереоизомерам, а ферменты, участвующие в превращении аминокислот, – к их L -стерео-изомерам.

Активность ферментов

Особенностью ферментов как катализаторов является то, что они под действием разных внешних факторов способны изменять свои каталитические свойства. Мерой проявления силы каталитического действия ферментов является их активность . Способность ферментов менять свою активность в различных условиях имеет большой биологический смысл. Это свойство позволяет живой клетке приспосабливать состояние обменных процессов под сиюминутные потребности клеток, которые могут существенно изменяться под влиянием различных внешний факторов.

Определение активности ферментов играет важную роль их характеристике. Существуют некоторые общие принципы количественного определения активности ферментов. Активность ферментов можно определять так:

· либо по скорости накопления в реакционной смеси, где находится фермент продукта реакции;

· либо по скорости исчезновения из реакционной смеси субстрата ферментативной реакции.

Оба эти подхода равнозначны и могут быть использованы на практике. Однако при определении активности фермента необходимо соблюдать следующие условия: в реакционной смеси, в которой проводится определение активности фермента,

· температура должна соответствовать температурному оптимуму данного фермента;

· рН среды должна соответствовать рН-оптимуму данного фермента;

· концентрация субстрата должна быть не меньше насыщающей;

· должны присутствовать кофакторы, если таковые у этого фермента существуют;

· должны присутствовать активаторы фермента.

Таким образом, активность фермента определяется в оптимальных для него условиях. В этих условиях активность фермента пропорциональна его содержанию в исследуемом образце и поэтому может использоваться для косвенной оценки его концентрации.

Активность фермента количественно выражается в единицах активности . За одну единицу активности фермента (ЕД) принимается активность фермента, при которой под его влиянием происходит образование 1 мкмоль продукта реакции (или исчезновение 1 мкмоль суб-страта) в минуту . В системе СИ за единицу ферментативной активности принят катал (кат). 1 катал соответствует активности фермента, при которой происходит образование одного моля продукта реакции (исчезновение одного моля субстрата) за секунду.

Для характеристики ферментов используют также величину удельной активности. Эта единица отражает активность фермента в расчете на единицу его массы и выражается в мкмоль/мин мг белка. Единицы удельной активности используют для оценки чистоты ферментных препаратов. Чем выше величина удельной активности, тем чище ферментный препарат.

Кинетика ферментативных реакций. Этот раздел энзимологии изучает влияние хими ческих и физических факторов на скорость ферментативной реакции. В 1913 г. Михаэлис и Ментен создали теорию ферментативной кинетики, исходя из того, что фермент (Е) вступает во взаимодействие с субстратом (S) с образованием промежуточного ферментсубстратного комплекса (ЕS), который далее распадается на фермент и продукт реакции по уравнению:

Каждый этап взаимодействия субстрата с ферментом характеризуется своими константами скорости. Отношение суммы констант скорости распада ферментсубстратного комплекса к константе скорости образования ферментсубстратного комплекса называется константой Михаелиса (Кm). Она определят сродство фермента к субстрату. Чем ниже константа Михаелиса, тем выше сродство фермента к субстрату, тем выше скорость ка тализируемой им реакции. По величине Кm каталитические реакции можно поделить на быстрые (Кm 106 моль/л и меньше) и медленные (Кm 102 до 106).

Скорость ферментативной реакции зависит температуры, реакции среды, концентрации реагирующих веществ, количества фермента и других факторов.

1. Рассмотрим зависимость скорости реакции от количест ва фермента. При условии избытка субстрата скорость реакции пропорциональна количеству фермента, но при избыточном количестве фермента прирост скорости реакции будет сни жаться, поскольку уже не будет хватать субстрата.

2. Скорость химических реакций пропорциональна концентрации реагирующих ве ществ (закон действующих масс). Этот закон применим и для ферментативных реакций, но с определенными ограничениями. При постоян

ных количествах фермента скорость реакции действительно пропорциональна концентрации субстрата, но, только в области низких концен траций. При высоких концентрациях субстрата наступает насыщение фермента субстратом, то есть наступает такой момент, когда уже все мо лекулы фермента задействованы в каталитическом процессе и прироста скорости реакции не будет. Скорость реакции выходит на макси мальный уровень (Vmax) и дальше уже не зависит от концентрации субстрата. Зависимость скорости реакции от концентрации субстрата следует определять в той части кривой, кото рая ниже Vmax. Технически легче определить не максимальную скорость, а ½ Vmax. Этот параметр является главной характеристикой ферментативной реакции и дает возможность определить константу Михаелиса (Кm).

Кm (константа Михаэлиса) – это такая концентрация субстрата, при которой ско рость ферментативной реакции равна по ловине максимальной. Отсюда выводится уравнение Михаэлиса–Ментена скорости ферментативной реакции.

А). Зависимость скорости ферментативной реакции от количества ферментов

При проведении ферментативной реакции в условиях избытка субстрата скорость реакции будет зависеть от концентрации фермента. Графическая зависимость такой реакции имеет вид прямой линии.Однако количество фермента часто невозможно определить в абсолютных величинах, поэтому на практике пользуются условными величинами, характеризующими активность фермента: одна международная единица активности (ME) соответствует такому количеству фермента, которое катализирует превращение 1 мкмоль субстрата за 1 мин при оптимальных условиях проведения ферментативной реакции. Оптимальные условия индивидуальны для каждого фермента и зависят от температуры среды, рН раствора, при отсутствии активаторов и ингибиторов.

Зависимость накопления продукта (А) и убыли субстрата (Б) от времени (продолжительности) протекания реакции . Скорость ферментативной реакции определяется изменением концентрации продукта или субстрата за единицу времени. В реакциях, катализируемых ферментами 1 и 2, начальная скорость реакции, катализируемой ферментом 1, ниже, чем скорость реакции, катализируемой ферментом 2, так как тангенс угла наклона касательной к кривой профиля реакции, проведённой из "О" точки у второго фермента выше, как в случае накопления продукта (А), так и убыли субстрата (Б). Скорость в любой момент времени t определяется тангенсом угла наклона касательной к профилю реакции в момент времени t. Период времени ферментативной реакции характеризуется линейным накоплением продукта (или убылью субстрата) в зависимости от длительности реакции. Период ферментативной реакции характеризуется нелинейным накоплением продукта (или убылью субстрата) в зависимости от времени реакции.

Количество единиц активности nME определяют по формуле:

Б). Зависимость скорости ферментативной реакции от температуры среды

Повышение температуры до определённых пределов оказывает влияние на скорость ферментативной

реакции подобно влиянию температуры на любую химическую реакцию. С повышением температуры ускоряется движение молекул, что приводит к повышению вероятности взаимодействия реагирующих веществ. Кроме того, температура может повышать энергию реагирующих молекул, что также приводит к ускорению реакции. Однако скорость химической реакции, катализируемая ферментами, имеет свой температурный оптимум, превышение которого сопровождается понижением ферментативной активности, возникающим из-за термической денатурации белковой молекулы

Для большинства ферментов человека оптимальна температура 37-38 °С. Однако в природе существуют и термостабильные ферменты. Например, Taq-полимераза, выделенная из микроорганизмов, живущих в горячих источниках, не инактивируется при повышении температуры до 95 °С. Этот фермент используют в научно-практической медицине для молекулярной диагностики заболеваний с использованием метода полимеразной цепной реакции (ПЦР).


В). Зависимость скорости ферментативной реакции от количества субстрата

При увеличении количества субстрата начальная скорость возрастает. Когда фермент становится полностью насыщенным субстратом, т.е. происходит максимально возможное при данной концентрации фермента формирование фермент-субстратного комплекса, наблюдают наибольшую скорость образования продукта. Дальнейшее повышение концентрации субстрата не приводит к увеличению образования продукта, т.е. скорость реакции не возрастает. Данное состояние соответствует максимальной скорости реакции Vmax.

Таким образом, концентрация фермента - лимитирующий фактор в образовании продукта. Это наблюдение легло в основу ферментативной кинетики, разработанной учёными Л. Михаэлисом и М. Ментен в 1913 г.

Скорость реакции пропорциональна концентрации фермент-субстратного комплекса ES, a скорость образования ES зависит от концентрации субстрата и концентрации свободного фермента. На концентрацию ES влияет скорость формирования и распада ES.

Наибольшая скорость реакции наблюдается в том случае, когда все молекулы фермента находятся в комплексе с субстратом, т.е. в фермент-субстратном комплексе ES, т.е. [Е] = .

Зависимость скорости ферментативной реакции от концентрации субстрата выражается следующим уравнением (математическое выведение этой формулы можно найти в пособиях по ферментативной кинетике):

V = Vmax[S] / Km + [S]

Это уравнение получило название уравнения Михаэлиса-Ментен.

Уравнение Михаэлиса-Ментен - основное уравнение ферментативной кинетики, описывающее зависимость скорости ферментативной реакции от концентрации субстрата.

Если концентрация субстрата значительно больше Km (S >> Km), to увеличение концентрации субстрата на величину Кm практически не влияет на сумму (Km + S) и её можно считать равной концентрации субстрата. Следовательно, скорость реакции становится равной максимальной скорости: V = Vmax. В этих условиях реакция имеет нулевой порядок, т.е. не зависит от концентрации субстрата. Можно сделать вывод, что Vmax - величина постоянная для данной концентрации фермента, не зависящая от концентрации субстрата.

Если концентрация субстрата значительно меньше Km(S << Km), то сумма (Km + S) примерно равна Кm, следовательно, V = Vmax[S]/Km, т.е. в данном случае скорость реакции прямо пропорциональна концентрации субстрата (реакция имеет первый порядок).

Vmах и Km - кинетические характеристики эффективности фермента.

Vmax дает характеристику каталитической активности фермента и имеет размерность скорости ферментативной реакции моль/л, т.е. определяет максимальную возможность образования продукта при данной концентрации фермента и в условиях избытка субстрата. Кm характеризует сродство данного фермента к данному субстрату и является величиной постоянной, не зависящей от концентрации фермента. Чем меньше Кm, тем больше сродство фермента к данному субстрату, тем выше начальная скорость реакции и наоборот, чем больше Кm, тем меньше начальная скорость реакции, тем меньше сродство фермента к субстрату.

Ферментативная кинетика изучает влияние различных факторов (концентрация S и E, рН, температура, давление, ингибиторы и активаторы) на скорость ферментативных реакций. Главной целью изучения кинетики ферментативных реакций является получение информации, позволяющей глубже понять механизм действия ферментов.

Кинетическая кривая позволяет определить начальную скорость реакции V 0 .

Кривая субстратного насыщения.

Зависимость скорости реакции от концентрации фермента.

Зависимость скорости реакции от температуры.

Зависимость скорости реакции от рН.

Оптимум рН действия большинства ферментов лежит в пределах физиологических значений 6,0-8,0. Пепсин активен при рН 1,5-2,0, что соответствует кислотности желудочного сока. Аргиназа, специфичный фермент печени, активен при 10,0. Влияние рН среды на скорость ферментативной реакции связывают с состоянием и степенью ионизации ионогенных групп в молекуле фермента и субстрата. Этот фактор определяет конформацию белка, состояние активного центра и субстрата, формирование фермент-субстратного комплекса, собственно процесс катализа.

Математическое описание кривой субстратного насыщения, константа Михаэлиса .

Уравнение, описывающее кривую субстратного насыщения, было предложено Михаэлисом и Ментон и носит их имена (уравнение Михаэлиса-Ментен):

V = (V MAX *[ S ])/(Km +[ S ]) , где Km – константа Михаэлиса. Легко рассчитать, что при V = V MAX /2 Km = [S], т.е. Km – это концентрация субстрата, при которой скорость реакции составляет ½ V MAX .

С целью упрощения определения величины V MAX и Km уравнение Михаэлиса-Ментен можно пересчитать.

1/V = (Km+[S])/(V MAX *[S]),

1/V = Km/(V MAX *[S]) + 1/V MAX ,

1/ V = Km / V MAX *1/[ S ] + 1/ V MAX уравнение Лайнуивера-Берка. Уравнение, описывающее график Лайнуивера-Берка – это уравнение прямой линии (y = mx + c), где 1/V MAX – это отрезок, отсекаемый прямой на оси ординат; Km/V MAX - тангенс угла наклона прямой; пересечение прямой с осью абсцисс дает величину 1/Km. График Лайнуивера-Бэрка позволяет определить Km по относительно небольшому числу точек. Этот график также используют при оценке действия ингибиторов, о чем будет сказано ниже.

Значение Km изменяются в широких пределах: от 10 -6 моль/л для очень активных ферментов, до 10 -2 – для малоактивных ферментов.

Оценки Km имеют практическую ценность. При концентрациях субстрата в 100 раз превышающих Km, фермент будет работать практически с максимальной скоростью, поэтому максимальная скорость V MAX будет отражать количество присутствующего активного фермента. Это обстоятельство используют для оценки содержания фермента в препарате. Кроме того, Km является характеристикой фермента, что используется для диагностики энзимопатий.

Ингибирование активности ферментов.

Чрезвычайно характеристикой и важной особенностью ферментов является их инактивация под влиянием определенных ингибиторов.

Ингибиторы – это вещества, вызывающие частичное или полное торможение реакций, катализируемых ферментами.

Ингибирование ферментативной активности может быть необратимым или обратимым, конкурентным или неконкрентным.

Необратимое ингибирование – это стойкая инактивация фермента, возникающая в результате ковалентного связывания молекулы ингибитора в активном центре или в другом особом центре, изменяющим конформацию фермента. Диссоциация столь устойчивых комплексов с регенерацией свободного фермента практически исключена. Для преодоления последствий такого ингибирования организм должен синтезировать новые молекулы фермента.

Обратимое ингибирование – характеризуется равновесным комплексообразованием ингибитора с ферментом за счет нековалентных связей, вследствие чего такие комплексы способны к диссоциации с восстановлением активности фермента.

Классификация ингибиторов на конкурентные и неконкурентные основана на том, ослабляется (конкурентное ингибирование ) или не ослабляется (неконкурентное ингибирование ) их ингибирующие действие при повышении концентрации субстрата.

Конкурентные ингибиторы – это, как правило, соединения, структура которых сходна со структурой субстрата. Это позволяет им связываться в том же активном центре, что и субстраты, препятствуя взаимодействию фермента с субстратом уже на стадии связывания. После связывания ингибитор может быть превращен в некий продукт или остается в активном центре, пока не произойдет диссоциация.

Обратимое конкурентное ингибирование можно представить в виде схемы:

E↔ E-I → E + P 1

S (неакт)

Степень ингибирования фермента определяется соотношением концентраций субстрата и фермента.

Классическим примером подобного типа ингибирования является торможение активности сукцинатдегидрогеназы (СДГ) малатом, который вытесняет сукцинат из субстратного участка и препятствует его превращению в фумарат:

Ковалентное связывание ингибитора в активном центре приводит к инактивации фермента (необратимое ингибирование). Примером необратимого конкурентного ингибирования может служить инактивация триозофосфатизомеразы 3-хлорацетолфосфатом. Этот ингибитор является структурным аналогом субстрата – диоксиацетонфосфата и необратимо присоединяется к остатку глутаминовой кислоты в активном центре:

Некоторые ингибиторы действуют менее избирательно, взаимодействуя с определенной функциональной группой в составе активного центра разных ферментов. Так, связывание йодацетата или его амида с SH-группой аминокислоты цистеина, находящийся в активном центре фермента и принемающей участие в катализе, приводит к полной утрате активности фермента:

R-SH + JCH 2 COOH → HJ + R-S-CH 2 COOH

Поэтому эти ингибиторы инактивируют все ферменты, которые имеют SH-группы, участвующие в катализе.

Необратимое ингибирование гидролаз при действии нервно-паралитических газов (зарин, зоман) обусловлено их ковалентным связыванием с остатком серина в активном центре.

Метод конкурентного ингибирования нашел широкое применение в медицинской практике. Сульфаниламидные препараты – антагонисты п-аминобензойной кислоты, могут служить примером метаболизируемых конкурентных ингибиторов. Они связываются с дигидроптератсинтетазой – бактериальным ферментом, осуществляющим превращение п-аминобензоата в фолиевую кислоту, необходимую для роста бактерий. Бактерия погибает в результате того, что связавшийся сульфаниламид превращается в другое соединение и фолиевая кислота не образуется.

Неконкурентные ингибиторы обычно связываются с молекулой фермента в участке, отличном от места связывания субстрата, и субстрат непосредственно не конкурирует с ингибитором. Поскольку ингибитор и субстрат связываются с разными центрами возможно образование как комплекса E-I, так и комплекса S-E-I. Комплекс S-E-I тоже распадается с образованием продукта, однако с меньшей скоростью, чем E-S, поэтому реакция будет замедляться, но не остановится. Таким образом, могут протекать следующие параллельные реакции:

E↔ E-I ↔ S-E-I → E-I + P

Обратимое неконкурентное ингибирование встречается сравнительно редко.

Неконкурентные ингибиторы называют аллостерическими в отличие от конкурентных (изостерических ).

Обратимое ингибирование может быть количественно изучено на основе уравнения Михаэлиса-Ментен.

При конкурентном ингибировании V MAX остается постоянной, а Km возрастает.

При неконкурентном ингибировании снижается V MAX при неизменном Km.

Если продукт реакции ингибирует фермент, катализирующий его образование, такой способ ингибирования называется ретроингибированием или ингибированием по принципу обратной связи . Например, глюкоза тормозит глюкозо-6-фосфатазу, которая катализирует гидролиз глюкозо-6-фосфата.

Биологическое значение такого ингибирования – регуляция определенных метаболических путей (см. следующее занятие).

ПРАКТИЧЕСКАЯ ЧАСТЬ

Задание студентам

1. Изучить денатурацию белков под действием растворов минеральных и органических кислот и при нагревании.

2. Обнаружить кофермент НАД в дрожжах.

3. Определить амилазную активность в моче (сыворотке крови).

9. ЭТАЛОНЫ ОТВЕТОВ НА ЗАДАЧИ , тестовые вопросы, используемые при контроле знаний на занятии (можно в виде приложения)

10. ХАРАКТЕР И ОБЪЕМ ВОЗМОЖНОЙ УЧЕБНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЫ ПО ТЕМЕ

(Указать конкретно характер и форму УИРС: подготовка реферативных выступлений, проведение самостоятельных исследований, имитационная игра, оформление истории болезни с использованием монографической литературы и др. формы)